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1 	 | 	 INTRODUCTION

Esophageal	 adenocarcinoma	 (EAC)	 is	 predominantly	
found	 in	 the	 distal	 third	 of	 the	 esophagus.	 Early	 diag-
nostics	of	EAC	is	challenging	due	to	 the	 lack	of	specific	
symptoms.	More	than	50%	of	EAC	cases	are	diagnosed	at	
stages	III-	IV,	which	explains	the	poor	prognosis	associated	
with	 this	 malignancy.	 The	 recently	 reported	 5-	year	 sur-
vival	of	patients	with	EAC	is	around	20.1%–	23.4%.1,2	Risk	
factors	of	EAC	development	include	male	gender,	gastro-	
esophageal	 reflux	 disease	 (GERD),	 Barrett's	 esophagus	

and	smoking.1,3–	8	Barrett's	esophagus	(BE)	is	a	premalig-
nant	condition	for	EAC.	Risk	of	developing	EAC	is	signifi-
cantly	higher	in	patients	with	BE	compared	to	the	general	
population.6	 Routine	 endoscopic	 surveillance	 with	 his-
topathological	 assessment	 in	 BE	 patients	 aims	 for	 early	
detection	of	neoplasia.9–	12	Detection	of	dysplastic	BE	and	
T1a	 stage	 of	 EAC	 prompts	 endoscopic	 treatment	 which	
delivers	 high	 5-	year	 survival	 rates.13,14	 Nonetheless,	 the	
role	of	BE	and	different	types	of	metaplasia	in	the	distal	
esophagus	region	in	progression	to	EAC	is	under	discus-
sion15	and	existing	algorithms	of	endoscopic	surveillance	
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Abstract
Barrett's	esophagus	is	a	widespread	chronically	progressing	disease	of	heteroge-
neous	nature.	A	life	threatening	complication	of	this	condition	is	neoplastic	trans-
formation,	which	is	often	overlooked	due	to	lack	of	standardized	approaches	in	
diagnosis,	preventative	measures	and	treatment.	In	this	essay,	we	aim	to	stratify	
existing	data	to	show	specific	associations	between	neoplastic	transformation	and	
the	underlying	processes	which	predate	cancerous	transition.	We	discuss	patho-
morphological,	genetic,	epigenetic,	molecular	and	immunohistochemical	meth-
ods	related	to	neoplasia	detection	on	the	basis	of	Barrett's	esophagus.	Our	review	
sheds	light	on	pathways	of	such	neoplastic	progression	in	the	distal	esophagus,	
providing	valuable	insight	into	progression	assessment,	preventative	targets	and	
treatment	modalities.	Our	results	suggest	that	molecular,	genetic	and	epigenetic	
alterations	in	the	esophagus	arise	earlier	than	cancerous	transformation,	mean-
ing	the	discussed	targets	can	help	form	preventative	strategies	in	at-	risk	patient	
groups.
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are	suboptimal	because	most	of	patients	diagnosed	with	
EAC	 do	 not	 have	 any	 history	 of	 BE.16–	18	 Analysis	 of	 ex-
isting	 information	 on	 the	 different	 types	 of	 esophageal	
metaplasia	 pathways	 and	 their	 contribution	 to	 develop-
ment	of	EAC	will	help	delineate	possible	diagnostic	and	
therapeutic	targets.	Our	essay	is	focused	on	morphological	
diagnosis,	immunohistochemical	(IHC)	examination	and	
molecular-	genetic	 methods	 for	 dysplasia	 detection	 and	
prediction	of	neoplastic	progression.

All	 images	presented	 in	 this	study	were	obtained	 fol-
lowing	approval	by	the	ethics	committee	at	the	31st	State	
City	 Hospital	 of	 Moscow	 (№03-	19	 from	 06.12.2019).	 All	
patients	 included	 in	 the	 pathomorphological	 study	 pro-
vided	informed	written	consent.

2 	 | 	 RISK OF EAC IN 
METAPLASTIC PROCESSES OF THE 
ESOPHAGUS

Long	 lasting	 reflux	 exposure	 in	 distal	 esophagus	 results	
in	 initiation	 of	 columnar-	lined	 esophagus.	 Cardiac	 type	
metaplasia	 is	 the	 earliest	 morphologic	 finding,	 although	
multitude	of	gland	structure	phenotypic	variants	arises	in	
segment	of	metaplasia	in	distal	esophagus	over	time.19–	21	
Proportion	 of	 glands	 goes	 through	 enteralization	 which	
causes	 development	 of	 intestinal	 metaplasia	 (IM,	 or	 so	
called	specialized	metaplasia)	with	easily	found	hallmark	
goblet	cells	(GCs)	that	are	inserted	among	foveolar	cells.	
Enteralization	is	believed	to	start	with	expression	of	 im-
munohistochemical	 markers	 of	 intestinal	 differentiation	
in	 columnar	 epithelium,	 such	 as	 CDX2,	 villin	 and	 Das-	
1,22,23	followed	by	MUC2	expression	and	development	of	
GCs.	 Paneth	 cells	 are	 detected	 in	 some	 cases	 of	 special-
ized	metaplasia.	Segment	of	metaplasia	may	also	contain	
different	variants	of	gastric	metaplasia:	glands	of	cardiac,	
oxynto-	cardiac	 and	 fundic	 type.	 Various	 phenotypes	 of	
metaplasia	can	be	identified	in	biopsy	pieces	of	distal	es-
ophagus	separately	or	in	combination.

There	 are	 two	 ultimately	 different	 approaches	 to	 BE	
diagnostics.15,24	British	Society	of	Gastroenterology	(BSJ)9	
and	 international	 consensus	 BOB	 CAT10	 define	 BE	 as	
any	 type	 of	 columnar	 metaplasia	 in	 distal	 esophagus.	
Meanwhile,	 American	 Gastroenterological	 Association	
(AGA)11	 and	 Russian	 Society	 of	 Pathologists	 (RSP)12	 re-
quire	 mandatory	 presence	 of	 IM	 for	 diagnosis	 of	 BE	
because	 IM	 is	 associated	 with	 increased	 risk	 of	 EAC	
development.

For	a	 long	 time,	 it	was	accepted	 that	more	 than	90%	
of	all	EAC	arise	at	background	of	IM.11,12,25	In	a	large	ep-
idemiological	 study,	 Bhat	 S.	 et	 al.26	 identified	 incidence	
of	high-	grade	dysplasia	(HGD)/EAC	in	patients	with	IM	
to	be	0.38%	a	year,	and	only	0.07%	a	year	in	patients	with-
out	IM	(hazard	ratio	3.54,	95%	CI	2.09–	6.00,	p < 0.001),	
whereas	 in	 other	 research	 incidence	 of	 HGD/EAC	 did	
not	 differ	 in	 patients	 with	 IM	 and	 gastric	 metaplasia	 at	
initial	biopsy.27,28	Tan	M.C.	et	al.13	demonstrated	in	meta-	
analysis	 that	BE	 (IM)	 is	detected	only	 in	56.6%	patients	
(95%	 CI	 48.5%–	64.6%)	 at	 the	 time	 of	 EAC	 diagnosis.	 In	
addition,	BE	is	more	frequently	identified	in	patients	with	
early	EAC:	in	studies,	where	early	EAC	was	diagnosed	in	
100%	of	cases,	BE	was	confirmed	in	91.3%	patients	(95%	
CI	82.4%–	97.6%).	Sawas	T.	et	al.29,30	observed	IM	only	in	
45.0%–	49.9%	patients	with	EAC	and	the	frequency	of	BE	
detection	 in	 patients	 with	 different	 stages	 of	 EAC	 was	
nearly	equal	that	contradicts	overgrowth	of	IM	by	tumor.	
Sawas	T.	et	al.29,30	identified	two	phenotypes	of	EAC	with	
different	prognosis	based	on	 the	presence	or	absence	of	
BE:	EAC	with	BE	at	background	was	characterized	by	bet-
ter	prognosis	than	EAC	without	BE.	The	authors	suppose	
ultra-	short	segment	of	IM	to	be	the	source	of	EAC	without	
BE.	Nevertheless,	it	is	widely	accepted	that	the	chance	of	
IM	detection	rises	with	increase	in	segment	length.27,31–	34	
Considering	that	IM	is	rare	in	ultra-	short	segment	(it	is	de-
tected	only	in	14.8%	patients33)	and	in	most	cases	it	com-
prises	 cardiac	 and	 oxynto-	cardiac	 metaplasia,	 it	 seems	
logical	to	assume	the	source	of	such	EAC	to	be	ultra-	short	
and	short	segments	of	gastric	type	metaplasia	(Figure	1).

F I G U R E  1  Schematic	illustration	
shows	suggested	pathways	of	progression	
to	EAC	in	gastric	and	intestinal	
metaplasia



   | 449MASLYONKINA et al.

This	proposition	 is	supported	by	results	of	several	
studies.	 Takubo	 K.	 et	 al.35	 demonstrated	 that	 more	
than	 70%	 cases	 of	 minute	 EAC	 arise	 at	 background	
of	 cardiac	 or	 fundic-	type	 metaplasia	 surrounding	
the	 tumor.	 Performing	 IHC	 examination	 Watanabe	
G.	 et	 al.36	 detected	 gastric	 phenotype	 (expression	 of	
gastric	 differentiation	 markers	 MUC5A	 and	 MUC6	
with	negative	expression	of	 intestinal	markers)	more	
frequently	 in	 minute	 tumors.	 Several	 phenotypes	 of	
dysplasia	 and	 EAC	 were	 identified	 based	 on	 IHC	 ex-
amination	 with	 gastric	 and	 intestinal	 markers	 that	
confirm	presence	of	two	distinct	pathways	in	carcino-
genesis:	 intestinal	 and	 foveolar,37,38	 although	 genetic	
analysis	showed	that	both	metaplasia	types	harbor	the	
same	 mutations.39	 Using	 histological,	 IHC	 examina-
tion	and	genetic	analysis,	Lavery	D.L.	et	al.40	revealed	
that	even	when	IM	is	present	EAC	arises	from	gastric	
type	 metaplasia.	 On	 the	 other	 hand,	 high	 density	 of	
GCs	 in	 BE	 is	 associated	 with	 a	 decrease	 in	 the	 risk	
of	 EAC	 development	 and	 may	 represent	 a	 protective	
mechanism	 of	 adaptation.41–	43	 Inhibition	 of	 Notch-	
signaling	 causes	 proliferative	 cells	 in	 metaplastic	
glands	 to	 become	 terminally	 differentiated	 GC.44,45	
Thus,	 induction	 of	 GC	 differentiation	 may	 represent	
a	potential	therapeutic	strategy	of	EAC	prevention	in	
patients	with	BE.41,44

3 	 | 	 ENDOSCOPIC EVALUATION 
IN BE AND EAC: STANDARD 
PROCEDURE AND COMPUTER- 
AIDED DETECTION (CAD)

White	 light	 endoscopy	 (WLE)	 with	 four-	quadrant	 bi-
opsy	each	2 cm	plus	biopsy	from	any	suspicious	visual	le-
sions	is	recommended	by	most	of	the	guidelines9,10,12	as	
an	effective	tool	for	dysplasia	detection.46	Nevertheless,	
adherence	to	standard	protocol	is	low,	comprising	be-
tween	 24.1%	 and	 82.7%47–	49	 and	 is	 even	 lower	 in	 long	
segment	of	dysplasia,	where	dysplasia	is	more	likely	to	
be	 found.	Standard	protocol	 is	 time	and	cost	consum-
ing,	 prone	 to	 sampling	 error	 and	 results	 in	 high	 load	
of	 pathologists	 with	 abundant	 biopsies.16	 That	 is	 why	
a	lot	of	different	endoscopy	modalities	and	techniques	
were	 tried	 for	 visualization	 of	 dysplasia	 and	 precise	
biopsy,	 among	 them	 narrow-	band	 imaging	 (NBI),50–	52	
acetic	acid	chromoendoscopy	(AAC),53–	56	autofluores-
cence	 imaging	 (AFI),57,58	 confocal	 laser	 endomicros-
copy	 (CLE)59–	63	 and	 volumetric	 laser	 endomicroscopy	
(VLE).64–	66	 Although	 some	 studies	 demonstrated	 dif-
ferent	imaging	modalities	to	be	efficient,	in	other	stud-
ies	the	use	of	these	techniques	did	not	report	benefits	

in	dysplasia	detection	rate.67–	70	Sensitivity	of	standard	
protocol	 with	 4-	quadrant	 biopsy	 ranged	 from	 28%	 to	
85%	in	different	studies	and	specificity	varied	from	56%	
to	100%,	this	led	American	Society	for	Gastrointestinal	
Endoscopy	 to	 set	 thresholds	 for	 any	 Preservation	 and	
Incorporation	 of	 Valuable	 endoscopic	 Innovations	
(PIVI)71:	an	imaging	technology	with	targeted	biopsies	
should	have	a	per-	patient	sensitivity	of	90%	or	greater,	
negative	 predictive	 value	 (NPV)	 of	 98%	 or	 greater	 for	
detecting	HGD	or	early	EAC	and	specificity	of	at	least	
80%	 to	 allow	 a	 reduction	 in	 the	 number	 of	 biopsies	
compared	to	standard	protocol.

