
Harvest: an open platform for developing web-based
biomedical data discovery and reporting applications
Jeffrey W Pennington,1 Byron Ruth,1 Michael J Italia,1 Jeffrey Miller,1 Stacey Wrazien,1

Jennifer G Loutrel,1 E Bryan Crenshaw,2,3 Peter S White1,4,5

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
amiajnl-2013-001825).
1Center for Biomedical
Informatics, The Children’s
Hospital of Philadelphia,
Philadelphia, Pennsylvania,
USA
2Center for Childhood
Communication, The Children’s
Hospital of Philadelphia,
Philadelphia, Pennsylvania,
USA
3Department of
Otorhinolaryngology: Head and
Neck Surgery, Perelman School
of Medicine at the University of
Pennsylvania, Philadelphia,
Pennsylvania, USA
4Division of Oncology, The
Children’s Hospital of
Philadelphia, Philadelphia,
Pennsylvania, USA
5Department of Pediatrics,
Perelman School of Medicine
at the University of
Pennsylvania, Philadelphia,
Pennsylvania, USA

Correspondence to
Peter S White, Children’s
Hospital of Philadelphia,
34th St and Civic Center
Blvd, Rm 1024 CHOP North,
Philadelphia, PA 19104-4318,
USA; whitep@email.chop.edu

JWP, BR and MJI contributed
equally to this work.

Received 20 March 2013
Revised 4 September 2013
Accepted 28 September 2013
Published Online First
16 October 2013

To cite: Pennington JW,
Ruth B, Italia MJ, et al. J
Am Med Inform Assoc
2014;21:379–383.

ABSTRACT
Biomedical researchers share a common challenge of
making complex data understandable and accessible as
they seek inherent relationships between attributes in
disparate data types. Data discovery in this context is
limited by a lack of query systems that efficiently show
relationships between individual variables, but without
the need to navigate underlying data models. We have
addressed this need by developing Harvest, an open-
source framework of modular components, and using it
for the rapid development and deployment of custom
data discovery software applications. Harvest
incorporates visualizations of highly dimensional data in
a web-based interface that promotes rapid exploration
and export of any type of biomedical information,
without exposing researchers to underlying data models.
We evaluated Harvest with two cases: clinical data from
pediatric cardiology and demonstration data from the
OpenMRS project. Harvest’s architecture and public
open-source code offer a set of rapid application
development tools to build data discovery applications
for domain-specific biomedical data repositories. All
resources, including the OpenMRS demonstration, can be
found at http://harvest.research.chop.edu

INTRODUCTION
Biomedical researchers are often challenged with
navigating the large volumes of data available from
medical and research information systems.1 Datasets
useful to biomedical research are typically complex,
highly dimensional, and temporal, often with sig-
nificant variation in granularity, sparsity, and repre-
sentation across data dimensions.2 Research data
complexity is amplified by the high volume of data
points generated by modern molecular and imaging
platforms.3 4 Unlike purely transactional data, such
as those typically derived from business operations,
these data are not readily summed or averaged, lim-
iting the utility of traditional business intelligence
tools in this context. Moreover, existing query and
reporting tools tend to be general-purpose instru-
ments with user interfaces designed to support
expert analysts working in a variety of situations.5

As a result, researchers without access to sophisti-
cated informatics expertise are increasingly chal-
lenged with efficiently managing, exploring, and
understanding the information at their disposal.
Accordingly, we developed Harvest, a new bio-

medical data application framework. Our primary
development objectives were to (1) provide for
researchers with limited informatics ability a toolkit
to generate meaningful views of raw data according
to their domain expertise and their specific interests;
(2) dynamically query key aspects of a dataset based

on the inherent characteristics of individual data
attributes; (3) combine single attribute queries into
multiattribute set operation queries; and (4) provide
an actionable endpoint by exporting immediately
available raw data in an analysis-ready format. To
demonstrate its effectiveness, Harvest was used to
develop and deploy intuitive data discovery applica-
tions for two distinctive biomedical domains: pedi-
atric cardiology diagnostic modality and procedure
data generated at The Children’s Hospital of
Philadelphia (CHOP), and infectious disease data
published by the OpenMRS open-source electronic
health record (EHR) project.

