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Effects of PKM2 on global metabolic
changes and prognosis in hepatocellular
carcinoma: from gene expression to drug
discovery
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Abstract

Background: Hepatocellular carcinoma (HCC) is a malignant tumor that threatens global human health. High
PKM2 expression is widely reported in multiple cancers, especially in HCC. This study aimed to explore the
effects of PKM2 on global gene expression, metabolic damages, patient prognosis, and multiple transcriptional
regulation relationships, as well as to identify several key metabolic genes and screen some small-molecule
drugs.

Methods: Transcriptome and clinical HCC data were downloaded from the NIH-GDC repository. Information
regarding the metabolic genes and subsystems was collected from the Recon 2 human metabolic model.
Drug-protein interaction data were obtained from the DrugBank and UniProt databases. We defined patients
with PKM2 expression levels ≥11.25 as the high-PKM2 group, and those with low PKM2 expression (< 11.25)
were defined as the low-PKM2 group.

Results: The results showed that the global metabolic gene expression levels were obviously divided into the
high- or low-PKM2 groups. In addition, a greater number of affected metabolic subsystems were observed in
the high-PKM2 group. Furthermore, we identified 98 PKM2-correlated deregulated metabolic genes that were
associated with poor overall patient survival. Together, these findings suggest more comprehensive influences
of PKM2 on HCC. In addition, we screened several small-molecule drugs that target these metabolic enzymes,
some of which have been used in antitumor clinical studies.

Conclusions: HCC patients with high PKM2 expression showed more severe metabolic damage, transcriptional
regulation imbalance and poor prognosis than low-PKM2 individuals. We believe that our study provides valuable
information for pathology research and drug development for HCC.
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Background
Hepatocellular carcinoma (HCC) is one of the two major
forms of primary liver cancer and accounts for 85–90% of
all primary liver cancers [1]. HCC is typically caused by
viral hepatitis infection or fatty liver disease. Cryptogenic
cirrhosis, which is frequently linked with nonalcoholic
steatohepatitis (NASH) / nonalcoholic fatty liver disease
(NAFLD) in patients with metabolic syndrome, diabetes
and obesity, is an increasingly significant cause of HCC
[2]. Furthermore, metabolic syndrome itself is also a strong
risk factor for HCC [3]. Increasing evidence suggests that
diabetes is an independent risk factor for HCC [4], particu-
larly diabetes controlled by diet, insulin or sulfonylureas
[5]. Additionally, a series of metabolic alterations in HCC,
including elevated glycolysis, gluconeogenesis, and b-oxi-
dation levels and reduced tricarboxylic acid cycle and
D-12 desaturase levels, were observed [6].
Pyruvate kinase (PK) catalyzes the last and physiolo-

gically irreversible step in glycolysis, the conversion of
phosphoenol pyruvate (PEP) to pyruvate via the transfer
of a phosphate group to ADP [7]. In mammals, four PK
isoforms exist that are encoded by two genes. The PKLR
gene encodes PKL and PKR [8]. The former is exclusive
to erythrocytes, and the latter is expressed primarily in
the liver, with low expression in the kidney. The PKM1
and PKM2 isoforms are encoded by PKM through alter-
native splicing of the mutually exclusive exons 9 and 10,
which generate 56-amino acid regions that differ at 22
residues [7, 8]. PKM1 is mainly expressed in brain, heart,
and muscle tissue, whereas PKM2 is expressed in most
tumor cells, embryonic tissue and many adult tissues, in-
cluding the kidney, spleen, lung and intestine [7, 9].
PKM2 plays a central role in maintaining the metabol-
ism program of cancer cells and other proliferating cell
types and is over-expressed in a broad range of human
cancers [7].
High PKM2 expression is correlated with poor prog-

nosis for patients with multiple types of solid tumors
compared with the prognosis of patients with low PKM2
expression levels [10, 11]. Our previous study also found
high PKM2 expression is independently associated with
poor overall survival in HCC patients [12]. The knock-
down of PKM2 in HCC cells inhibited cell proliferation
and induced apoptosis in vitro and in vivo [13]. Further-
more, PKM2 plays critical in Warburg effect, gene
expression, cell cycle progression and many other funda-
mental cellular functions and is highlighted as an im-
portant integrator of diverse cellular stimuli to modulate
metabolic flux and cancer cell proliferation [14]. Recent
studies found that PKM2 is the dominant form highly
expressed in HCC and is a direct target of miR-122,
which serves as a prognostic biomarker and induces
apoptosis and growth arrest by downregulating PKM2 in
HCC [15, 16].