However,	 recent	 research	 showed	 benefits	 of	 CAD	
using	WLE	images72–	76	in	dysplasia	and	early	EAC	detec-
tion.	At	first,	F.	van	der	Sommen	et	al.72	used	100	WLE	
images	 obtained	 from	 44	 patients	 with	 BE	 to	 develop	
CAD	model	based	on	machine	learning	algorithm	that	
identified	HGD	and	early	EAC	with	sensitivity	of	86%	
and	specificity	of	87%	at	the	patient	level.	Next,	Mendel	
R.	 et	 al.73	 performed	 a	 convolutional	 neural	 networks	
(CNN)	analysis	of	BE	using	50	WLE	images	of	EAC	and	
50	BE	images	from	an	open	access	database	(Endoscopic	
Vision	 Challenge	 MICCAI	 2015)	 and	 achieved	 sen-
sitivity	 of	 94%	 and	 specificity	 of	 88%.	 Notably,	 A.J.	 de	
Groof	 et	 al.74	 developed	 a	 hybrid	 ResNet-	UNet	 model	
CAD	system	using	5	independent	WLE	endoscopy	data-
sets.	 Pre-	training	 was	 performed	 using	 large	 series	 of	
494,364	labelled	endoscopic	images.	Then	1247	images	
of	early	neoplasia	and	non-	dysplastic	BE	(NDBE)	were	
used	in	the	second-	step	training	and	other	297	images	
(3rd	 step)	 –		 for	 internal	 validation.	Two	 sets	 (4th	 and	
5th	step)	each	of	which	containing	40	neoplastic	and	40	
NDBE	images	served	for	external	validation.	At	the	5th	
step,	accuracy	was	88%,	sensitivity	93%	and	specificity	
83%	that	outperformed	results	of	general	endoscopists	
(73%,	 72%	 and	 74%,	 respectively).	 The	 computational	
speed	 for	 classification	 and	 delineation	 of	 the	 endo-
scopic	 images	 in	 this	 study	 was	 compatible	 for	 use	 in	
real	 time	 during	 endoscopic	 surveillance.	 Hashimoto	
R.	et	al.75	also	developed	CNN	algorithm	for	detection	
of	 dysplastic	 BE	 and	 NDBE	 with	 sensitivity	 of	 96.4%,	
specificity	of	94.2%	and	accuracy	of	95.4%.	This	 study	
also	suggested	possibility	of	real-	time	implementation.	
It	 was	 practically	 proved	 by	 Ebigbo	 A.	 et	 al.76	 In	 this	
study,	 129	 endoscopic	 images	 were	 used	 for	 CAD	 sys-
tem	training	and	validation	was	performed	in	real-	time	
assessing	 images	 from	 14	 patients	 with	 further	 histo-
logical	 confirmation.	 In	 this	 study,	 CAD	 sensitivity	 of	
83.7%,	 specificity	 of	 100.0%	 and	 overall	 accuracy	 of	
89.9%	 were	 reached.	 Few	 studies	 also	 assessed	 CAD	
dysplasia	 detection	 using	VLE.77–	79	The	 data	 are	 sum-
marized	in	Table 1.
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4 	 | 	 WIDE AREA 
TRANSEPITHELIAL SAMPLING 
WITH COMPUTER- ASSISTED 
THREE- DIMENSIONAL ANALYSIS 
(WATS)

WATS	 represents	 esophageal	 brush	 biopsy	 that	 samples	
large	 circumferential	 area	 to	 obtain	 full-	thickness	 tran-
sepithelial	 tissue	sample.	Then	computer-	assisted	analy-
sis	using	neural	networks	integrates	up	to	50	3-	μm	optical	
slides	to	create	a	single	three-	dimensional	image	of	glands	
for	pathology	review.80	Several	studies	demonstrated	that	
WATS	significantly	improved	the	detection	of	both	BE	and	
esophageal	 dysplasia	 (Table  2).80–	85	 Thus,	 in	 a	 prospec-
tive	multicenter	community-	based	study	enrolling	12,899	
patients,	Smith	MS	et	al.80	showed	that	adding	WATS	to	
routine	forceps	biopsy	raised	the	yield	of	dysplasia	detec-
tion	from	0.68%	to	2.33%	and	increased	the	overall	detec-
tion	of	dysplasia	by	242%	(95%	CI	191%–	315%).	Rate	of	BE	
detection	by	forceps	biopsy	was	13.1%	and	WATS	raised	
it	 to	33%	 increasing	 the	overall	detection	of	BE	by	153%	
(95%	CI	144%–	162%).	 In	meta-	analysis,	WATS	as	an	ad-
junct	to	forceps	biopsy	yielded	relative	increase	of	1.62	in	
detection	of	BE	(95%	CI	1.28–	2.05,	p < 0.0001)	and	relative	
increase	of	2.05	in	the	detection	rate	of	esophageal	dyspla-
sia	(95%	CI	1.42–	2.98,	p = 0.0001).84	WATS	adjunct	to	the	
standard	random	4-	quadrant	 forceps	biopsies	 showed	 to	
be	cost-	effective	for	screening	of	at	risk	patients.86

The	 inter-	observer	 agreement	 among	 pathologists	 in	
the	diagnosis	of	dysplasia	using	WATS	was	better	than	for	
histopathology	 (Table  2).	The	 overall	 mean	 kappa	 value	
for	 the	4	observers	was	calculated	as	0.86	 (95%	CI	0.75–	
0.97).	 The	 kappa	 values	 for	 HGD/EAC,	 IND/LGD,	 and	
NDBE	 comprised	 0.95	 (95%	 CI	 0.88–	0.99),	 0.74	 (95%	 CI	
0.61–	0.85),	 and	 0.88	 (95%	 CI	 0.81–	0.94),	 respectively.87	
Nonetheless,	 in	 forceps	 biopsy	 cytological	 atypia	 is	 as-
sessed	along	with	architecture	changes.	Therefore,	WATS	
cannot	substitute	forceps	biopsy,	because	it	does	not	pro-
vide	 necessary	 information	 about	 architecture	 changes	
(for	example,	it	cannot	assess	surface	maturation	required	
for	 diagnostics	 of	 dysplasia	 or	 differ	 glands	 at	 the	 bases	
of	 the	 pits	 that	 may	 mimic	 dysplasia)	 and	 invasion,	 but	
there	is	a	concern	that	WATS	may	lead	to	overestimation	
of	dysplasia.88

5 	 | 	 PATHOMORPHOLOGICAL 
FEATURES OF DYSPLASIA IN 
BARRETT 'S ESOPHAGUS

Neoplastic	progression	in	BE	goes	through	the	following	
stages:	 nondysplastic	 BE	 (NDBE)—	low-	grade	 dysplasia	
(LGD)—	HGD—	EAC	(Figure	2).	Morphological	detection	T
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of	 dysplasia	 in	 BE	 represents	 a	 clinically	 relevant	 factor	
for	stratification	of	EAC	development	risk.94–	100	The	risk	
of	EAC	is	10-	fold	higher	in	LGD	compared	with	NDBE.94	
Gradation	of	neoplastic	changes	at	pathological	examina-
tion	 is	 held	 in	 accordance	 with	 Vienna	 classification101	
or	criteria	proposed	by	Reid	B.J.	et	al.102	 (Table 3).	Both	
diagnostic	 systems	 are	 consistent	 with	 current	 clinical	
practice.103

Four	 morphological	 criteria	 were	 developed	 for	 dys-
plasia	 identification90,104:	 (1)	 surface	 maturation	 versus	
epithelium	 in	 the	 glands,	 (2)	 architecture	 of	 glands,	 (3)	
cytological	 features	 of	 proliferation,	 and	 (4)	 presence	 of	
inflammation,	ulcers	or	erosions.

NDBE	specimens	of	esophageal	mucosa	are	lined	with	
columnar	epithelium	with	round-	shaped	glands	contain-
ing	GCs,	surface	maturation	is	obvious,	extent	of	mixed	in-
flammatory	infiltration	in	stroma	varies	greatly	(Figure	3).	
GCs	are	necessary	to	distinguish	with	pseudogoblet	cells	
(pseudo-	GCs)—	foveolar	 cells	 distended	 by	 mucus.105,106	
In	most	cases,	 it	can	be	done	 in	specimens	stained	with	
hematoxylin	 and	 eosin.	 GCs	 are	 more	 round	 in	 shape,	
with	 clear	 to	 bluish	 cytoplasm	 and	 triangle	 nuclei,	 and	
they	 are	 scattered	 through	 epithelium,	 whereas	 pseudo-	
GCs	are	more	elongated,	with	homogenous	clear	to	pink	
cytoplasm	and	are	organized	in	linear	groups.	In	difficult	
cases,	 PAS/Alcian	 blue	 stain	 can	 be	 used	 to	 distinguish	
GCs	and	pseudo-	GCs.	PAS/Alcian	blue	stains	blue	cyto-
plasm	of	GCs,	whereas	cytoplasm	of	pseudo-	GCs	in	most	
cases	stains	purple	(Figure	4),	although	sometimes	cyto-
plasm	of	pseudo-	GCs	stains	blue	by	PAS/Alcian	blue	like	
cytoplasm	of	GCs.	 In	such	cases,	 IHC	examination	with	
MUC2—	a	 highly	 specific	 marker	 of	 GCs—	is	 of	 value107	
(Figure	 5).	 At	 the	 other	 hand,	 Srivastava	 et	 al.106	 stated	
that	ancillary	stains	are	not	necessary	in	diagnosis	of	BE,	
because	they	do	not	add	accuracy	in	GCs	detection.

There	are	two	main	types	of	dysplasia:	more	common	
adenomatous	 and	 rare	 foveolar.108–	112	 LGD	 shows	 weak	
or	 absent	 surface	 maturation.	 Inflammatory	 infiltration	
of	 stroma	 is	 scarce.	 Mild	 architecture	 distortion	 is	 typi-
cal:	 glands	 are	 slightly	 crowded,	 round	 and	 angulated,	
lined	with	columnar	epithelium	with	nuclei	located	at	the	
basal	½	of	cells,	and	few	nuclei	may	contain	nucleoli.	In	
adenomatous	 dysplasia	 (Figure	 6),	 nuclei	 are	 mildly	 en-
larged,	slightly	elongated,	stratified	and	hyperchromatic,	
with	few	mitoses.	In	foveolar	dysplasia,	epithelial	cells	are	
cuboid	with	round	to	oval,	and	nuclei	are	slightly	enlarged	
with	hyperchromatosis	(Figure	7).

HGD	is	characterized	by	prominent	changes	in	archi-
tecture	and/or	pronounced	features	of	cytological	atypia	
as	 well	 as	 absent	 surface	 maturation.	 In	 adenomatous	
HGD	(Figure	8)	glands	are	crowded,	with	“back-	to-	back”	
appearance,	and	stroma	between	glands	is	scarce.	Glands	
are	 of	 irregular	 shapes,	 some	 glands	 may	 be	 distended,	T
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and	 few	 glands	 may	 represent	 micropapillary	 or	 cribri-
form	pattern.	Loss	of	cellular	polarity	and	prominent	nu-
clear	stratification	is	identified.	Nucleo-	cytoplasmic	ratio	

is	 highly	 increased,	 nuclei	 are	 elongated	 (pencil-	like),	
hyperchromatic,	nuclear	membrane	is	irregular,	nucleoli	
may	be	easily	found.	Mitoses,	including	atypical	ones,	are	

F I G U R E  2  Schematic	illustration	that	demonstrates	changing	morphological	features	during	neoplastic	progression	in	BE	and	non-	
intestinal	metaplasia	of	distal	esophagus

T A B L E  3 	 Comparison	of	two	systems	of	dysplasia	gradation	in	BE:	proposed	by	Reid	(1988)	and	the	Vienna	classification	of	
gastrointestinal	epithelial	neoplasia	(2000)

The Vienna classification of gastrointestinal epithelial neoplasia, 
2000101 Consensus for grading dysplasia in BE, 1988102

Negative	for	dysplasia/neoplasia Negative	for	dysplasia/neoplasia

Indefinite	for	dysplasia/neoplasia Indefinite	for	dysplasia

Non-	invasive	low-	grade	neoplasia	(low-	grade	adenoma/dysplasia) Low-	grade	dysplasia

Non-	invasive	high-	grade	dysplasia
High-	grade	dysplasia
Non-	invasive	adenocarcinoma	(carcinoma	in	situ)
Suspicious	for	invasive	carcinoma

High-	grade	dysplasia

Invasive	neoplasia
Intramucosal	adenocarcinoma
Submucosal	adenocarcinoma	or	beyond

Adenocarcinoma
Intramucosal	adenocarcinoma
Invasive	adenocarcinoma

F I G U R E  3  Nondysplastic	BE.	
Specimen	of	IM	in	distal	esophagus	
with	high	density	of	goblet	cells,	stroma	
shows	inflammatory	infiltration	and	
extravasation:	(A)	hematoxylin	and	eosin	
staining,	(B)	PAS/Alcian	blue	staining,	
magnification	×100

(A) (B)
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readily	 identified.	Foveolar	HGD	(Figure	9)	harbors	 less	
extensive	architecture	changes	but	severe	enlargement	of	
nuclei,	hyperchromatosis	and	noticeable	nucleoli.