BACKGROUND AND SIGNIFICANCE
Adoption of EHR systems by academic medical
centers has created significant potential for the
re-use of clinical data for research.6 Trends in trans-
lational research indicate a need for data discovery
platforms that can stage and disseminate data in a
readily accessible form to researchers focusing on
disease. Such trends include the increasing adoption
and diversity of EHRs to capture longitudinal
patient information; rapid development and early
adoption of genomics, imaging, and other complex
data types; the progressive organization of multidis-
ciplinary teams focusing on systems biology
research; and the need for integration and exchange
of many different types and complexities of data.
We sought a solution that would enable rapid iter-
ation of design ideas and provide the flexibility to
adapt to the accelerated pace of innovation in
diverse research settings.
Many available analytic applications operate on

arbitrary datasets, including SAP Business Objects,
IBM Cognos, QlikTech QlikView, and TIBCO
SpotFire. Many of these tools are specific for busi-
ness intelligence (BI) and perform well on quantita-
tive transactional data aggregated across multiple
dimensions. However, commercial BI tools have
not yet been widely adopted in the research com-
munity, owing in part to the limitations of these
tools for analyzing highly multidimensional data
arising from discrete observations. For instance,
aggregation of observations by counting is of little
value to researchers when the data are categorical,
and of marginal use for non-epidemiological
patient-oriented research when the data are quanti-
tative. Both QlikView and SpotFire allow for these
features but are limited by their architectures,
which rely on in-memory data stores that present
performance barriers for Big Data applications.
Moreover, the cost of licensing these tools for
open-access internal and external academic use can
be prohibitive.

Open Access
Scan to access more

free content

Pennington JW, et al. J Am Med Inform Assoc 2014;21:379–383. doi:10.1136/amiajnl-2013-001825 379

Case report

http://dx.doi.org/10.1136/amiajnl-2013-001825
http://dx.doi.org/10.1136/amiajnl-2013-001825
http://dx.doi.org/10.1136/amiajnl-2013-001825
http://harvest.research.chop.edu
http://harvest.research.chop.edu

The variability of research data from project to project requires
either a monolithic application data model—which optimizes
efficiency from application development and operational stand-
points—or custom code developed for every application. One
strategy for a monolithic database schema is to use an entity-
attribute-value (EAV) model. An EAV model uses key-value fields
in a general-purpose table to extensibly store arbitrary data
without having to create dedicated tables, as exemplified in bio-
medicine by the i2b2 (informatics for integrating biology and the
bedside) project.7 An EAV approach provides the convenience of
a fixed database model, but at the expense of the benefits pro-
vided by normalized relational models such as database-level ref-
erential integrity and performance optimization through
indexing.8 While successful in many domains, EAV models have
difficulty supporting ad hoc, attribute-centric queries on highly
dimensional data,9 such as clinical and annotated genomic data.

Alternatively, custom code built on an application-specific data-
base model makes sense when the application requirements are
sufficiently unique for a generic solution to be impracticable. Our
experience with numerous collaborators indicated commonality in
many functional requirements among projects—namely, a capacity
to iteratively browse, search, query, review, and export project-
specific data, such that a certain level of generic functionality (and
code) was clearly feasible. However, requirements differed in the
data model, where we were faced with a wide variety of data types
among projects. Based on the success of the BI tools discussed
above, we reasoned that an application data access layer might
solve the problem of generic access to highly variable database
schemas. We hypothesized that a hybrid solution might handle an
arbitrary schema with minimal to no custom code in the data
access layer, while simultaneously supporting rapid development
of data discovery applications customized to the domain of inter-
est. Accordingly, we developed the Harvest framework both for
our own use and dissemination to others.

MATERIALS, METHODS, AND TECHNOLOGIES
Harvest core components and implementation
Harvest comprises three main components: a data abstraction
layer (Avocado), a web API (Serrano), and a web client
(Cilantro). Avocado and Serrano are implemented using
Python10 and the Django web application framework.11

Cilantro is implemented using JavaScript. Detailed documenta-
tion of each component is available online.12

Avocado
The core of Harvest is a data abstraction component termed
‘Avocado’. Avocado extends the Django object-relational mapper13

to provide a stable and contextual application programming inter-
face (API) for client data access. Harvest applications rely on
Avocado to generate and manage application metadata, especially
automatically generated data profiles that reveal and publish inher-
ent characteristics of the raw data, such as determination of cat-
egorical versus continuous type, and indexing of text data for
subsequent search. Avocado also supports additional metadata
management, including providing an alias for data fields with
human-readable concept names, a searchable thesaurus of
synonym keywords describing concepts, and domain-specific cat-
egories for grouping concepts within a client user interface.
Avocado currently authorizes access to both data rows and con-
cepts through optional integration with Django Guardian.14

Serrano server
Harvest’s Serrano server publishes a hypermedia API that
enables web clients to consume data encapsulated by Avocado

and saves user data for Harvest applications. This is accom-
plished by storing a representation of user actions into a history
table in the application database. This supports several key fea-
tures, including the ability for users to name and save queries,
and provides an auditable record of user actions.