Establishment of a human metabolic model provided
considerable data support and systematic analytical
methods for human metabolic disease research [17]. In
this study, we obtained information regarding all human
metabolic genes and metabolic subsystems from the
Recon2 human metabolic model [18]. Considering that
HCC is a metabolic disease, we aimed to explore the as-
sociations between PKM2 expression and overall meta-
bolic changes in HCC, identify several risk metabolic
genes and discover some drugs.

Methods
Data collection
HCC RNA-seq and clinical data were downloaded from
the NIH-GDC repository (https://portal.gdc.cancer.gov/)
and cBioPortal (http://www.cbioportal.org/) databases
[19]. In total, we downloaded TCGA level 3 data that in-
cluded 371 primary hepatocellular carcinoma patients
and 50 controls. All samples were analyzed by Illumina
HiSeq 2000 RNA Sequencing Version 2. RNA-seq by
expectation-maximization (RSEM) expression values
were used for statistical analysis. We divided all HCC
samples into two groups according to their log2-con-
verted median expression of PKM2 (11.25). Case sam-
ples with PKM2 expression ≥11.25 comprised the
high-PKM2 group, and those with low PKM2 expression
(< 11.25) comprised the low-PKM2 group. PKM2 copy
number data were downloaded from the cBioPortal
database and PKM2 promoter methylation data were ob-
tained from MethHC (http://methhc.mbc.nctu.edu.tw/
php/search.php?opt=gene). The methylation data con-
tains 204 HCC patients and 49 controls, and the copy
number data contains 364 HCC patients but no controls.
We mapped these samples to the transcriptome data
and compared the difference among controls, low-
PKM2 patients and high-PKM2 patients. The validation
datasets of GSE14520 (contributed by Roessler S, includ-
ing 225 patients) and GSE25097 (contributed by Tung
EK, including 268 patients) were downloaded from NCBI-
GEO (https://www.ncbi.nlm.nih.gov/geo/). We used these
two datasets to verify the effect of PKM2 on global meta-
bolic gene expression.

Preprocessing and differential expression analysis
R statistical software v3.3.3 was used to perform data
preprocessing. We removed genes with median expres-
sion values = 0 in all patients. In total, we filtered 16706
genes in 371 HCC patients and 50 controls. All expres-
sion values were log2-transformed. Human metabolic
genes were extracted from the Recon 2 human metabol-
ism model (https://www.vmh.life/). This model contains
1789 unique genes that belong to 99 metabolic subsys-
tems. We mapped 1492 metabolic genes and 95 subsys-
tems in our HCC data. Differentially expressed gene
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analysis between HCC patients and controls in the high-
and low-PKM2 groups was performed using the empirical
Bayes algorithm (function “eBayes”) in the “limma” pack-
age [20]. Differences (up- or down-regulated) were consid-
ered statistically significant for absolute value log2-
transformed fold-changes ≥1 and false discovery rate
(FDR) adjusted P values ≤0.05.

Metabolic subsystem enrichment and correlation analysis
We used javaGSEA desktop application v3.0 (http://soft-
ware.broadinstitute.org/gsea/index.jsp) [21] to perform
gene set enrichment analysis (GSEA) of the mapped meta-
bolic subsystems in high-PKM2 vs. controls, low-PKM2
vs. controls and high-PKM2 vs. low PKM2. Gene sets with
less than 10 genes or more than 500 genes were excluded.
The t-statistic mean of the genes was computed in each
metabolic subsystem using a permutation test with 1000
replications. Subsystems with normalized enrichment scores
(NESs) > 0 were considered up-regulated, and subsystems
with NESs < 0 were considered down-regulated. Statistical
significance was identified as P values ≤0.05. A univariate
correlation model was used to analyze correlation between
PKM2 and other metabolic genes in high- and low-PKM2
patients. Genes with absolute correlation coefficient values
≥0.5 and P values ≤0.05 were considered significant.