LGD	 and	 HGD	 are	 distinguished	 based	 on	 sever-
ity	 of	 (1)	 architecture	 distortion	 and	 (2)	 cytological	
atypia.90,104,105	 In	 subset	 of	 cases,	 prominent	 cytological	

F I G U R E  4  Gastric	metaplasia	with	
pseudo-	GCs	in	distal	esophagus.	Specimen	
of	metaplastic	distal	esophagus	with	
distended	foveolar	cells,	containing	apical	
mucus	at	the	surface.	(A)	hematoxylin	
and	eosin	staining,	(B)	PAS/Alcian	blue	
staining:	cytoplasm	of	epithelial	cells	
stains	purple,	magnification	×100

(A) (B) 

F I G U R E  5  Pseudogoblet	cells	in	gastric	metaplasia.	Specimen	of	columnar-	lined	esophagus	with	elongated	distended	cells	at	the	
surface	with	apical	mucus.	(A)	hematoxylin	and	eosin	staining,	(B)	PAS/Alcian	blue	staining:	cytoplasm	of	surface	epithelium	stains	blue,	
(C)	IHC	evaluation	with	MUC2	shows	negative	expression,	magnification	×200

(A) (B)

(C) 

F I G U R E  6  Adenomatous	low-	grade	dysplasia,	hematoxylin	and	eosin	staining:	(A)	magnification	×100,	(B)	magnification	×200.	
Specimen	of	columnar-	lined	esophagus	with	lack	of	surface	maturation.	Most	of	glands	are	simple,	round	or	angulated,	few	of	them	are	
dilated.	Nuclear	stratification	and	enlarged	nucleo-	cytoplasmic	ratio	is	obvious.	Nuclei	are	pencillated,	located	in	basal	½	of	cells,	mitoses	
are	readily	identified

(A) (B) 



454 |   MASLYONKINA et al.

atypia	 with	 markedly	 enlarged,	 stratified,	 pleomorphic	
nuclei	and	a	lot	of	mitoses	is	sufficient	for	diagnosis	HGD	
even	if	changes	in	architecture	are	moderate.	Prominent	
architecture	 distortion	 even	 accompanied	 with	 mild	 cy-
tological	 atypia	 should	 be	 classified	 as	 HGD.	 In	 biopsy	
specimens	with	LGD	count	of	GCs	varies	greatly—	from	
few	GCs	to	high	density	GCs.	Although	depletion	of	GCs	
is	 typical	 for	 dysplasia	 in	 general,	 Bansal	 et	 al.31	 found	

association	between	LGD	and	high	count	of	GCs.	In	HGD	
and	EAC,	count	of	GCs	is	usually	decreased.

Intramucosal	 EAC	 is	 diagnosed	 when	 there	 is	 inva-
sion	through	the	basal	membrane	into	the	lamina	propria	
but	 not	 deeper	 than	 muscularis	 mucosae	 and	 invasive	
carcinoma	is	characterized	by	deeper	invasion.	In	intra-
mucosal	EAC	glands	acquire	“back-	to-	back”	appearance,	
syncytial	growth	pattern	and	single	cells	or	small	clusters	

F I G U R E  7  Foveolar	low-	grade	dysplasia,	hematoxylin	and	eosin	staining:	(A)	magnification	×200,	(B)	magnification	×400.	Surface	
maturation	is	absent.	Glands	are	mainly	round	shape,	lined	with	cuboid	epithelium	with	increased	nucleo-	cytoplasmic	ratio.	Nuclei	are	
round	and	hyperchromatic,	with	nucleoli.	Few	mitoses	as	well	as	apoptotic	bodies	are	identified

(A) (B)

F I G U R E  8  Adenomatous	high-	grade	dysplasia,	hematoxylin	and	eosin	staining,	(A)	magnification	×200,	(B)	magnification	×400.	
Specimen	of	columnar-	lined	esophagus	with	complex	structure	of	glands,	including	dilated	glands	with	micropapillae.	Nuclei	of	epithelial	
cells	are	prominently	enlarged,	elongated	and	hyperchromatic.	Mark	nuclear	stratification	and	loss	of	polarity	are	also	features	of	HGD

(A) (B) 

F I G U R E  9  Foveolar	high-	grade	dysplasia,	hematoxylin	and	eosin	staining,	(A)	magnification	×200,	(B)	magnification	×400.	Glands	
are	predominantly	round	in	shape,	highly	crowded,	lined	with	columnar	epithelium.	Nuclei	are	round	to	oval,	with	severe	enlargement,	
hyperchromatosis	and	a	number	of	mitoses

(A) (B)
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within	 the	 lamina	propria.	At	 this	 stage	desmoplasia	 is	
either	 absent	 or	 subtle.	 Obvious	 desmoplasia	 and	 infil-
trative	growth	pattern	appear	in	tumors	with	deeper	in-
vasion	(Figure	10).113,114

Differential	diagnosis	of	HGD	and	EAC	in	biopsy	spec-
imens	 is	 problematic	 with	 intraobserver	 agreement	 at	
about	0.30–	0.65.90,115–	117	In	early	studies,	when	HGD	was	
an	indication	to	operative	treatment,	EAC	was	identified	
in	40%–	70%	esophagectomies	after	pre-	operative	diagno-
sis	HGD.118–	120	Several	 features	when	they	are	 identified	
in	HGD	are	suspicious	of	unsampled	EAC,	including	ex-
tensive	 cribriforming,	 dilated	 glands	 filled	 with	 necrotic	
debris,	 ulceration,	 intraluminal	 neutrophils	 and	 page-
toid	 pattern	 of	 neoplastic	 cells	 extension	 into	 squamous	
epithelium.114

In	some	observations	it	is	troublesome	to	judge	about	
dysplasia:	morphological	features	are	suspicious	for	dyspla-
sia,	but	not	sufficient	to	be	definite.105,113,121	In	these	cases	
the	appropriate	diagnosis	is	indefinite	for	dysplasia—	IND	
(Figure	11).	Such	situations	derive	 from	technical	 issues	
causing	 artificial	 changes,	 lack	 of	 surface	 epithelium	 or	
scarce	biopsy	pieces.	Also	IND	may	be	diagnosed	in	spec-
imens	with	abundant	inflammation,	ulcers	or	erosions	re-
sulting	in	reactive	changes	of	epithelium	that	display	focal	
weak	surface	maturation	and	cytological	atypia	(increased	
nucleo-	cytoplasmic	ratio,	hyperchromatosis	and	mitoses).

Incidence	of	EAC	in	patients	with	NDBE	is	estimated	
as	 0.12%–	0.33%	 a	 year.26,122,123	 Rate	 of	 EAC	 detection	
increases	 with	 duration	 of	 surveillance	 and	 represents	
0.19%	a	year	 in	first	5 years	after	BE	was	diagnosed	and	
0.63%	 a	 year	 after	 20  years	 of	 surveillance.124	 Incidence	
of	 EAC	 in	 patients	 with	 LGD	 varies	 from	 0.76	 to	 28%	 a	
year.26,98,99	 The	 main	 reason	 for	 such	 a	 variety	 involves	
low	intra-	observer	agreement	and	poor	reproducibility	in	
diagnostics	 of	 presence	 and	 grade	 of	 dysplasia.90–	92,99,100	
At	 least	 two	 pathologists	 should	 independently	 perform	
histological	examination	 in	each	case	 to	avoid	subjectiv-
ity	in	dysplasia	detection.9–	12,120,125	In	several	studies,	the	
number	of	pathologists	that	confirmed	dysplasia	was	as-
sociated	with	rate	of	progression.92,93,98,120,126	Curvers	W.L.	
et	al.126	estimated	incidence	of	HGD/EAC	as	13.4%	when	
initial	diagnosis	LGD	was	confirmed	by	expert	pathologist	
and	only	as	0.49%	in	cases	when	expert	pathologist	down-
graded	the	lesion	to	NDBE.	In	a	prospective	study	of	Duits	
L.C.	et	al.98	risk	of	progression	to	HGD/EAC	increased	10-	
fold	when	one	pathologist	established	LGD,	27-	fold	when	
two	 pathologists	 recognized	 dysplasia	 and	 47-	fold	 when	
all	three	pathologists	confirmed	LGD.	Nevertheless	LGD	
is	overdiagnosed	in	28%–	85%	of	observations,98,99,126	and	
HGD—	in	40%	of	cases,99,127	that	leads	to	more	aggressive	
treatment.	 IHC	 evaluation	 provides	 an	 opportunity	 not	
only	 to	 increase	 reproducibility	 of	 dysplasia	 diagnostics,	

F I G U R E  1 0  Invasive	
adenocarcinoma	of	distal	esophagus:	
specimen	of	malignant	tumor	with	
glandular	architecture,	inflammatory	
infiltration	and	prominent	desmoplasia,	
hematoxylin	and	eosin	staining:	(A)	
magnification	×200,	(B)	magnification	
×400

(A) (B) 

F I G U R E  1 1  Indefinite	for	dysplasia,	hematoxylin	and	eosin	staining,	magnification	×200:	(A)	fragment	of	columnar-	lined	esophagus	
with	artificial	changes,	angulated	glands	and	slightly	enlarged	nuclei	of	epithelial	cells,	(B)	fragment	of	columnar-	lined	esophagus	without	
surface	epithelium	with	glands	of	irregular	shapes,	nuclei	of	epithelial	cells	are	enlarged	and	focally	hyperchromatic

(A) (B) 
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but	also	to	identify	patients	who	are	at	high	risk	of	neo-
plastic	progression.

6 	 | 	 IMMUNOHISTOCHEMICAL 
MARKERS OF DYSPLASIA AND 
PROGRESSION PREDICTORS IN BE

IHC with p53.	 Inactivation	 of	 p53	 is	 a	 key	 feature	 that	
occurs	early	 in	BE	carcinogenesis,128–	130	 though	 it	 is	not	
surprising	 that	 IHC	evaluation	with	p53	 is	used	 for	pre-
cise	 diagnostics	 of	 dysplasia.	 Two	 patterns	 of	 aberrant	
p53expression	 are	 identified:	 more	 frequently	 detected	
p53	 overexpression	 (Figure	 12)	 is	 associated	 with	 mis-
sense	 mutation	 of	 TP53,	 whereas	 absent	 p53	 expression	
is	 caused	 by	 deletion	 or	 truncating	 mutation	 of	 TP53.93	
Use	of	IHC	evaluation	with	p53	improves	reproducibility	
in	morphological	assessment	of	BE	specimens	and	aids	to	
avoid	overdiagnosis	of	dysplasia.92,93,131–	133

Moreover,	 aberrant	 expression	 of	 p53	 is	 associated	
with	 increased	 risk	 of	 progression	 to	 EAC.92,133–	145	
Murray	L.	et	al.135	showed	that	diffuse	expression	of	p53	
is	 a	 predictor	 of	 progression	 to	 HGD/EAC	 (odds	 ratio	
–		OR	8.42	[95%	CI	2.37–	30.0]),	although	p53	alone	is	not	
a	 reliable	marker	as	 in	2/3	of	patients	who	progressed	
to	HGD/EAC	pattern	of	p53	expression	was	normal.	In	
other	studies	OR	of	development	HGD/EAC	in	aberrant	
p53	 expression	 varied	 from	 3.0	 to	 21.6.139,142	 Kastelein	
F.	et	al.138	demonstrated	that	prognostic	value	to	predict	

neoplastic	progression	increased	from	15%	for	morpho-
logical	diagnosis	of	LGD	to	33%	for	LGD	with	aberrant	
expression	of	p53.

In	a	prospective	study,	Younes	M.	et	al.141	detected	pro-
gression	to	HGD/EAC	in	31.25%	patients	with	expression	
of	p53	in	aggregates	of	epithelial	cells	and	in	75%	patients	
with	p53	expression	in	multifocal	aggregates	of	epithelial	
cells	at	initial	biopsy	(Kaplan–	Meier	analysis,	p < 0.0001).	
In	 this	 study	progression	 to	HGD/EAC	was	seen	 in	40%	
observations	 with	 overexpression	 of	 p53	 and	 only	 0.3%	
patients	 with	 negative	 expression	 of	 p53	 (Kaplan–	Meier	
analysis,	p < 0.0001).

Different	definitions	of	aberrant	IHC	staining	with	p53	
were	used	in	various	studies	 that	make	them	difficult	 to	
compare.	 Although	 relevant	 association	 of	 aberrant	 p53	
expression	with	neoplastic	progression	in	BE	was	proved	
in	meta-	analyses.	Janmaat	V.T.	et	al.143	estimated	overall	
OR	of	progression	to	HGD/EAC	in	aberrant	expression	of	
p53	as	3.86	(95%	CI	2.03–	7.33),	whereas	in	patients	with	
NDBE	 with	 aberrant	 expression,	 overall	 OR	 comprised	
6.12	(95%	CI	2.99–	12.52)	and	in	patients	with	LGD	it	was	
as	 high	 as	 8.64	 (95%	 CI	 3.62–	20.62).	 More	 stringent	 cri-
teria	 for	 aberrant	 staining	 definition	 resulted	 in	 higher	
overall	OR.143	In	other	meta-	analysis	performed	by	Snyder	
P.	et	al.144	OR	of	neoplastic	progression	 in	patients	with	
aberrant	expression	of	p53	in	case–	control	studies	varied	
from	3.84	to	5.95,	as	well	as	hazard	ratio	in	cohort	stud-
ies	was	estimated	as	14.25	and	17.31	in	different	statistical	
models.

F I G U R E  1 2  IHC	examination	
with	p53	in	BE,	magnification	×400.	(A)	
nondysplastic	BE:	scattered	expression	
of	p53,	(B)	BE	with	LGD:	moderate	
expression	of	p53	in	proportion	of	
epithelial	cells,	(C)	BE	with	HGD:	
overexpression	of	p53,	(D)	EAC:	
overexpression	of	p53

(B)(A)

(C) (D) 
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Use	of	IHC	examination	with	p53	in	routine	practice	
was	 recommended	 by	 BSG9	 and	 European	 Society	 of	
Gastrointestinal	Endoscopy	(ESGE).134

IHC with Ki67.	 Level	 of	 Ki67	 expression	 that	 char-
acterizes	 proliferative	 activity	 of	 cells	 increases	 in	 line:	
NDBE—	LGD—	HGD—	EAC.136,137,142,146,147	 Expansion	 of	
Ki67-	positive	epithelial	cells	from	proliferative	zone	at	the	
middle	third	of	crypts	to	surface	is	observed	during	neo-
plastic	progression	(Figure	13).148–	152	Diffuse	positive	im-
munostaining	of	Ki67	at	the	surface	is	usually	detected	in	
HGD	that	helps	us	to	distinguish	HGD	from	LGD,	where	
only	 minority	 of	 surface	 epithelium	 shows	 Ki67	 expres-
sion.136,149,150	 Use	 of	 IHC	 with	 Ki67	 improves	 reproduc-
ibility	 of	 dysplasia	 diagnosis	 in	 BE.131,147,153	 Extensive	
expression	of	Ki67	 is	also	associated	with	progression	to	
HGD/EAC.136,137,145

IHC with AMACR.	The	most	controversial	results	were	
obtained	 for	use	of	AMACR.	 In	several	 studies,	 staining	
of	AMACR	was	either	absent154–	156	or	was	detected	in	few	
cases	of	NDBE.151	Frequency	of	detection	and	extension	
of	 AMACR	 expression	 rises	 in	 line	 LGD—	HGD—	EAC	
(Figure	14).