Cilantro client
The Cilantro JavaScript client generates and displays intuitive
data visualizations such as histograms, bar charts, and pie charts
for suitable database fields in real time using HighCharts JS.15

Importantly, this feature allows users to see a summary profile
of data even before constructing formal queries. In some
instances, users interact directly with the graphical displays to
construct their queries—for example, by clicking on a bar of
interest in a graph that represents a subpopulation (figure 1A).
The architecture of the client also allows for specialized query
controls to be integrated when simple data-driven displays are
not appropriate. For example, a diagnosis field might be pre-
sented as a hierarchical view that allows a user to browse,
search, and select one or more diagnoses of interest while con-
structing complex set operation queries (figure 1B).

Technologies
Harvest implements a three-tiered application architecture using
a relational database management system, web application
server, and web browser client. All server components are built
using Python and the Django web framework. Harvest config-
urations to date have used the open-source PostgreSQL16 and
SQLite17 databases, and the Nginx18 and Apache19 web servers.
However, Harvest is readily compatible with other database and
web server technologies.

RESULTS
Harvest deployments
Harvest has been used to develop several biomedical data dis-
covery applications spanning a variety of diseases and data
types, two of which are described here. Typically, specific appli-
cations are built on patient-oriented databases encompassing
unique, domain-specific relational schemas. Each application
also employs a unique configuration of Avocado metadata that
provides researchers with a user interface incorporating data
heuristics, terminology, and an organization scheme specific to
the area of study.

Harvest instance: CardioDB
CardioDB (figure 1A) is a quality improvement data resource for
measuring outcomes in the Cardiac Center at CHOP, using clinical
data derived primarily from cardiac catheterization and echocar-
diogram systems. The database and application includes 323 fields
for 47 300 patients across 24 900 catheterization procedures and
54 000 echocardiogram procedures, refreshed nightly. Data types
include problem list, diagnosis vocabulary, procedure vocabulary,
radiation exposure, cardiac dimensions, and cardiac output (see
online supplementary figure S1). Diagnosis and procedure vocabu-
laries are implemented in a hierarchical data model populated
with standard ICD9 and Current Procedural Terminology codes
along with CHOP-customized codes. The query interface to these
vocabularies is implemented in a generic Cilantro module called
the Harvest Vocab Browser.20 CardioDB enables discovery and
reporting of clinical outcomes by providing clinicians and
researchers with a longitudinal view of discrete, granular measures
of patient cardiac function both before and after a catheterization
procedure, together with relevant data describing both the patient
and procedures. Sensitive measurement of outcomes is supported

380 Pennington JW, et al. J Am Med Inform Assoc 2014;21:379–383. doi:10.1136/amiajnl-2013-001825

Case report

by use of Harvest’s query interface to stratify CHOP’s highly vari-
able cardiac patient population. CardioDB is used by researchers
and clinicians at CHOP with interest in abnormal cardiac anatomy
and physiology.

Harvest instance: OpenMRS
We validated Harvest with a public dataset originating outside
of CHOP, for which we have no specific interest or motivation,
by developing a demonstration application (figure 2) using a
deidentified clinical dataset21 published by the OpenMRS open
source EHR project.22 OpenMRS data types include infection
status, disease management, and clinical laboratory results (see
online supplementary figure S2). The application includes 56
data fields on 5300 patients and is freely available online
through the Harvest website23 for direct exploration, and as an
installable package. The extract, transform, and load (ETL)
package for the Harvest OpenMRS application is also available
at the Harvest website.

In the course of building these applications, we have found
that Harvest separates design, coding, and implementation from
the definition and organization of data elements by domain
experts. We have also found that the framework enables rapid
prototype development, as exemplified by the creation of the
OpenMRS demonstration in just two days, excluding database
creation and ETL. The Cilantro user interface and Avocado
metadata promote intuitive and meaningful review that enables
productive feedback and iterative development loops.

DISCUSSION
Our results indicate that Harvest facilitates construction of
accessible biomedical data discovery applications by providing
informatics researchers with open, standards-based components,
an adaptable framework for defining domain-specific data con-
cepts, and a user interface design that makes large and complex
datasets accessible. We have used Harvest to support data dis-
covery applications of highly multidimensional data across a
variety of clinical and research domains. The two applications

Figure 1 (A) Categorical data by
default are displayed as bar or pie
charts. Users click on chart elements of
interest to select and add to the list of
query conditions. (B) Custom controls
may be developed to handle complex
data types and query operations, such
as this vocabulary browser that
displays ICD9 diagnoses in a
browseable and searchable hierarchy,
together with input fields that enable
element drag-and-drop supported
construction of complex set-operation
query conditions. Views displayed
originate from the CardioDB Harvest
application.