Single gene and gene interaction survival analyses
We used Venn diagrams to show the overlapping genes
among the up-regulated and PKM2-positively correlated
genes as well as the down-regulated and PKM2-nega-
tively correlated genes in the high- and low-PKM2
groups. All survival analyses were conducted using “sur-
vival” package in R. A Cox proportional hazards model
was used to estimate the independent effects of these
overlapping genes on the total overall survival of the
HCC patients. Each gene was divided into two groups
according to its median expression. Patients with gene
expression levels less than the median comprised the
low-expression group, and those with gene expression
levels higher than the median comprised the high-ex-
pression group. The reference group of up-regulated
genes was defined as patients in the low-expression
group, and the reference group of down-regulated genes
was defined as patients in the high-expression group.
According to our grouping, genes with hazard ratios
(HRs) > 1 were considered risk factors. Conversely, genes
with HRs < 1 were considered protective factors. To ex-
plore the effect of interactions between PKM2 and meta-
bolic genes on patients’ overall survival, we used Cox
proportional hazards model to perform interaction sur-
vival analysis of PKM2 and metabolic genes that uncor-
related with PKM2. We screened these uncorrelated
genes that were not affect patients’ prognosis alone and
no expression difference in high- or low-PKM2 patients

compared to controls. The “simPH” package [22] in R
was used to simulate and plot quantities of interactions
from Cox proportional hazard models. The Kaplan-
Meier curves were used to show the difference of these
interactions on patients’ survival. A P value ≤0.05 was
considered as significant.

Transcriptional regulatory network analysis
Using the analysis described above, we defined overlap-
ping genes with survival differences as risk metabolic
genes. We used the TRRUST v2.0 web server [23] to find
the transcription factors (TFs) targeting these genes.
TRRUST v2.0 is a manually curated database of human
and mouse transcriptional regulatory networks. It contains
9,996 TF-target regulatory relationships for 824 human
TFs and provides information regarding the regulation
type (such as activation or repression) between the quer-
ied TFs and target genes (http://www.grnpedia.org/trrust/
). All these relationships were derived from PubMed arti-
cles. We used these TFs and risk metabolic genes to con-
struct transcriptional regulatory networks (TRNs) in high-
and low-PKM2 groups. Because the transcriptional regula-
tion information of multiple risk metabolic genes is not
recorded in the database, the co-expression method was
used to construct TRNs. The correlation coefficients of
these TFs and risk metabolic genes were calculated in each
group, and the TF-target pairs with absolute value of cor-
relation coefficients ≥0.5 and FDR P-values ≤0.05 were se-
lected to construct the TRN.

Construction of the risk metabolic genes and drug
network
We used these risk metabolic genes and drugs that tar-
get these proteins to construct the network. Information
regarding the drugs and targeting proteins was down-
loaded from the DrugBank database (https://www.drug-
bank.ca/) [24]. Because the records in the DrugBank
database are protein IDs and drugs interactions, we used
UniProt (http://www.uniprot.org/) to find the protein
IDs corresponding to these risk metabolic genes. By
combining the DrugBank and UniProt databases, we ob-
tained 14834 gene-protein-drug interactions in total, in-
cluding 2127 unique genes and 6255 unique drugs. We
extracted the interactions of risk metabolic genes and
drugs and used Cytoscape v3.4.0 to visualize the network.

Results
Global metabolic gene expression levels were different in
the high- and low-PKM2 groups
We calculated differentially expressed genes in high- and
low-PKM2 patients (Additional file 1: Tables S1 and S2).
In total, 4521 and 3314 deregulated genes were identified
in high- and low-PKM2 patients, respectively. Figure 1
showed the global metabolic gene expression levels in the
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high- and low-PKM2 groups. The expression of PKM2 in
low-PKM2 patients was similar to that of the controls;
however, the expression of PKM2 in high-PKM2 patients
was significantly higher than that of the controls (Fig. 1a).
Furthermore, the methylation value of PKM2 in low-
PKM2 patients were higher than the controls, whereas the

methylation value of PKM2 in high-PKM2 patients were
significantly lower than the controls and the low-PKM2
patients (Fig. 1b). However, there was no difference of
copy number variation between high- and low-PKM2 pa-
tients (Fig. 1c). These results suggested that the PKM2 ex-
pression was consistent with the methylation status. The