Shi	 X.Y.	 et	 al.151	 estimated	 sensitivity	 of	 AMACR	 ex-
pression	for	distinguishing	between	NDBE	and	dysplastic	
BE	as	72.4%	and	specificity	as	94.8%;	staining	of	AMACR	
correlated	 with	 expression	 of	 p16,	 cyclin	 D1	 and	 Ki67.	
Staining	 of	 AMACR	 was	 helpful	 to	 distinguish	 NDBE	
from	 IND/LGD	 and	 LGD	 from	 HGD.	 In	 other	 research,	
expression	 of	 AMACR	 did	 not	 differ	 between	 NDBE,	
IND	and	LGD,	but	was	elevated	in	HGD.157	Sensitivity	of	
AMACR	 expression	 varied	 widely:	 from	 38	 to	 91.3%	 for	

LGD,	 from	64	to	95.8%	for	HGD	and	from	72	to	96%	for	
EAC	and	specificity	comprised	100%.154–	156	Nevertheless,	
Strater	J.	et	al.158	showed	weak	expression	of	AMACR	in	
83%	cases	of	NDBE,	indicating	low	sensitivity	of	AMACR	
in	BE-	associated	dysplasia	detection.

In	 case–	control	 study	 with	 large	 amount	 of	 samples	
(12,127	biopsies	derived	 from	635	patients),	Kastelein	F.	
et	al.159	demonstrated	that	strong	AMACR	expression	was	
associated	 with	 progression	 to	 HGD/EAC	 (relative	 risk	
4.8,	 95%	 CI	 1.9–	12.6),	 although	 positive	 predictive	 value	
of	 strong	 AMACR	 expression	 (22%)	 was	 too	 low	 to	 use	
AMACR	as	the	only	marker	of	progression.

To	 sum	 up,	 IHC	 examination	 with	 p53,	 Ki67	 and	
AMACR	 aims	 for	 precise	 diagnostics	 of	 dysplasia	 in	
BE	(Table 4).	Moreover,	expression	of	 these	 IHC	mark-
ers	 has	 some	 prognostic	 value	 (Table  5),	 although	 pre-
dictive	 value	 of	 any	 IHC	 marker	 alone	 is	 limited.	 New	
challenge	 is	 to	 develop	 a	 combination	 of	 IHC	 markers	
for	precise	diagnostics	of	dysplasia	in	BE	and	prediction	
of	progression.

7 	 | 	 MACHINE LEARNING 
ALGORITHMS IN DIGITAL 
PATHOLOGY

To	overcome	low	inter-	observer	agreement	on	dysplasia	
diagnosis,	attempts	were	made	to	develop	machine	learn-
ing	approach	applying	to	high-	resolution	digital	images	
with	evaluation	of	morphometric	and	immunoquantita-
tive	parameters	to	distinguish	between	NDBE,	dysplastic	

F I G U R E  1 3  IHC	evaluation	with	
Ki67	in	BE,	magnification	×400:	(A)	
nondysplastic	BE:	nuclear	expression	
of	Ki67	in	the	middle	1/3	of	crypts,	(B)	
BE	with	LGD:	expression	of	Ki67	in	the	
middle	and	the	upper	1/3	of	crypts,	(C)	
BE	with	HGD:	expression	of	Ki67	at	the	
surface,	(D)	EAC:	diffuse	expression	of	
Ki67

(A)

(C) (D)

(B)
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F I G U R E  1 4  IHC	with	AMACR	in	
BE,	magnification	×400:	(A)	BE	without	
dysplasia:	weak	attenuated	expression	
in	cytoplasm	(background	expression),	
(B)	BE	with	LGD:	granular	expression	of	
AMACR	in	proportion	of	epithelial	cells,	
(C)	BE	with	HGD:	granular	expression	of	
AMACR	in	majority	of	epithelial	cells,	(D)	
EAC:	granular	expression	of	AMACR	in	
proportion	of	epithelial	cells

(D)(C)

(A) (B)

T A B L E  4 	 Histological	evaluation	and	immunohistochemical	assay	in	diagnostics	of	BE

Diagnostic method Markers Advantages Disadvantages

Histopathology	assessment	of	
forceps	biopsy

Presence	and	grade	of	
dysplasia

Standard	diagnostic	procedure
Routinely	used
Cost-	effective
Easy	to	perform
LGD	histology	is	associated	with	

progression

Poor	inter-	observer	agreement
Low	reproducibility
High	rate	of	dysplasia	overdiagnosis
Need	for	second	opinion/evaluation	

by	expert

IHC	evaluation p53 Confirming	presence	or	absence	of	
dysplasia

Proved	efficient	in	diagnostics
Low	cost
Prognostic	tool
Recommended	as	a	routine	method	

by	BSG9	and	ESGE125

Extensively	studied	marker

Lack	of	standardization	in	
interpretation	of	staining:	different	
definitions	and	cut-	points	are	used	
in	various	studies.106

Although	some	studies	
demonstrate	good	inter-	observer	
agreement.93,138

Positive	staining	is	observed	in	up	to	
10%	of	NDBE105,106

Although	aberrant	expression	
is	highly	associated	with	
progression,	proportion	of	patients	
with	scattered	staining	also	
develops	EAC135

Ki67 Additional	tool	to	evaluate	
proliferative	activity

Some	data	suggest	association	with	
progression

Is	available	in	routine	practice
Low	cost

Nonspecific	marker	that	stains	both	
dysplasia	and	reactive	epithelium

Low	value	as	a	predictive	marker

AMACR Additional	tool	to	assess	dysplasia	
in	BE

Has	some	prognostic	value
Is	available	in	routine	practice
Low	cost

Sensitivity	and	specificity	varies	
greatly	in	different	studies

Low	value	as	a	predictive	marker
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BE	and	EAC	(Table 6).146,160–	164	The	earliest	work	in	this	
field	was	the	study	of	Polkowsky	W.	et	al.	(1998)160	which	
suggested	that	quantitative	assessment	of	cytometric	and	
morphometric	features	associated	with	proliferation	and	
differentiation	could	help	in	interpretation	of	BE	histol-
ogy.	 Combination	 of	 stratification	 index	 (SI)	 and	 Ki67	
quantitative	 analysis	 gave	 the	 best	 classification	 result,	
but	quantitation	of	p53	area	added	no	value.	Van	Sandick	
J.W.	et	al.161	also	showed	benefit	of	SI	and	Ki67	area	com-
bination	for	distinguishing	between	LGD	and	HGD	(91%	
correct	 classification),	 although	 combination	 of	 SI	 and	
p53	area	was	superior	for	distinguishing	between	NDBE	
and	LGD	(89%	correct	classification).	Importantly,	Baak	
J.P.	 et	 al.146	 reported	 only	 35%	 agreement	 between	 pa-
thologists	 and	 experts.	 Experts	 downgraded	 high	 pro-
portion	 of	 lesions	 due	 to	 severe	 inflammation,	 reactive	
changes,	ulcers,	proximity	to	squamo-	columnar	junction	
and	tangential	cutting.	In	adequate	sections	morphomet-
rical	classification	was	closer	to	experts'	grading	(75%	of	
agreement	compared	with	53%	for	pathologists).	Sabo	E.	
et	al.162	developed	neural	network	algorithm	(NNET)	for	
dysplasia	grading	using	nuclear	appearance	(size,	shape,	
chromatin	texture,	pleomorphism,	symmetry	and	pseu-
dostratification)	 that	 was	 able	 to	 correctly	 classify	 89%	
of	cases	in	distinguishing	between	NDBE	and	LGD	and	
87.5%	of	cases	in	differentiation	between	LGD	and	HGD.	
Moreover,	in	this	study	some	of	the	variables	were	pre-
dictive	for	progression.	Recently,	Tomita	N.	et	al.163	pro-
posed	new	attention-	based	network	model	that	classified	
NDBE,	 dysplastic	 BE	 and	 EAC	 with	 mean	 accuracy	 of	
0.83.

TissueCypher.	TissueCypher	(Cernostics,	Inc.)	is	a	tis-
sue	system	pathology	assay	using	set	of	 immunofluores-
cent	markers	(p16,	AMACR,	p53,	CD68,	COX-	2,	CD45RO,	
HIF1a,	 HER2/neu	 and	 K20).	 Quantitative	 integrated	
image	 analysis	 of	 expression	 and	 co-	expression	 of	 these	
markers	 in	 combination	 with	 morphological	 changes	 in	
nuclei	in	biopsy	specimens	of	distal	esophagus	was	used	
to	develop	a	risk	assessment	model	based	on	15	parame-
ters	that	allows	identifying	patients	with	low,	intermediate	
and	high	risk	of	neoplastic	progression.165	TissueCypher	
result	 predicts	 progression	 independently	 of	 pathology	
analysis,	segment	length,	age,	sex	or	p53	overexpression.	
Use	of	TissueCypher	in	patients	with	NDBE	is	of	great	in-
terest:	rate	of	progression	in	high-	risk	patients	established	
by	TissueCypher	 is	comparable	 to	 rate	of	progression	 in	
patients	with	LGD.166,167	These	results	allow	us	to	choose	
personalized	treatment	for	patients	with	BE.	In	a	prospec-
tive	 study,	 TissueCypher	 result	 influenced	 management	
decisions	 for	 choosing	 surveillance	 interval	 or	 method	
of	 treatment	 (endoscopic	 eradication	 therapy)	 in	 55%	
cases.168

8 	 | 	 IMPORTANT MOLECULAR 
AND GENETIC EVENTS 
ASSOCIATED WITH NEOPLASTIC 
PROGRESSION IN BE

NDBE	and	especially	EAC	are	marked	by	high	mutational	
load,	surpassed	only	by	lung	cancer	and	melanoma.169–	171	
Patients	 with	 NDBE	 who	 further	 progress	 to	 EAC	 (pro-
gressors)	 have	 initially	 higher	 mutational	 load	 than	 pa-
tients	with	NDBE	who	remain	stable	(non-	progressors).130	
Various	 genetic	 alterations	 were	 described	 in	 BE	 and	
EAC	including	point	mutations,	 losses	of	heterozygosity	
(LOH),	as	well	as	large	genomic	rearrangements,	namely,	
chromothripsis,	kataegis	and	bridge-	fusion-	bridge	 (BFB)	
along	with	aneuploidy	and	tetraploidy.3	Some	genetic	al-
terations	happen	irrespective	of	carcinogenesis	stage,	but	
several	genetic	events	tend	to	occur	at	a	particular	stage	of	
neoplastic	progression	(Figure	15).

Loss of heterozygosity in BE and EAC.	LOH	is	a	chro-
mosomal	 event	 that	 leads	 to	 deletion	 of	 the	 whole	
gene	 and	 adjacent	 area	 at	 one	 chromosome	 requir-
ing	 transcription	 from	 other	 chromosome	 containing	
mutant	 or	 inactivated	 gene.	 The	 most	 common	 LOHs	
in	 BE	 and	 EAC	 include	 LOH	 in	 locus	 9p21	 (involving	
gene	 CDKN2A)	 and	 locus	17p13	 (TP53).129	Majority	of	
patients	 with	 HGD	 display	 mosaic	 of	 clones	 and	 sub-
clones	 with	 different	 patterns	 of	 LOH.172	 Inactivation	
on	 CDKN2A	 serves	 as	 the	 earliest,	 initiating	 event	 in	
pathogenesis	of	dysplasia	and	EAC.	Although	CDKN2A	
inactivation	 was	 identified	 both	 in	 patients	 with	 dys-
plasia/EAC	and	NDBE.129	Selective	sweep	of	lesions	in	
CDKN2A	 caused	 by	 9pLOH,	 promotor	 methylation	 or	
mutation	followed	by	second	event	in	CDKN2A	or	TP53 
(17pLOH	 or	 mutation)	 is	 implemented	 during	 BE	 car-
cinogenesis.173	 Generating	 of	 clones	 with	 TP53	 muta-
tions	within	segment	of	metaplasia	in	distal	esophagus	
is	key	event	of	progression,	leading	to	increment	accu-
mulation	of	mutations.	Mutations	in	TP53	are	identified	
in	72%–	82.6%	of	EAC170,171;	 they	may	arise	 long	before	
morphological	detection	of	dysplasia	in	progressors	and	
are	seen	only	in	5%	of	non-	progressors.130,169

Large genomic rearrangements.	 Maley	 C.C.	 et	 al.174	
demonstrated	that	patients	with	more	clonal	diversity	at	
segment	of	BE	progress	more	frequently.	Generally	non-	
progressors	display	small	localized	deletions	in	fragile	sites	
and	9pLOH	without	copy	number	alterations.	In	contrary,	
progressors	at	24 months	before	diagnostics	of	EAC	show	
huge	clonal	diversity	at	segment	with	large	genomic	rear-
rangements	including	multiple	losses	and	gains	as	well	as	
whole	genome	doubling	(WGD).175	Stachler	M.D.	et	al.169	
revealed	 that	 TP53	 mutations	 result	 in	 rapid	 WGD	 fol-
lowed	by	genomic	instability	and	oncogene	amplification	
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in	 tumor	 cells.	 It	 is	 worth	 mentioning	 that	 pathway	 of	
WGD	is	accomplished	more	often	(in	62.5%	of	EAC)	than	
classical	pathway	of	gradual	accumulation	of	mutations.