Pennington JW, et al. J Am Med Inform Assoc 2014;21:379–383. doi:10.1136/amiajnl-2013-001825 381

Case report

we describe signify generalizability as they share a common
patient-encounter root data model but otherwise diverge in
their detailed dimensions. Specifically, the CardioDB data model
invokes procedural diagnostic, intervention, and cardiac func-
tion data, whereas the OpenMRS data model focuses on infec-
tion status, disease management, and clinical laboratory results.
Harvest can support a variety of data discovery paradigms,
including hypothesis generation and testing, clinical outcomes
reporting, and multisite access to shared research data.

Frameworks such as Harvest provide researchers and data
reporting groups with a toolkit suitable for addressing a primary
need of biomedical research: the ability to be rapidly and effect-
ively immersed in interoperable data relevant to a study of inter-
est, and in a way in which the data are readily comprehensible.
In our experience, researchers have gained trust with specific
Harvest applications, in part because the immediate presentation
of data visualizations provides transparency of data content.
Data are presented as collected, with outliers and potential data
inconsistencies clearly observable even before a researcher is
required to execute a query. Often, these visualizations are the
first time researchers have seen variability and potential quality
problems in their data. This incentivizes users to participate in
iterative improvement, thus generating process investment and
subsequent increased scientific value from the data.

A decided strength of Harvest is the ease of reuse in a variety of
biomedical domains. For example, we are currently developing
Harvest instances to support medical imaging studies, multisite
integration of clinical and molecular data, and genomic variant
sets derived from next generation sequencing. These applications
can completely reuse the Avocado and Serrano components, which
greatly accelerates the development of a new client interface.

All Harvest deployments thus far have resulted in rapid adop-
tion by biomedical researchers, requiring little user interface
training. The domain-specific conceptual and visual representa-
tion of data enabled by Harvest seems to lower the cognitive
burden on researchers to learn and understand an application’s
underlying data model before data discovery. This contrasts with
our experience with commercial BI tools, which typically

require an expert user to navigate both underlying data models
and the extensive functionality implemented by these enterprise
tools.

Harvest provides basic authorization capabilities, enabling con-
trolled access both to data rows and concepts/fields at the user or
user group level. Further development of this authorization cap-
ability to increase usability and transparency of the authorization
scheme is warranted. A means to authorize access to application
functionality, such as data export or drill-to-detail, is a promising
area for development.

Importantly, Harvest itself does not deal with the need to
transform and integrate biomedical data from original source
systems and formats into well-structured data suitable for query
and analysis. We address this need through various ETL
methods and tools. We have found that the rapid application
development capability of Harvest accelerates the ETL develop-
ment process, especially when using the Avocado data API to
evaluate staged and partially integrated data.

To date, Harvest has been primarily used in focused, project-
specific applications, where the analysis and configuration
required to take advantage of Avocado’s conceptual representa-
tion of data were feasible and justified by the expected end use
of the application. We have yet to test the utility of Harvest in a
more typical enterprise data warehouse scenario, where a poten-
tially large number of data fields might impose challenges of
scalability and required effort. Furthermore, while Harvest has
been able to model and present highly complex data types, we
have not yet fully dealt with the more difficult task of modeling
longitudinal data in a manner that would enable construction of
temporal query constraints.

CONCLUSION
Harvest promotes immediacy in data exploration and use in
data-intensive clinical and translational science. For biomedical
researchers, Harvest-based applications provide an accessible,
easy-to-understand view of complex data, presented in a concep-
tual framework that they help develop, and with focus on data
content rather than application development. TheHarvest platform

Figure 2 The query construction
view is used to preview data, such as
the distribution of white blood cell
count, while building up query
conditions that are displayed in a
readable format. View originates from
the OpenMRS Harvest application.

382 Pennington JW, et al. J Am Med Inform Assoc 2014;21:379–383. doi:10.1136/amiajnl-2013-001825

Case report

and the OpenMRS demonstration application are available as open
source under the unrestricted BSD license agreement. The demon-
stration application, system documentation tutorials, and ETL
package may be found at http://harvest.research.chop.edu.

Acknowledgements We thank Mark Porter for critical reading of the manuscript.

Contributors JWP oversaw project operations, study design, and manuscript
authoring; BR, MJI, JM, SW, and JGL contributed substantially to platform
development and evaluation; EBC provided domain expertise and testing; PSW
oversaw project development and provided overall project oversight. All authors read
and approved the final manuscript.