Fig. 1 PKM2 and metabolic gene expression profiles. a The expression levels of PKM2 in low-PKM2 (< 11.25) patients (light blue) were similar to
the controls (gray), whereas the expression levels of PKM2 in high-PKM2 (≥ 11.25) patients (red) were significantly higher than the controls. b
Methylation value of PKM2 in low-PKM2 patients (light blue) were higher than the controls (gray), whereas the methylation value of PKM2 in
high-PKM2 patients (red) were significantly lower than the controls and the low-PKM2 patients. c There was no difference of copy number
variation between high- and low-PKM2 patients. d Heatmap of 1492 metabolic genes in 371 patients (TCGA data). The hierarchical clustering
results suggested the expression levels of global metabolic genes were divided into clustering group I (blue) and clustering group II (red).
Statistical difference of PKM2 expression, sex, age, grade and stage between the two groups showed in Additional file 1: Tables S3 and S4. e
Heatmap of 1319 metabolic genes in 225 patients (GSE14520, validation dataset 1). f Heatmap of 1490 metabolic genes in 268 patients
(GSE25097, validation dataset 2). These two hierarchical clustering results validated the expression profiles of metabolic genes were different
between high- and low-PKM2 patients. Statistical significance: * P < 0.05, ** P < 0.01, *** P < 0.001
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expression profiles of 1492 metabolic genes in 371 HCC
patients showed in Fig. 1d. Through hierarchical cluster-
ing, the expression levels of global metabolic genes were
divided into two groups. We compared the PKM2 expres-
sion, sex, age, stage and grade between the two clustering
groups and found most of patients with low-PKM2 ex-
pression were in clustering group I and patients with
high-PKM2 expression were mainly in clustering group II.
This significant difference is independent with other clin-
ical variables (Additional file 1: Tables S3 and S4). Further-
more, the hierarchical clustering results of other two
validation datasets (GSE14520 and GSE25097) showed
similar trends (Fig. 1e and f). All these results suggested
that PKM2 was correlated with the expression of global
metabolic genes.

Patients in the high-PKM2 group showed more severe
metabolic abnormalities
The enriched metabolic subsystems in high-PKM2 vs.
controls, low-PKM2 vs. controls and high-PKM2 vs.
low-PKM2 showed in Fig. 2a. The original results for
GSEA showed in Additional file 1: Table S5. There were
35 down-regulated metabolic subsystems in high-PKM2
vs. controls, whereas only 17 down-regulated metabolic
subsystems in low-PKM2 vs. controls. No up-regulated
metabolic subsystem was found in high-PKM2 vs. con-
trols or low-PKM2 vs. controls. Furthermore, there
were 4 up-regulated and 34 down-regulated metabolic
subsystems in high-PKM2 vs. low-PKM2. There have
similar trends of down-regulated metabolic subsystems in
high-PKM2 vs. controls and high-PKM2 vs. low-PKM2.

Fig. 2 Metabolic subsystem enrichment results and correlation between PKM2 and metabolic genes. a Metabolic subsystem enrichment analysis
of high-PKM2 vs. controls, low-PKM2 vs. controls and high-PKM2 vs. low-PKM2. The red box represents the metabolic subsystem is up-regulated
and the blue box represents the metabolic subsystem is down-regulated. The yellow circle indicates the metabolic subsystem is significantly
enriched. b Correlation of PKM2 and metabolic genes in the high-PKM2 group. c Correlation of PKM2 and metabolic genes in the low-PKM2
group. The red points represent positive correlations, and the blue points represent negative correlations. The absolute values of the correlation
coefficients are represented by the size of the points. The horizontal dashed line shows the significant level (P ≤ 0.05)
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The results showed that most of these subsystems were
associated with amino acid metabolism, carbohydrate me-
tabolism, lipid and lipid derivatives metabolism. Correla-
tions between PKM2 and other metabolic genes in the
high- and low-PKM2 groups showed in Fig. 2b and c, re-
spectively. Details of the correlation coefficients and P
values in all the metabolic genes in the two groups listed
in Additional file 1: Tables S6 and S7. According to our
screening criteria, 19 PKM2-positively correlated genes
and 174 PKM2-negatively correlated genes were identified
in the high-PKM2 group. However, only 8 PKM2-posi-
tively correlated genes and no PKM2-negatively correlated
genes were observed in the low-PKM2 group. We further
screened common genes between up-regulated and
PKM2-positively correlated genes and between down-reg-
ulated and PKM2-negatively correlated genes in the high-
and low-PKM2 groups (Fig. 3). The results showed that
160 common genes existed in the high-PKM2 group.
However, no common genes were observed in the low-
PKM2 group. These results suggested that patients with
high PKM2 expression suffer more serious metabolic
damage compared with that of low-PKM2 patients.