Among	 oncogene	 amplifications	 SMAD4	 is	 remark-
able.	 SMAD4	 gene	 product	 forms	 complexes	 with	 other	
SMAD	 family	 proteins	 and	 regulates	 TGFβ-	dependent	

T A B L E  5 	 Histological	evaluation	and	immunohistochemical	assay	predicting	progression	in	BE

Markers Article
Number of patients/Progressorsa 
(samples) HR RR OR Sens. Sp. PPV NPV

LGD Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

3.6;	95%	CI	1.6–	8.1

Kaye	P.V.	et	al.	(2009)92 175	patients/51	progressors 78% 80% 42% 95%

(For	consensus	LGD)

Sikkema	M.	et	al.	(2011)95 713	BE	patients/26	progressors 9.7;	95%	CI	4.4–	21.5

Kastelein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 4.2;	95%	CI	2.4–	7.3 44% 78% 15%

Moyes	L.H.	et	al.	(2016)94 722	BE	patients/58	prevalent	LGD 10.8;	95%	CI	5.9–	18.1	for	progression	to	HGD;
7.3;	95%	CI	3.6–	14.7	for	progression	to	EAC

Duits	L.C.	(2017)98 255	LGD	patients/45	progressors 9.28;	95%	CI	4.39–	19.64	for	persistent	LGD

Duits	L.C.	et	al.	(2019)142 260	patients/130	progressors 7.5;	95%	CI	1.7–	32.8

Song	K.Y.	et	al.	(2020)96 69	LGD	patients/16	progressors 4.18;	95%	CI	1.03–	17.1	for	persistent	LGD

p53 Murray	L.	et	al.	(2006)135 210	patients/29	EAC	and	6	HGD 11.7;	95%	CI	1.93–	71.4

Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

6.5;	95%CI	2.5–	17.1

Kaye	P.V.	et	al.	(2009)92 175	patients/51	progressors 80% 68% 70% 78%

Kasterlein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 6.2;	95%CI	3.6–	10.9 49% 86%

Davelaar	A.L.	et	al.	(2015)139 116	patients/91	patients	at	follow-	up/11	
progressors

17;	95%	CI	3.2–	96 63.6% 92.5% 53.8% 94.9%

Horvath	B.	et	al.	(2016)140 103	patients/79	patients	at	follow-	up	
without	prevalent	neoplasia/4	
progressors

12;	95%	CI	1.43–	100

Duits	L.C.	et	al.	(2019)142 260	patients/130	progressors 2.8;	95%	CI	1.5–	5.1

Altaf	K.	et	al.	(2017)145 Meta-	analysis
(7415	samples)

10.23;	95%	CI	7.19–	14.55 60% 82%

Janmaat	V.T.	et	al.	(2017)143 Meta-	analysis
(1322	patients/278	progressors)

3.18;	95%	CI	1.68–	6.03

Snyder	P.	et	al.	(2019)144 Case-	control	studies:	1435	patients/209	
progressors

Cohort	studies:	582	patients/28	
progressors

Fixed-	effect	model:	17.31;	95%	CI	9.35–	32.08
Random-	effect	model:	14.25;	95%	CI	6.76–	30.02

Fixed-	effect	model:	3.84;	95%	CI	2.79–	5.27
Random-	effect	model:
5.95;	95%	CI	2.68–	13.22

LGD	+p53 Skacel	M.	et	al.	(2000)133 16	LGD	patients/8	progressors 88% 75%

Kastelein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 11.2;	95%CI	5.7–	22.0 33%

Ki67 Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

5.2;	95%	CI	1.5–	17.6

Altaf	K.	et	al.	(2017)145 Meta-	analysis
(1243	samples)

5,54;	95%	CI	3.40–	9.05 82% 48%

AMACR Kasterlein	F.	et	al.	(2013)159 635	patients/49	progressors
(12,127	samples)

4.8;	95%	CI	1.9–	12.6 10% 96% 22% 91%

aProgressors	were	defined	as	cases	of	HGD	and	EAC.
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transcription.	 New	 generation	 sequencing	 revealed	 that	
SMAD4	 mutations	 are	 identified	 only	 in	 patients	 with	
EAC	that	may	help	to	distinguish	HGD	from	EAC.176

Third	 pathway	 of	 neoplastic	 progression	 in	 BE	 in-
volves	genomic	catastrophes.177	Whole	genome	sequenc-
ing	 samples	 with	 EAC	 identified	 that	 large	 genomic	

T A B L E  5 	 Histological	evaluation	and	immunohistochemical	assay	predicting	progression	in	BE

Markers Article
Number of patients/Progressorsa 
(samples) HR RR OR Sens. Sp. PPV NPV

LGD Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

3.6;	95%	CI	1.6–	8.1

Kaye	P.V.	et	al.	(2009)92 175	patients/51	progressors 78% 80% 42% 95%

(For	consensus	LGD)

Sikkema	M.	et	al.	(2011)95 713	BE	patients/26	progressors 9.7;	95%	CI	4.4–	21.5

Kastelein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 4.2;	95%	CI	2.4–	7.3 44% 78% 15%

Moyes	L.H.	et	al.	(2016)94 722	BE	patients/58	prevalent	LGD 10.8;	95%	CI	5.9–	18.1	for	progression	to	HGD;
7.3;	95%	CI	3.6–	14.7	for	progression	to	EAC

Duits	L.C.	(2017)98 255	LGD	patients/45	progressors 9.28;	95%	CI	4.39–	19.64	for	persistent	LGD

Duits	L.C.	et	al.	(2019)142 260	patients/130	progressors 7.5;	95%	CI	1.7–	32.8

Song	K.Y.	et	al.	(2020)96 69	LGD	patients/16	progressors 4.18;	95%	CI	1.03–	17.1	for	persistent	LGD

p53 Murray	L.	et	al.	(2006)135 210	patients/29	EAC	and	6	HGD 11.7;	95%	CI	1.93–	71.4

Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

6.5;	95%CI	2.5–	17.1

Kaye	P.V.	et	al.	(2009)92 175	patients/51	progressors 80% 68% 70% 78%

Kasterlein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 6.2;	95%CI	3.6–	10.9 49% 86%

Davelaar	A.L.	et	al.	(2015)139 116	patients/91	patients	at	follow-	up/11	
progressors

17;	95%	CI	3.2–	96 63.6% 92.5% 53.8% 94.9%

Horvath	B.	et	al.	(2016)140 103	patients/79	patients	at	follow-	up	
without	prevalent	neoplasia/4	
progressors

12;	95%	CI	1.43–	100

Duits	L.C.	et	al.	(2019)142 260	patients/130	progressors 2.8;	95%	CI	1.5–	5.1

Altaf	K.	et	al.	(2017)145 Meta-	analysis
(7415	samples)

10.23;	95%	CI	7.19–	14.55 60% 82%

Janmaat	V.T.	et	al.	(2017)143 Meta-	analysis
(1322	patients/278	progressors)

3.18;	95%	CI	1.68–	6.03

Snyder	P.	et	al.	(2019)144 Case-	control	studies:	1435	patients/209	
progressors

Cohort	studies:	582	patients/28	
progressors

Fixed-	effect	model:	17.31;	95%	CI	9.35–	32.08
Random-	effect	model:	14.25;	95%	CI	6.76–	30.02

Fixed-	effect	model:	3.84;	95%	CI	2.79–	5.27
Random-	effect	model:
5.95;	95%	CI	2.68–	13.22

LGD	+p53 Skacel	M.	et	al.	(2000)133 16	LGD	patients/8	progressors 88% 75%

Kastelein	F.	et	al.	(2013)138 635	BE	patients/49	progressors 11.2;	95%CI	5.7–	22.0 33%

Ki67 Sikkema	M.	et	al.	(2009)137 54	patients/27	progressors
(434	samples)

5.2;	95%	CI	1.5–	17.6

Altaf	K.	et	al.	(2017)145 Meta-	analysis
(1243	samples)

5,54;	95%	CI	3.40–	9.05 82% 48%

AMACR Kasterlein	F.	et	al.	(2013)159 635	patients/49	progressors
(12,127	samples)

4.8;	95%	CI	1.9–	12.6 10% 96% 22% 91%

aProgressors	were	defined	as	cases	of	HGD	and	EAC.
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T A B L E  6 	 Machine	learning	in	diagnostics	of	BE

Article
Number of 
patients Tissue material Staining

Number of 
images/areas

Agreement  
between  
pathologists Equipment Classes Parameters Results

Polkowsky	W.	et	al.	
(1998)160

35 Resection	specimens	after	
esopha-	gectomies

HEa

Ki67
p53

73	areas
(58	–		training	set,	

9	–		second	set,	
6	–		couldn't	be	
assessed)

79% QPRODIT1	version	6.1	(Leica	
Imaging	Systems	Ltd.,	
Cambridge,	UK)

NDBE
LGD
HGD
ImCAb

Mean	nuclear	area	(MNA)
Mean	nuclear	volume	(MNV)
Mitotic	activity	index	(MAI)
MAI	in	the	upper	half	of	

mucosa	(MAI	Up)
Stratification	index	(SI)
Ki67	area
Ki67	area	Up
p53	area

Combination	of	SI	and	Ki67	area	was	the	
most	valuable	to	discriminate	between	
NDBE	and	LGD	and	between	LGD	and	
HGD	(both	–		94%	of	correctly	classified	
areas).

Discrimination	between	HGD	and	ImCA	was	
lower	than	80%	of	correct	classification	
with	any	parameters

van	Sandick	J.W.	et	al.	
(2000)161

18 Biopsy	specimens HE
Ki67
p53

105	areas	derived	
from	371	
biopsies

63% QPRODIT1	version	6.1	(Leica	
Imaging	Systems	Ltd.,	
Cambridge,	UK)

NDBE
LGD
HGD

MNA
MNV
MAI
SI
Ki67	area
p53	area

Combination	of	SI	and	p53	area	helped	to	
distinguish	between	NDBE	and	LGD	(89%	
of	correctly	classified	areas).

Combination	of	SI	and	Ki67	area	allowed	
discriminating	between	LGD	and	HGD	
(91%	of	correctly	classified	areas).

Combination	of	SI,	Ki67	area	and	MNV	gave	
advantage	in	discriminating	LGD	and	
HGD	(94%	of	correctly	classified	areas).

Baak	J.P.	et	al.	(2002)146 —	 Biopsy	specimens HE
Ki67

143 specimens 35%	with	experts —	 NDBE
IND
LGD
HGD

SI
MNA
Ki67	area

Agreement	between	morphometric	model	
and	experts	reached	75%.

Sabo	E.	et	al.	(2006)162 152
(97	for	training,	55	

for	validation)

Biopsy	specimens HE Not	mentioned Not	mentioned Image	Pro	Plus	version	
5.1 software	
(MediaCybernetics,	MD,	
USA)

NDBE
IND
LGD
HGD

Nuclear	size
Nuclear	shape
Nuclear	chromatin	texture
Nuclear	pleomorphism
Nuclear	symmetry
Nuclear	pseudostratification

The	neural	network	algorithm	(NNET)	
correctly	classified	86%	of	the	cases	in	
distinguishing	between	NDBE	and	LGD	
(70%	of	NDBE	and	95%	of	LGD)	and	87%	
of	cases	in	distinguishing	between	the	
LGD	and	HGD	groups	in	the	training	
set.	In	testing	set	NNET	differentiated	
NDBE	from	LGD	in	89%	of	the	cases	
(80%	of	NDBE	and	91.7%	of	LGD)	and	
to	differentiate	LGD	from	HGD	in	85.7%	
of	the	cases	(71.4%	of	LGD	and	100%	of	
HGD).

Tomita	N.	et	al.	(2019)163 Not	mentioned Biopsy	specimens HE 180	whole-	slide	
images	(116	
images	–		
training	set,	64	
–		testing	set)	
separated	into	
379	images

—	 convolutional	neural	network	
ResNEt-	18	and	a	grid-	based	
attention	network	ImageNet

Normal
NDBE
Dysplastic	BE
EAC

Not	mentioned Classification	accuracies	of	attention-	based	
model	were	0.85	(95%	CI,	0.81–	0.90)	for	
the	NDBE	class,	0.89	(95%	CI,	0.84–	0.92)	
for	dysplastic	BE	class,	and	0.88	(95%	CI,	
0.84–	0.92)	for	the	EAC	class.	The	proposed	
model	achieved	a	mean	accuracy	of	0.83	
(95%	CI,	0.80–	0.86)	and	outperformed	the	
sliding	window	approach	on	the	same	
testing	set.

Critchley-	Thorne	R.J.	
et	al.165

366
(41	progressors	

and	142	
nonprogressors	
-		training;	38	
progressors	
and	145	
nonprogressors	
-		validation)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

15-	feature	classifier	was	developed	to	
predict	progression	(AUROC	0.804).	
HRs	were	2.45	(95%	CI,	0.99–	6.07)	for	
the	comparison	of	the	intermediate-	risk	
versus	low-	risk	group	and	9.42	(95%	CI,	
4.61–	19.24),	for	high-	risk	versus	low-	risk.	
NPV	0.98,	PPV	0.26.
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T A B L E  6 	 Machine	learning	in	diagnostics	of	BE

Article
Number of 
patients Tissue material Staining

Number of 
images/areas

Agreement  
between  
pathologists Equipment Classes Parameters Results

Polkowsky	W.	et	al.	
(1998)160

35 Resection	specimens	after	
esopha-	gectomies

HEa

Ki67
p53

73	areas
(58	–		training	set,	

9	–		second	set,	
6	–		couldn't	be	
assessed)

79% QPRODIT1	version	6.1	(Leica	
Imaging	Systems	Ltd.,	
Cambridge,	UK)

NDBE
LGD
HGD
ImCAb

Mean	nuclear	area	(MNA)
Mean	nuclear	volume	(MNV)
Mitotic	activity	index	(MAI)
MAI	in	the	upper	half	of	

mucosa	(MAI	Up)
Stratification	index	(SI)
Ki67	area
Ki67	area	Up
p53	area

Combination	of	SI	and	Ki67	area	was	the	
most	valuable	to	discriminate	between	
NDBE	and	LGD	and	between	LGD	and	
HGD	(both	–		94%	of	correctly	classified	
areas).