Funding This work was supported in part by NIH grant DC012207 (EBC) and the
David Lawrence Altschuler Endowed Chair Fund (PSW).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The Harvest platform and the OpenMRS demonstration
application are available as open source under the unrestricted BSD license agreement.
The demonstration application, system documentation tutorials, and extract, transform,
and load (ETL) package may be found at http://harvest.research.chop.edu

Open Access This is an Open Access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/3.0/

REFERENCES
1 Fox P, Hendler J. Changing the equation on scientific data visualization. Science

2011;331:705–8.
2 D’Avolio LW, Farwell WR, Fiore LD. Comparative effectiveness research and medical

informatics. Am J Med 2010;123(12 Suppl 1):e32–7.
3 Aldhous P. Managing the genome data deluge. Science 1993;262:502–3.

4 The Data Deluge. An e-Science Perspective. Wiley Online Library, 2003.
5 Thomsen C, Pedersen TB. A survey of open source tools for business intelligence.

Lect Notes Comput Sc 2005;3589:74–84.
6 Safran C, Bloomrosen M, Hammond WE, et al. Toward a national framework for

the secondary use of health data: an American Medical Informatics Association
White Paper. J Am Med Inform Assoc 2006;14:1–9.

7 Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond with
informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc
2010;17:124–30.

8 Karwin B. Entity-Attribute-Value. SQL Antipatterns: Avoiding the Pitfalls of Database
Programming. Raleigh, NC: Pragmatic Bookshelf, 2010.

9 Nadkarni PM, Brandt C. Data extraction and ad hoc query of an entity—Attribute
—Value database. J Am Med Inform Assoc 1998;5:511–27.

10 Python Programming Language—Official Website. Secondary Python Programming
Language—Official Website 2013. http://www.python.org

11 Django Secondary Django 2013. http://www.djangoproject.com/
12 Avocado—Metadata APIs for Django. Secondary Avocado—Metadata APIs for

Django 2013. http://cbmi.github.com/avocado/
13 Django documentation—Models and databases. Secondary Django documentation

—Models and databases 2013. http://docs.djangoproject.com/en/dev/topics/db
14 Django Guardian. Secondary Django Guardian 2013. http://pythonhosted.org/

django-guardian/
15 Serrano—Hypermedia API for Avocado. 2013. http://github.com/cbmi/serrano
16 PostgreSQL. Secondary PostgreSQL 2013. http://www.postgresql.org/
17 SQLite. Secondary SQLite 2013. http://www.sqlite.org/
18 NGINX Web Server. Secondary NGINX Web Server 2013. http://wiki.nginx.org/Main
19 Apache HTTP Server Project. Secondary Apache HTTP Server Project 2013. http://

httpd.apache.org/
20 Harvest Vocab Browser. Secondary Harvest Vocab Browser 2013. https://github.com/

cbmi/harvest-vocab
21 OpenMRS Demo Data. Secondary OpenMRS Demo Data 2013. https://wiki.openmrs.

org/display/RES/Demo+Data
22 Wolfe BA, Mamlin BW, Biondich PG, et al. The OpenMRS system: collaborating

toward an open source EMR for developing countries. AMIA Annu Symp Proc
2006:1146. doi:86273 [pii][published Online First: Epub Date]

23 Harvest Website. Secondary Harvest Website 2013. http://harvest.research.chop.edu

Pennington JW, et al. J Am Med Inform Assoc 2014;21:379–383. doi:10.1136/amiajnl-2013-001825 383

Case report

http://harvest.research.chop.edu
http://harvest.research.chop.edu
http://harvest.research.chop.edu
http://harvest.research.chop.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.python.org
http://www.python.org
http://www.djangoproject.com/
http://www.djangoproject.com/
http://cbmi.github.com/avocado/
http://cbmi.github.com/avocado/
http://docs.djangoproject.com/en/dev/topics/db
http://docs.djangoproject.com/en/dev/topics/db
http://pythonhosted.org/django-guardian/
http://pythonhosted.org/django-guardian/
http://pythonhosted.org/django-guardian/
http://pythonhosted.org/django-guardian/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.sqlite.org/
http://www.sqlite.org/
http://wiki.nginx.org/Main
http://wiki.nginx.org/Main
http://httpd.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/
https://github.com/cbmi/harvest-vocab
https://github.com/cbmi/harvest-vocab
https://github.com/cbmi/harvest-vocab
https://github.com/cbmi/harvest-vocab
https://wiki.openmrs.org/display/RES/Demo+Data
https://wiki.openmrs.org/display/RES/Demo+Data
https://wiki.openmrs.org/display/RES/Demo+Data
http://dx.doi.org/86273
http://harvest.research.chop.edu
http://harvest.research.chop.edu