PKM2-correlated deregulated genes associated with poor
overall survival
We performed survival analysis using the above men-
tioned 160 PKM2-correlated deregulated genes in all

HCC patients (Additional file 1: Tables S8 and S9).
Among these 160 genes, 98 genes (including 6 up-
regulated genes and 92 down-regulated genes) were
significantly correlated with overall patient survival.
Therefore, we classified these 98 genes as risk meta-
bolic genes, which were deregulated and had survival
risks in all patients. Figure 4 shows the personalized
fold changes (The gene expression values for each pa-
tient/mean expression of the gene in controls) in the
high- and low-PKM2 groups as well as the survival
risks of these 98 genes. Interestingly, these genes all
showed worse overall survival in high-PKM2 patients
than in low-PKM2 patients. Furthermore, we screened
462 metabolic genes that was no correlation with
PKM2, and these genes showed no expression or
survival difference in HCC patients. We performed
interactive survival analysis of these uncorrelated
metabolic genes with PKM2 (Additional file 1: Table
S10). The results showed that there were 36 signifi-
cantly interactions (interaction P < 0.05). We screened
top 6 interactions based on the decreasing order of
interaction P values and plotted the quantities of in-
teractions (Fig. 5a-f ). The Kaplan-Meier curves of
PKM2 and uncorrelated metabolic genes also showed
significance (Fig. 5g-h). These results suggested that
the interactions of PKM2 with metabolic genes have
significant effects on patients’ overall survival.

Fig. 3 Venn diagram of deregulated and PKM2-correlated genes in the high-PKM2 (a) and low-PKM2 (b) groups. The left panel shows the Venn
diagram of up-regulated and PKM2-positively correlated genes, and the right panel shows the Venn diagram of down-regulated and PKM2-
negatively correlated genes
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Transcriptional regulatory networks of risk metabolic
genes were related to PKM2 expression
Transcriptional regulatory relationships of TFs and the
risk metabolic genes in high- and low-PKM2 group were
showed in Fig. 6a and b. There were 232 nodes in the
high-PKM2 group and 175 nodes in the low-PKM2
group. The average number of neighbors is 8.267 in the

high-PKM2 group and 2.857 in the low-PKM2 group.
Furthermore, the neighborhood connectivity in high-
PKM2 group were higher than low-PKM2 group (Fig. 6c
and d). From the perspective of network connectivity
and complexity, the transcriptional regulation relation-
ships of TFs and risk metabolic genes were stronger in
the high-PKM2 group than in the low-PKM2 group.

Fig. 4 Personalized expression and survival analysis of PKM2-correlated deregulated genes. The heatmap shows the personalized log2 fold
changes of these genes in the high-PKM2 (≥ 11.25) and low-PKM2 (< 11.25) groups. The personalized fold changes were calculated as the gene
expression values for each patient/mean expression of the gene in controls. For survival analysis, the reference group of up-regulated genes was
defined as patients with levels below the median expression level of the gene, and the reference group of down-regulated genes was defined as
patients with levels higher than the median expression level of the gene
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There were only 47 documented regulation relationships
contain 23 TFs and 29 risk metabolic genes (Additional
file 1: Table S11). In these TF-target interactions, HNF4A
regulated the most target genes. We displayed the expres-
sion profiles and regulation relationships of HNF4A and
its target genes (including risk metabolic genes and other
genes) in the high-PKM2 and low-PKM2 groups (Fig. 6e
and f). In total, 6 risk metabolic genes were regulated by
HNF4A (CYP2C9 is activated by HNF4A, and the regula-
tion types of the other 5 genes are unknown). In high-
PKM2 patients, HNF4A was expressed at low levels, and
its target genes were all significantly down-regulated.
However, in low-PKM2 patients, HNF4A expression was

not altered, and four HNF4A-regulated risk metabolic
genes also showed no significant difference, although
these genes exhibited low expression.