Discrimination	between	HGD	and	ImCA	was	
lower	than	80%	of	correct	classification	
with	any	parameters

van	Sandick	J.W.	et	al.	
(2000)161

18 Biopsy	specimens HE
Ki67
p53

105	areas	derived	
from	371	
biopsies

63% QPRODIT1	version	6.1	(Leica	
Imaging	Systems	Ltd.,	
Cambridge,	UK)

NDBE
LGD
HGD

MNA
MNV
MAI
SI
Ki67	area
p53	area

Combination	of	SI	and	p53	area	helped	to	
distinguish	between	NDBE	and	LGD	(89%	
of	correctly	classified	areas).

Combination	of	SI	and	Ki67	area	allowed	
discriminating	between	LGD	and	HGD	
(91%	of	correctly	classified	areas).

Combination	of	SI,	Ki67	area	and	MNV	gave	
advantage	in	discriminating	LGD	and	
HGD	(94%	of	correctly	classified	areas).

Baak	J.P.	et	al.	(2002)146 —	 Biopsy	specimens HE
Ki67

143 specimens 35%	with	experts —	 NDBE
IND
LGD
HGD

SI
MNA
Ki67	area

Agreement	between	morphometric	model	
and	experts	reached	75%.

Sabo	E.	et	al.	(2006)162 152
(97	for	training,	55	

for	validation)

Biopsy	specimens HE Not	mentioned Not	mentioned Image	Pro	Plus	version	
5.1 software	
(MediaCybernetics,	MD,	
USA)

NDBE
IND
LGD
HGD

Nuclear	size
Nuclear	shape
Nuclear	chromatin	texture
Nuclear	pleomorphism
Nuclear	symmetry
Nuclear	pseudostratification

The	neural	network	algorithm	(NNET)	
correctly	classified	86%	of	the	cases	in	
distinguishing	between	NDBE	and	LGD	
(70%	of	NDBE	and	95%	of	LGD)	and	87%	
of	cases	in	distinguishing	between	the	
LGD	and	HGD	groups	in	the	training	
set.	In	testing	set	NNET	differentiated	
NDBE	from	LGD	in	89%	of	the	cases	
(80%	of	NDBE	and	91.7%	of	LGD)	and	
to	differentiate	LGD	from	HGD	in	85.7%	
of	the	cases	(71.4%	of	LGD	and	100%	of	
HGD).

Tomita	N.	et	al.	(2019)163 Not	mentioned Biopsy	specimens HE 180	whole-	slide	
images	(116	
images	–		
training	set,	64	
–		testing	set)	
separated	into	
379	images

—	 convolutional	neural	network	
ResNEt-	18	and	a	grid-	based	
attention	network	ImageNet

Normal
NDBE
Dysplastic	BE
EAC

Not	mentioned Classification	accuracies	of	attention-	based	
model	were	0.85	(95%	CI,	0.81–	0.90)	for	
the	NDBE	class,	0.89	(95%	CI,	0.84–	0.92)	
for	dysplastic	BE	class,	and	0.88	(95%	CI,	
0.84–	0.92)	for	the	EAC	class.	The	proposed	
model	achieved	a	mean	accuracy	of	0.83	
(95%	CI,	0.80–	0.86)	and	outperformed	the	
sliding	window	approach	on	the	same	
testing	set.

Critchley-	Thorne	R.J.	
et	al.165

366
(41	progressors	

and	142	
nonprogressors	
-		training;	38	
progressors	
and	145	
nonprogressors	
-		validation)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

15-	feature	classifier	was	developed	to	
predict	progression	(AUROC	0.804).	
HRs	were	2.45	(95%	CI,	0.99–	6.07)	for	
the	comparison	of	the	intermediate-	risk	
versus	low-	risk	group	and	9.42	(95%	CI,	
4.61–	19.24),	for	high-	risk	versus	low-	risk.	
NPV	0.98,	PPV	0.26.

(Continues)
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rearrangements	 may	 result	 in	 oncogene	 amplification	
through	 chromothripsis	 with	 generation	 of	 double-	
minute	 chromosomes	 (MYC	 и	 MDM2),	 kataegis	 or	 BFB	
(KRAS,	MDM2	и	RFC3).178

Chromothripsis.	 Chromothripsis	 represents	 a	 cata-
strophic	 event	 during	 carcinogenesis	 with	 large-	scale	
genomic	 rearrangements	 including	chromosome	shatter-
ing,	gains	and	losses	involving	several	genes	at	once	and	
may	 lead	 to	 rapid	 oncogene	 activation	 and	 inactivation	
of	tumor	suppressor	genes.179	Rausch	T.	et	al.180	revealed	
that	 chromothripsis	 is	 associated	 with	 TP53	 gene	 muta-
tions	 in	children	with	Sonic-	Hedgehog	medulloblastoma	
caused	by	Li-	Fraumeni	syndrome.	Authors	proposed	three	
mechanisms	 contributing	 to	 chromothripsis	 in	 patients	

with	TP53	mutations:	(1)	critical	telomere	shortening	and	
chromosome	end-	to-	end	fusion,	(2)	premature	condensa-
tion	of	chromatin	due	to	alteration	of	cell	cycle	regulation	
(i.e.,	 transition	 from	 G2	 to	 M	 phase),	 and	 (3)	 impaired	
DNA	 reparation	 and	 apoptosis	 induction.	 High	 rate	 of	
TP53	mutations	and	telomere	shortening	in	EAC	elucidate	
chromothripsis	being	identified	in	30%–	32.5%	cases.178,181	
Chromothripsis	quiet	commonly	coincide	with	kataegis.

Kataegis	 means	 hypermutation	 pattern	 of	 clustered	
C > T	and	C > G	at	TpC	dinucleotides,	that	was	first	de-
scribed	in	breast	cancer.182,183	Kataegis	arises	as	a	result	of	
APOBEC	protein	activity	 that	serves	as	catalytic	compo-
nent	of	an	RNA	editing	complex.	DNA	mutator	activity	of	
APOBEC	 is	 due	 to	 C-	to-	U	 deamination.184	 In	 cytoplasm	

Article
Number of 
patients Tissue material Staining

Number of 
images/areas

Agreement  
between  
pathologists Equipment Classes Parameters Results

Frei	N.F.	et	al.166 76	(38	progressors	
and	38	
nonprogressors)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

Evoluation	of	additional	spatial	biopsy	levels	
from	the

baseline	endoscopy	increased	the	detection	
rate	of	progressors

by	63.5%	(from	30.4%	to	49.8%;	P	5	0.016).
Evaluation	of	the	highest
scoring	of	all	biopsies	from	the	baseline	

and	pre-	baseline	endoscopies	led	to	an	
additional

increase	of	the	detection	rate	by	37.6%	(from	
49.8%	to	68.5%,	nonsignificant).

Annual	rate	of	progression	in	NDBE	
patients	of	high	risk	was	comparable	to	
progression	risk	in	LGD	(6.9%).

Davison	J.M.	et	al167 268	(58	progressors	
and	210	
nonprogressors)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

High-	risk	group	had	4.7-	fold	increase	in	risk	
for	HGD/EAC	compared	to	the	low-	
risk	group	(95%	CI	2.5–	8.8,	p < 0.0001).	
Patients	with	NDBE	in	high-	risk	group	
progressed	at	a	higher	rate	(26%)	than	
patients	with	LGD	(21.8%)	at	5 years.

Diehl	D.L.	et	al.168 60	patients Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

TissueCypher	results
influenced	55.0%	of	management	decisions.	

In	21.7%
of	patients,	the	test	upstaged	the	management	

approach,
and	in	33.4%	of	patients	the	test	downstaged	

the	management.
.

aHE,	hematoxylin	and	eosin.
bImCA,	intramucosal	adenocarcinoma.
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APOBEC	 restricts	 replication	 of	 DNA-	viruses,	 including	
HIV,	and	comprises	a	component	of	natural	retroviral	de-
fense.185	APOBECs	predominantly	target	single-	stranded	
DNA,	 and	 can	 produce	 a	 cluster	 of	 strand	 coordinated	
mutations	 that	 affect	 cytosine	 bases	 in	 the	 same	 strand.	
Kataegis	is	detected	at	the	breakpoints	of	chromothriptic	
rearrangements	 caused	 by	 telomere	 crisis.186	 So	 the	 rea-
son	for	kataegis	is	breakage	of	chromatin	bridges	of	dicen-
tric	chromosome	by	3'repair	exonuclease	1	(TREX1)	with	
generation	of	single	strain	DNA	acting	as	a	substrate	for	
APOBEC	deaminases.	Kataegis	is	diagnosed	in	31%–	86%	
observations	of	EAC.178,181

BFB (break-	fusion-	bridge) cycles	 are	 initiated	 by	 telo-
mere	 loss	 followed	 by	 fusion	 of	 unprotected	 ends	 of	

chromosomes	 or	 sister	 chromatids.187	 These	 chromo-
somes	then	rupture	in	anaphase.	This	process	may	repeat	
during	 several	 cell	 cycles	 resulting	 in	 inverted	 duplica-
tions	with	high	copy	number	alterations.	Tumor	growth	
activation	originates	when	these	amplified	areas	involve	
oncogenes.	 BFB	 is	 detected	 in	 27.3%	 of	 EAC	 and	 leads	
to	 amplification	 of	 potent	 oncogenes	 (RCF3,	 MDM2,	
VEGFA,	BCAT1	и	KRAS)	 through	double-	minute	chro-
mosome	 generation.178	 These	 data	 give	 evidence	 that	
genomic	catastrophes	are	important	in	neoplastic	trans-
formation	 of	 BE	 and	 represent	 an	 alternative	 mecha-
nism	 of	 malignization.	 Genomic	 catastrophes	 that	 are	
often	seen	in	HGD	and	EAC	may	probably	result	in	rapid	
progression.177,178,181,188

Article
Number of 
patients Tissue material Staining

Number of 
images/areas

Agreement  
between  
pathologists Equipment Classes Parameters Results

Frei	N.F.	et	al.166 76	(38	progressors	
and	38	
nonprogressors)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

Evoluation	of	additional	spatial	biopsy	levels	
from	the

baseline	endoscopy	increased	the	detection	
rate	of	progressors

by	63.5%	(from	30.4%	to	49.8%;	P	5	0.016).
Evaluation	of	the	highest
scoring	of	all	biopsies	from	the	baseline	

and	pre-	baseline	endoscopies	led	to	an	
additional

increase	of	the	detection	rate	by	37.6%	(from	
49.8%	to	68.5%,	nonsignificant).

Annual	rate	of	progression	in	NDBE	
patients	of	high	risk	was	comparable	to	
progression	risk	in	LGD	(6.9%).

Davison	J.M.	et	al167 268	(58	progressors	
and	210	
nonprogressors)

Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

High-	risk	group	had	4.7-	fold	increase	in	risk	
for	HGD/EAC	compared	to	the	low-	
risk	group	(95%	CI	2.5–	8.8,	p < 0.0001).	
Patients	with	NDBE	in	high-	risk	group	
progressed	at	a	higher	rate	(26%)	than	
patients	with	LGD	(21.8%)	at	5 years.

Diehl	D.L.	et	al.168 60	patients Biopsy	specimens HE
p16
AMACR
p53
CD68
COX-	2
CD45RO
HIF1a
HER2/neu
K20

—	 —	 TissueCypher	Image	Analysis	
Platform	(Cernostics,	Inc.)

Low,	interme-	
diate	or	
high	risk	of	
progression

Expression	and	co-	expression	
of	markers

TissueCypher	results
influenced	55.0%	of	management	decisions.	

In	21.7%
of	patients,	the	test	upstaged	the	management	

approach,
and	in	33.4%	of	patients	the	test	downstaged	

the	management.
.

aHE,	hematoxylin	and	eosin.
bImCA,	intramucosal	adenocarcinoma.
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Aneuploidy.	 Aneuploidy	 is	 defined	 as	 abnormal	
number	of	chromosomes	 in	cell.	Using	 flow	cytometry,	
Rabinovitch	 P.S.	 et	 al.189	 detected	 aneuploidy	 in	 tumor	
cells	 of	 EAC	 and	 in	 epithelial	 cells	 adjacent	 to	 tumor.	
Later	 Rabinovich	 P.S.	 et	 al.190	 developed	 cut-	points	 to	
assess	aneuploidy	(>2.7N)	and	tetraploidy	(4N > 6%)	in	
BE	in	order	to	predict	progression	to	EAC.	In	a	retrospec-
tive	 study	 of	 biopsy	 archives	 of	 patients	 with	 EAC	 for	
a	9-	year	period,	 it	was	 shown	 that	DNA	ploidy	anoma-
lies	were	detected	more	often	in	more	advanced	lesions	
(NDBE—	13%,	LGD—	60%,	HGD—	73%,	EAC—	100%).191	
Reid	B.J.	et	al.129	proposed	that	aneuploidy	is	a	late	event	
in	EAC	development	that	happens	after	17pLOH	or	TP53	
mutation.	 It	 was	 further	 proved	 that	 aneuploidy	 and/
or	tetraploidy	in	clones	with	17pLOH	is	associated	with	
progression	to	EAC.192

In	 research	 of	 Sikkema	 M.	 et	 al.,137	 univariate	 analy-
sis	 showed	 that	 aneuploidy,	 strong	 Ki67	 overexpression	
and	moderate	p53	overexpression	were	all	associated	with	
increased	 risk	 of	 progression	 to	 HGD/EAC.	 Although	
multivariable	 analysis	 revealed	 that	 in	 the	 presence	 of	
LGD,	 p53	 overexpression,	 and	 to	 a	 lesser	 extent,	 Ki67	
overexpression	 remained	 important	 risk	 factors	 for	 neo-
plastic	 progression,	 whereas	 aneuploidy	 was	 no	 longer	
predictive.	 Nevertheless,	 detection	 of	 aneuploidy	 in	 pa-
tients	with	NDBE	long	time	before	progression	makes	it	a	
plausible	biomarker	for	identifying	patients	at-	risk	of	pro-
gression.193	Thus,	Killcoyne	S.	et	al.194	demonstrated	that	
genomic	copy	number	abnormalities	may	appear	10 years	
before	 dysplasia	 detection	 in	 BE	 and	 are	 strong	 predic-
tors	 of	 neoplastic	 transformation.	 Recently,	 Douville	 C.	
et	al.195	proposed	a	method	of	assessment	of	aneuploidy	in	

esophageal	brushings	 that	 identifies	early	and	 late	chro-
mosomal	lesions	specific	for	neoplastic	progression	in	BE.