Network of risk metabolic genes and drugs that target
these genes
We obtained 290 interactions of the risk metabolic
genes, proteins and drugs (Additional file 1: Table S12).
The network of drugs and risk metabolic genes showed
in Fig. 7. The network included 7 up-regulated metabolic
genes (PKM was searched in the DrugBank database,
and no records of its subtypes exist), 86 down-regulated
metabolic genes and 204 drugs. In total, 12 enzymes

Fig. 5 Interaction survival analysis of PKM2 and PKM2-uncorrelated metabolic genes. a Quantities of interaction between PKM2 and PFAS on
patients’ overall survival. b Quantities of interaction between PKM2 and B3GAT1 on patients’ overall survival. c Quantities of interaction between
PKM2 and CINP on patients’ overall survival. d Quantities of interaction between PKM2 and HS3ST2 on patients’ overall survival. e Quantities of
interaction between PKM2 and EXTL2 on patients’ overall survival. f Quantities of interaction between PKM2 and SLC18A2 on patients’ overall
survival. g Kaplan-Meier curves of PKM2 and PFAS on patients’ overall survival. h Kaplan-Meier curves of PKM2 and B3GAT1 on patients’ overall
survival. All these PKM2-uncorrelated genes showed no expression difference in high- or low-PKM2 groups. The figure showed top six interactions
sorted by interaction P values. Details see in Additional file 1: Table S10. Statistical significance: * P < 0.05, ** P < 0.01, *** P < 0.001
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interacted with more than 5 drugs. Among these pro-
teins, ARG1 binds 12 drugs, and FBP1 binds 10 drugs.
ABAT, HAO1 and PAH each bind 9 drugs; ADH1B,
ALAD and DAO each bind 8 drugs; AGXT, EPHX2 and
SHMT1 each bind 7 drugs; and GATM and PKM each
bind 6 drugs. In addition, 5 drugs interacted with more
than 5 enzymes. These drugs were pyridoxal phosphate,
pyruvic acid, L-glutamic acid, glycine and NADH. We
noticed that most of these drugs are coenzymes or sub-
strates of the risk metabolic enzymes. Considering the
numerous down-regulated metabolic subsystems in
HCC patients, we hypothesized that supplements of
these drugs may enhance the activity of metabolic reac-
tions and improve the disease. We also used L1000CDS2
(Characteristic Direction Signature Search) web tool

(http://amp.pharm.mssm.edu/L1000CDS2/#/index) to
search the compounds that perturb these risk metabolic
genes. The input parameter is the list of 6 up-regulated
risk metabolic genes and 92 down-regulated risk meta-
bolic genes. The predicted results showed there were 35
unique compounds that may perturb these genes in differ-
ent cell lines (Additional file 1: Table S13). However, only
two compounds were recorded in DrugBank database
and did not appear in our results. Due to large dif-
ferences between human tissues and cell lines, and
many compounds used in the Library of Integrated
Cellular Signatures (LINCS) program were not rec-
ord in DrugBank database, we believe that there
should be more detailed research to prove these re-
sults in the future.

Fig. 6 Transcriptional regulation relationships in high- and low-PKM2 groups. a Transcriptional regulatory network of risk metabolic genes in high-
PKM2 group. b Transcriptional regulatory network of risk metabolic genes in low-PKM2 group. The red circle represents transcription factors and the
blue circle represents target genes. The red line represents positive correlation and the green line represents negative correlation. The size of the circle
indicates the number of nodes. c Neighborhood connectivity in high-PKM2 group. d Neighborhood connectivity in low-PKM2 group. e HNF4A and its
target genes in high-PKM2 group. f HNF4A and its target genes in low-PKM2 group. The gradient color from red to green is expressed as the logFC
value of each gene. The red, blue and gray lines show the type of HNF4A regulation on its targets. PKM2-correlated and survival risk genes are shown
in the box
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Discussion
This study found that patients expressing PKM2 at high
levels exhibited abnormal expression of whole metabolic
genes, detrimental metabolic subsystems changes, un-
favorable prognoses, and transcriptional regulation im-
balances compared with low-PKM2 patients. In addition,
we identified 98 risk metabolic genes that were signifi-
cantly correlated with PKM2. Utilizing the DrugBank
and UniProt databases, we screened 204 drugs that tar-
get these genes.
HCC is metabolically different from normal liver tissue

in many ways, including glycolysis, lipid metabolism, the
TCA cycle, amino acid metabolism, and several PPAR
signaling pathways [25]. In addition, close relationships
have been observed among metabolic syndrome, nonal-
coholic fatty liver disease, and liver cancer [26]. In the
American population, metabolic syndrome occurrences