9 	 | 	 EPIGENETIC MARKERS OF BE 
NEOPLASIA AND PREDICTORS OF 
PROGRESSION

Epigenetic	 changes	 begin	 at	 early	 stages	 of	 neoplastic	
transformation	 and	 are	 regarded	 as	 potential	 predictive	
markers	 of	 progression.	 Several	 epigenetic	 changes	 are	
implemented	during	carcinogenesis196,197:	(1)	DNA	meth-
ylation,	 (2)	 posttranslational	 modifications	 of	 histones,	
(3)	 specific	 miRNAs	 and	 (4)	 nucleosome	 positioning.	 In	
our	review,	we	will	mostly	focus	on	DNA	methylation	and	
miRNA	 expression,	 as	 these	 processes	 were	 extensively	
studied	in	BE	and	EAC.

Methylation of DNA.	DNA	methylation	is	performed	
by	 DNA	 methyltransferases	 (DNMTs)	 at	 5-	position	 of	
cytosine,	 usually	 dinucleotide	 sequence	 CpG	 serves	 as	
a	 substrate	 for	 DNMTs.	 Most	 of	 CpG	 in	 mammalian	
cells	 are	 methylated	 except	 for	 CpG	 islands	 enriched	
by	 CpG	 sequenced,	 which	 are	 located	 in	 promotor	 re-
gions	of	60%–	70%	genes.	Aberrant	methylation	of	CpG	
islands	 in	 carcinogenesis	 usually	 results	 in	 silencing	
of	 gene	 expression,	 whereas	 methylation	 of	 CpG	 se-
quences	outside	of	promotor	regions	(gene	body	meth-
ylation),	 in	contract,	 leads	 to	 transcriptional	activation	
of	corresponding	genes.197	DNA	methylation	is	the	most	
studied	 epigenetic	 feature	 associated	 with	 neoplastic	
progression	 in	 BE.	 Not	 only	 hypermethylation	 of	 CpG	
islands,198—	200	 but	 also	 hypomethylation	 outside	 of	

F I G U R E  1 5  Schematic	illustration	of	the	most	common	genetic	events	during	carcinogenesis	in	the	distal	esophagus:	*	-		all	
aforementioned	genetic	aberrations	were	detected	in	progressors	as	early	as	2 years	before	EAC	diagnosis,	place	of	LGD	and	HGD	at	the	
scheme	is	elusive
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them	serves	as	epigenetic	hallmark	of	progression.200,201	
Thus,	 Alvarez	 H.	 et	 al.201	 showed	 significant	 genome-	
wide	hypomethylation	in	NDBE	compared	to	squamous	
epithelium;	 second	 shift	 toward	 hypomethylation	 was	
seen	 in	 HGD	 and	 EAC.	 Widespread	 hypomethylation	
was	associated	with	transcriptional	activation	of	XCL1,	
XCL3,	GATA6	and	DMBT1.	In	accordance,	Xu	E.	et	al.200	
demonstrated	decreased	DNA	methylation	level	outside	
of	CpG	islands	and	increased	methylation	in	CpG	islands	
in	patients	with	BE	and	EAC	compared	to	squamous	ep-
ithelium.	These	coexisting	epigenetic	phenomena	cause	
global	 changes	 of	 transcriptome	 that	 are	 involved	 in	
EAC	 development	 and	 appear	 early	 in	 carcinogenesis.	
Hypermethylation	 of	 genes	 SFRP1,	 GBX2,	 ADAM12,	
PTGDR,	 DMRT1,	 PTPRT,	 SH3GL3,	 LAMA1,	 COL5A1	
and	AJAP1,	that	were	identified	in	cancers	of	other	loca-
tions,	was	seen	in	BE	as	well	as	in	EAC.200	In	retrospec-
tive	 study	 hypermethylation	 of	 CDKN2A,	 RUNX3	 and	
HPP1	was	identified	in	patients	with	BE	2 years	before	
EAC	diagnostics	and	was	associated	with	increased	risk	
of	progression.198	Based	on	methylation	 index	of	 these	
genes,	pathomorphological	features	and	segment	length	
authors	developed	three-	tiered	risk	stratification	model	
to	predict	progression	in	BE.202

Alvi	 et	 al199	 studied	 methylation	 of	 imprinted	 genes	
and	genes	located	on	X	chromosome	in	patients	with	BE	
and	EAC.	They	detected	4	genes	(SLC22A18,	PIGR,	GJA12	
and	 RIN2)	 differently	 methylated	 in	 NDBE,	 dysplastic	
BE	 and	 EAC	 (AUC  =  0.988).	 In	 a	 prospective	 cohort	 of	
patients,	 methylation	 of	 less	 than	 2	 genes	 was	 seen	 in	
patients	with	low	risk	of	progression	to	EAC,	and	methyl-
ation	of	2	genes	was	associated	with	intermediate	risk	and	
>2	genes	–		with	high	risk	of	EAC	development.

Kaz	A.M.	et	al.203	identified	4	unique	methylation	pro-
files	in	BE	and	EAC:	BE	with	low	and	high	methylation	
epiphenotype	and	EAC	with	low	and	high	methylation	epi-
phenotype.	Authors	also	found	17	differently	methylated	
sites	 of	 CpG	 (differently	 methylated	 positions	 [DMPs])	
that	may	distinguish	BE	and	EAC	and	3	DMPs	for	NDBE	
and	HGD.	Yu	M.	et	al.204	showed	that	high	methylation	is	
associated	with	mutations	or	amplification	of	ERBB2,	and	
also	 harbors	 higher	 mutational	 load.	 Moreover,	 authors	
revealed	 that	 cell	 lines	 with	 different	 DNA	 methylation	
level	 are	 characterized	 by	 different	 sensitivity	 to	 drugs	
(SN-	38,	topotecan	and	palbociclib).	Therefore,	assessment	
of	DNA	methylation	 level	 is	useful	 for	 indication	of	 tar-
get	treatment.	Jammula	S.	et	al.205	also	defined	4	subtypes	
of	patients	with	BE	and	EAC	based	on	DNA	methylation	
intensity.	 Patients	 with	 1	 subtype	 showed	 DNA	 hyper-
methylation	 with	 high	 mutational	 load	 and	 mutations	
in	 cell	 cycle	 controlling	 genes	 (CCND1,	 CCNE1,	 MYC,	
CDK6)	and	receptor	tyrosine	signaling	pathways	(GATA4,	
ERBB2,	 KRAS).	 Subtype	 2	 consisted	 predominantly	 of	

patients	with	BE	with	upregulation	of	transcriptional	fac-
tors	 HNF4A/G,	 FOXA1/2/3,	 GATA6	 and	 CDX2,	 as	 well	
as	high	expression	of	genes	associated	with	ATP	synthe-
sis	and	fatty	acid	oxidation.	Patients	of	subtype	3	did	not	
show	 changes	 in	 methylation	 pattern,	 compared	 with	
control	tissue,	but	displayed	heavy	inflammatory	infiltra-
tion	enriched	with	cytotoxic	cells,	B-	cells,	mast	cells	and	
neutrophils	along	with	cancer	associated	 fibroblasts	and	
reduced	levels	of	T-	helper	cells.	Subtype	3	was	associated	
with	the	lowest	survival,	whereas	the	highest	survival	was	
expectedly	found	in	subtype	2.	At	last,	patients	with	sub-
type	4	showed	hypomethylation	accompanied	with	large-	
scale	 genomic	 rearrangements,	 copy	 number	 alterations	
and	amplification	of	CCNE1	and	ERBB2.

Number	of	DMPs	varied	in	squamous	epithelium	and	
BE	as	well	as	in	BE	and	EAC	is	tremendous.	Li	D.	et	al.206	
identified	12	from	458	DMPs	that	are	valuable	 in	distin-
guishing	of	squamous	epithelium,	BE,	EAC	and	esopha-
geal	squamous	carcinoma	and	found	3	CpG	sites	in	EAC	
and	2	CpG	sites	 in	esophageal	squamous	cell	carcinoma	
(ESSC),	methylation	of	which	was	prognostic	(associated	
with	survival).	After	detection	of	257	DMPs,	 specific	 for	
EAC,	Peng	W.	et	al.207	developed	a	model	for	early	diagnos-
tics	of	EAC	based	on	4	DMPs	 (cg07589773,	 cg10474350,	
cg13011388	and	cg15208375,	localized	in	IKZF1,	HOXA7,	
EFS	and	TSHZ3,	AUC = 0.903).

In	all	aforementioned	studies,	DNA	was	derived	from	
biopsy	samples	of	distal	esophagus,	although	several	non-	
invasive	methods	were	proposed	for	detection	of	TFPI2,208	
VIM,209	CCNA1	и	VIM210	methylation	for	BE	diagnostics.

Posttranslational modifications of histones.	Histone	mod-
ifications	regulate	gene	transcription	as	well	as	replication	
and	 DNA	 repair.196	 Among	 posttranscriptional	 modifica-
tions,	imbalance	between	acetylation	and	deacetylation	of	
histones	 was	 shown	 to	 be	 implicated	 in	 cancer	 develop-
ment211	 and	 particularly	 in	 esophageal	 carcinogenesis.212	
Acetylation	 of	 lysine	 residues'	 by	 histone	 acetyltransfer-
ases	 (HATs)	 results	 in	 the	 relaxation	 of	 DNA	 structures	
and	 facilitates	 gene	 transcription,	 whereas	 hypoacetyl-
ation	of	histones	 is	a	hallmark	of	 inactive	heterochroma-
tin.	 Cancer	 cells	 are	 characterized	 with	 impaired	 balance	
between	 HATs	 and	 histone	 deacetylases	 (HDACs)	 which	
severely	alters	chromatin	structure	and,	as	a	consequence,	
alter	gene	expression,	including	genes,	involved	in	the	cell	
cycle	regulation,	differentiation	and	apoptosis.211	For	exam-
ple,	HDACs	repression	causes	hyperacetylation	of	histones	
which	increases	transcriptional	activity,	including	rise	in	ex-
pression	of	potent	oncogenes,	 initiating	carcinogenesis.211	
On	the	other	hand,	HDACs	overexpression	leads	to	histone	
hypoacetylation	and	impaired	cell	cycle	(increase	in	cyclin	
dependent	kinases	2	and	4	and	abundant	phosphorylation	
of	 retinoblastoma	 protein)	 that	 results	 in	 augmented	 cel-
lular	proliferation.210	HDACs	inhibitors	are	valuable	novel	
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anti-	cancer	drugs	that	arrest	tumor	growth,	promote	apop-
tosis,211	help	us	to	overcome	chemotherapy	resistance	and	
increase	reactive	oxygen	species,	causing	DNA	and	mem-
brane	damage	in	cancer	cells.212	Moreover,	HDACs	inhib-
itors	 impair	 miRNA	 expression	 showing	 huge	 interaction	
between	different	epigenetic	modifications.213

Like	 posttranslational	 modifications	 of	 histones,	 nu-
cleosome positioning	modulates	accessibility	of	regulatory	
DNA	sequences	 for	 transcriptional	 factors.196,214	Specific	
information	 about	 nucleosome	 positioning	 and	 its	 close	
interaction	with	DNA	methylation	is	provided	in	several	
papers.214–	217

miRNA.	 miRNAs	 are	 small	 noncoding	 sequences	 of	
20–	25	 nucleotides	 that	 maintain	 posttranscriptional	 reg-
ulation	 of	 target	 genes.	 MiRNAs	 express	 tissue-	specific	
way	 and	 control	 wide	 spectrum	 of	 biological	 processes,	
including	 proliferation,	 apoptosis	 and	 differentiation.218	
Numerous	data	comparing	miRNA	expression	profiles	in	
tumors	 and	 corresponding	 normal	 tissues	 demonstrate	
widespread	 changes	 in	 miRNAs	 expression	 during	 car-
cinogenesis.218,219	MiRNAs	function	either	as	tumor	sup-
pressors	or	as	oncogenes,	depending	on	target	genes.

Maru	 D.M.	 et	 al.220	 showed	 that	 increased	 level	 of	
miRNA-	196a	 in	 biopsy	 samples	 of	 distal	 esophagus	 is	 a	
potential	 biomarker	 of	 progression	 from	 NDBE	 to	 EAC,	
therein	expression	of	target	genes	(SPRR2C,	S100A9	and	
KRT5)	 falls	 rapidly	 through	 neoplastic	 transformation.	
Fassan	 M.	 et	 al.221	 revealed	 different	 miRNA	 expression	
profiles	of	esophageal	squamous	epithelium,	IM	without	
dysplasia,	LGD,	HGD	and	EAC.	Authors	detected	increase	
in	 miR-	215	 and	 miR-	192	 accompanied	 by	 decrease	 in	
miR-	205,	miR-	203	and	let-	7c	levels	during	carcinogenesis.	
In	prospective	research	Revilla-	Nuin	B.	et	al.222	identified,	
that	elevated	levels	of	4	miRNAs	(miR-	192,	194,	196a	and	

196b)	are	associated	with	progression	to	EAC.	Many	other	
miRNAs	 involved	 in	 neoplastic	 progression	 in	 BE	 were	
identified.223–	225	In	meta-	analysis	miR-	192,	miR-	194,	miR-	
203,	miR-	205	and	miR-	215	were	found	to	be	perspective	
tissue	biomarkers	for	BE	diagnosis.226

MiRNAs	are	also	used	in	non-	invasive	diagnostics	of	BE,	
e.g.,	using	Cytosponge	(combination	of	miR192,	miR196a,	
miR199a	and	TFF3).227	Circulating	miRNAs	of	plasma	may	
also	serve	as	a	diagnostic	sample.228–	231	For	example,	Bus	
P.	et	al.228	validated	combination	of	circulating	miRNA	for	
differential	diagnostics	of	BE	and	EAC.	In	addition,	 level	
of	 miR130a	 increased	 gradually	 in	 line	 NDBE—	LGD—	
HGD—	EAC	stage	I,	II—	AКП	stage	III,	IV.231

Value	of	miRNAs	 in	diagnostics	 is	obvious	 (Table 7),	
besides	levels	of	specific	miRNAs	may	serve	as	prognostic	
markers	 and	 are	 also	 applicable	 for	 assessment	 of	 treat-
ment	efficacy	and	as	therapeutic	targets.232–	234

Epigenetic	 changes	 are	 the	 earliest	 in	 pathogenesis	
of	 BE,	 anticipating	 any	 genetic	 or	 molecular	 alterations	
during	Barrett's	carcinogenesis.	Several	epigenetic	changes	
serve	 as	 stage-	specific	 markers	 of	 neoplastic	 transfor-
mation	 which	 is	 important	 for	 precise	 diagnosis.	 DNA	
methylation	and	miRNA	profiles	are	promising	tools	 for	
non-	invasive	diagnostics	of	BE	and	EAC.	Moreover,	epi-
genetic	alterations	provide	new	targets	for	treatment.

10 	 | 	 MICROENVIRONMENT 
MARKERS IN PROGRESSION TO 
BARRETT 'S ADENOCARCINOMA

Microenvironment	during	carcinogenesis	can	be	divided	
into	 3	 dynamic	 stages:	 tumor	 precursor	 microenviron-
ment,	tumor	microenvironment	(TME)	and	pre-	metastatic	

T A B L E  7 	 Overview	of	miRNA,	associated	with	neoplastic	progression	in	BE

Advantages Disadvantages
Markers, elevated 
with progression

Markers, decreased 
with progression

Personized	diagnostics
Capability	to	use	different	specimens	

(biopsy	pieces,	Cytosponge	
brushing,227	plasma,228	
serum225,229–	231)

Potential	tool	for	prognosis	and	
assessment	of	treatment	
efficacy.232–	234

May	represent	a	therapeutic	target.

Ongoing	search	for	clinically	relevant	
and	cost-	effective	markers	of	
progression.

Need	for	validation	of	novel	markers	in	
clinical	trials.

↑miR-	21223,224

↑miR-	25223,224

↑miR-	92a-	3p230

↑miR130a231

↑miR-	136-	5p228

↑miR-	192221,222,227

↑miR-	194222,232

↑miR196a220,222,224,227

↑miR-	196b222

↑miR-	199a227

↑miR215221

↑miR-	223223

↑miR-	301b223

↑miR-	382-	5p228

↑miR-	618223

↑miR-	17-	92	cluster223

↓let-	7c221,223

↓miR-	23b223

↓miRNA-	133a-	3p228

↓miR-	199a-	3p229

↓miR-	203221,223,224

↓miR-	205221,223,224

↓	miR-	320e229

↓miR-	375223

↓miR-	378224
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niche.235	 TME	 consists	 of	 adaptive	 and	 innate	 immune	
cells,	 fibroblasts,	 adipocytes,	 endothelial	 cells	 and	 extra-
cellular	matrix	(ECM)	components.

Chronic	 inflammation,	 caused	 by	 gastric	 and	 bile	
acid	 reflux,	 results	 in	 recruiting	 of	 immune	 cells	 and	
releasing	a	variety	of	mediators	(e.g.	IL-	1β,	IL-	8	and	IL-	
6),	which	together	establish	BE	microenvironment	that	
favors	 dysplasia	 initiation	 and	 further	 development	 of	
EAC.235–	238	Numerous	immune	changes	in	BE	were	as-
sociated	with	progression	to	EAC.	Flow	based	single	cell	
analysis	 showed	 that	 B	 cell	 rich	 microenvironment	 in	
normal	 esophagus	 changes	 into	 predominantly	 T	 cell	
rich	 landscape	 in	 BE.239	 Using	 IHC	 evaluation,	 Porter	
et	al.240	revealed	that	NDBE	is	associated	not	only	with	
reduced	lymphocytic	infiltration	of	CD20+	B-	cells,	but	
also	 with	 lower	 level	 of	 CD4+	T-	cell	 and	 CD8+	T-	cell	
infiltration	 compared	 with	 squamous	 epithelium	 of	
esophagus.	In	this	study	dysplastic	BE	demonstrated	an	
increase	 of	 CD20+	 B-	cells,	 CD8+	 T-	cells	 and	 Foxp3+	
Tregs	 compared	 with	 NDBE.	 Importantly,	 individuals	
with	 dysplasia	 also	 showed	 increased	 CD20	 +	 B-	cells	
in	 background	 NDBE	 compared	 with	 nonprogressors,	
and	 patients	 with	 EAC	 displayed	 increased	 CD20+,	
CD4+	and	CD8+	lymphocytes	in	the	background	NDBE	
compared	with	nonprogressors.	In	rat	model	Miyashita	
T.	et	al.241	showed	that	M2	phenotype	CD163+	macro-
phages	 (tumor-	associated	 macrophages,	 TAMs)	 infil-
tration	 contributes	 to	 tumor	 development	 along	 with	
Foxp3+	Tregs	via	Stat3-	pathway.

Kavanagh	 ME	 et	 al.242	 demonstrated	 Th2	 phenotype	
in	BE,	characterized	by	elevated	levels	of	IL-	4	producing	
CD4+	 T-	cells	 and	 secreted	 levels	 of	 IL-	6,	 and	 immuno-
compromised	T-	cells	infiltrating	EAC	with	low	expression	
of	 CD45RO	 and	 CD69	 that	 facilitate	 tumor	 progression	
and	 may	 represent	 a	 target	 for	 immune	 therapy.	 The	
same	 researchers	 identified	 that	 circulating	 T	 cells	 in	
EAC	patients	exhibited	impaired	migratory	capacity	with	
decreased	 frequencies	 of	 Th1-	associated	 CXCR3+	 and	
Th17-	associated	CCR6+	cells.243	Interestingly,	neutrophil-	
lymphocyte	ratio	(NLR)	in	blood	gradually	increased	from	
NDBE	 to	 EAC.	 NLR	 >2.27	 was	 able	 to	 diagnose	 EAC	
with	 80%	 sensitivity	 and	 71%	 specificity	 (area	 under	 the	
curve = 0.8).244

RNA-	Seq	 and	 the	 genomic	 cellular	 analysis	 tool	 xCell	
revealed	a	linear	increase	in	Th1,	Th2,	Treg,	and	pro–	B	cell	
populations	 in	 EAC	 compared	 with	 precancerous	 lesions	
(dysplastic	BE	and	NDBE)	as	well	as	a	linear	increase	in	M1	
and	M2 macrophages	between	HGD	and	EAC.245	Although	
multiplex	 IHC	 showed	 that	 immune	 cell	 populations	
tended	to	increase	in	a	stepwise	fashion	from	BE	to	LGD	
to	HGD,	followed	by	a	decline	in	all	evaluated	immune	cell	
populations	 in	EAC	tissues	that	coincided	with	 increased	
PD-	L1	expression.245	PD-	L1	has	been	shown	to	cause	T	cell	

apoptosis	 and	 suppress	 antitumor	 immunity.246,247	 PD-	L1	
expression	in	subset	of	EAC	patients	means	that	these	in-
dividuals	 may	 benefit	 from	 immunomodulatory	 therapy,	
such	as	anti–	PD-	1,	anti–	PD-	L1	or	anti-	CTLA4	therapy.

Changes	of	the	ECM	in	the	BE	microenvironment	also	
are	 important	 in	 carcinogenesis.	 Matrix	 metalloprotein-
ases	(MMPs)	are	components	of	ECM	involved	in	inflam-
mation	 and	 tumor	 metastasis.	 IHC	 showed	 that	 MMP-	7	
was	 weakly	 expressed	 in	 squamous	 epithelium	 adjacent	
to	 EAC	 but	 increased	 progressively	 in	 epithelial	 cells	 in	
NDBE,	LGD,	HGD	and	EAC,	particularly	at	the	invasive	
front.248	 Moreover,	 MMP-	7	 was	 weakly	 expressed	 in	 the	
stroma	myofibroblasts	of	dysplastic	BE	and	EAC,	especially	
at	the	invasive	front.	Authors	supposed	that	MMP-	7	in	BE	
epithelial	cells	was	regulated	by	PI3-	K	kinases	and	could	
stimulate	stromal	cell	migration,	invasion	and	remodeling	
of	the	microenvironment.248	MMP9	and	MMP13	are	also	
up-	regulated	in	BE.249	Expression	of	MMP13	was	higher	in	
NDBE,	whereas	expression	of	MMP-	9	was	higher	in	EAC.	
Herszenyi	L	et	al.250	demonstrated	that	MMP9	expression	
level	 gradually	 increased	 from	 NDBE	 to	 EAC	 making	
MMP9	 a	 prognostic	 biomarker.	Wang	 Z	 et	 al.251	 demon-
strated	 that	 expression	 levels	 of	 COL1A2	 (encoding	 α2	
chain	of	collagen	I)	and	related	genes	(COL1A1,	COL3A1,	
ZNF469,	and	POSTN)	were	positively	correlated	with	the	
infiltration	levels	of	macrophages	and	dendritic	cells,	and	
the	 expression	 levels	 of	 ZNF469	 was	 also	 positively	 cor-
related	with	the	infiltration	levels	of	CD4+	T	cells	in	both	
EAC	and	ESCC.	These	results	indicated	these	genes	might	
be	the	candidate	genes	for	assessing	the	immune	infiltra-
tion	levels	in	esophageal	cancer.	COL1A2	is	known	to	play	
a	role	in	the	invasion	and	metastasis	of	ovarian	cancer.252	
COL1A2	also	up-	regulates	proliferation,	migration	and	in-
vasion	of	ESCC	in vitro.253

Changes	in	different	immune	cell	populations	as	well	
as	components	of	ECM	are	elucidated	across	the	progres-
sion	 from	 BE	 to	 EAC.	 Some	 of	 immune	 changes	 are	 of	
value	because	they	represent	targets	for	immunomodula-
tory	treatment.	A	lot	of	novel	markers	associated	with	BE	
progression	to	EAC	are	identified	in	scientific	studies	and	
need	to	be	evaluated	in	clinical	trials	before	becoming	part	
of	the	routing	diagnostics.

11 	 | 	 CONCLUSIONS AND 
OUTLOOK

Endoscopic	examination	with	morphologically	confirmed	
IM	 is	 a	 standard	 of	 BE	 diagnostics.	 Morphological	 veri-
fication	 of	 dysplasia	 is	 challenging	 and	 provides	 great	
variability	 in	 diagnosis.	 In	 difficult	 cases	 IHC	 evalua-
tion	 is	 reasonable.	 IHC	examination	with	p53,	Ki67	and	
AMACR	not	only	allows	identifying	presence	and	grade	of	
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dysplasia,	but	also	has	implication	in	determining	progno-
sis.	TissueCypher	technology	provides	quantitative	analy-
sis	of	epithelial	and	stromal	immunofluorescent	markers	
expression	 (p16,	 AMACR,	 p53,	 CD68,	 COX-	2,	 CD45RO,	
HIF1a,	HER2/neu	and	K20)	in	biopsy	specimens	with	BE.	
TissueCypher	results	are	interpreted	in	terms	of	low,	in-
termediate	or	high	risk	of	progression	to	EAC.

Population	 of	 patients	 with	 BE	 is	 heterogeneous:	 al-
though	some	patients	are	stable	with	NDBE,	others	may	
rapidly	evolve	to	dysplasia	and	EAC.	Analysis	of	genetic	
and	epigenetic	alterations	in	BE	and	EAC	sheds	light	on	
pathways	 of	 neoplastic	 progression	 in	 distal	 esophagus	
and	gives	a	key	to	stratification	of	progression	risk	in	each	
individual	 patient,	 meaning	 that	 molecular	 and	 genetic	
alterations	arise	earlier	than	morphologically	identifiable	
dysplasia.	Noninvasive	detection	of	epigenetic	markers	of	
BE	and	EAC	or	detection	of	markers	in	plasma	or	serum	
of	patients	is	a	promising	alternative	to	EGS	with	biopsy	
and	 is	 valuable	 for	 diagnosis,	 progression	 and	 survival	
prognosis	and	assessment	of	therapy	efficacy.
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