were significantly higher in HCC (37.1%) and intrahepa-
tic cholangiocarcinoma (ICC) (29.7%) patients than in
the normal group (17.1%, P < 1E-4) [3]. Furthermore,
metabolic syndrome is not only a risk factor for HCC in
elderly people, but it also promotes cancer in people
younger than 65 years [27]. A prospective study of
578,700 adults suggested that high BMI, blood glucose
and composite metabolic syndrome z-scores were posi-
tively associated with liver cancer risks [28]. Another
study in a Swedish population also drew a similar con-
clusion that metabolic syndrome components were
strongly associated with primary liver cancer [29]. In a
normal liver, glucose is phosphorylated to glucose-6-
phosphate (G6P) by glucokinase (GCK). Normally, G6P
undergoes glycolysis and is converted to pyruvate before
going through the citric acid cycle in mitochondria to
generate ATP through oxidative phosphorylation [25].

Fig. 7 Network of metabolic target genes and drugs. Genes in the network were correlated with PKM2 and survival risk. The network connected
genes and drugs if their records were in the DrugBank database. The red rectangle, green rectangle and light blue ellipse represent up-regulated
genes, down-regulated genes and drugs, respectively. The node size is proportional to the number of connections
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However, liver tumor cells produce ATP by aerobic gly-
colysis, called the Warburg effect, which is accompanied
by increased glycolysis and decreased oxidative phos-
phorylation. In our study, we observed many genes that
were over-expressed in glycolysis (including HKDC1,
HK2, PFKP, ENO2, ALDOA, GPD2, G6PC3, BPGM,
etc.) in high-PKM2 patients. By contrast, more genes
were down-regulated in gluconeogenesis, resulting in
negative normalized enrichment scores (NESs) in the
GSEA results. Pyruvate kinase is activated by its sub-
strate and inhibited by high levels of ATP. In tumors,
low enzymatic activity of PKM2 favors the Warburg ef-
fect. In addition, high PKM2 mRNA expression was as-
sociated with tumor growth and poor outcomes [25]. In
our study, patients with high PKM2 expression showed
more severe metabolic abnormalities and poorer overall
survival than low-PKM2 patients. Furthermore, many
down-regulated metabolic genes were significantly nega-
tively correlated with PKM2 in the high-PKM2 group.
These results suggest a pleiotropic effect of PKM2 on
HCC.
Our study observed that 98 PKM2-correlated genes

had a certain relationship with prognosis. The expres-
sion statuses of these genes in high-PKM2 patients were
linked to poor survival, and some have been widely re-
ported. Solute carrier family 2 member 1 (SLC2A1), also
known as GLUT1, encodes a major glucose transporter
in the blood-brain barrier. Studies showed that GLUT1
is over-expressed in HCC and suggested GLUT1 as a
potential target [25]. In our study, high GLUT1 expres-
sion was independently associated with poor overall sur-
vival, and its interaction with PKM2 exacerbated this
consequence. SLC16A3, belonging to the proton-linked
monocarboxylate transporter (MCT) family, was signifi-
cantly up-regulated in liver cancer in multiple datasets
[30] and in our study. Deregulation of this gene may in-
fluence intracellular acidic environments [31]. Our study
showed that high levels of SLC16A3 and PKM2 expres-
sion interactively led to poor prognosis. Dimethylglycine
dehydrogenase (DMGDH) was expressed at low levels,
negatively correlated with PKM2 and correlated with
low patient survival in this study. Decreased DMGDH
levels in liver tumor cells and the effects of DMGDH
over-expression on the suppression of migration, inva-
sion and metastasis has already been proven. Thus,
DMGDH is suggested to be a potential diagnostic and
prognostic marker for HCC [32]. SLC22A1, encoding or-
ganic cation transporter-1 (OCT1), was expressed at low
levels, associated with worse HCC patient survival and
significantly associated with advanced HCC stages [33].
Furthermore, a previous study showed that HCC and
cholangiocarcinoma development is accompanied by the
appearance of aberrant SLC22A1 variants. Thus, aber-
rant SLC22A1 variants together with its low expression

may dramatically affect the ability of sorafenib to reach
active intracellular concentrations in HCC tumors [34].
In this study, we also observed that decreased SLC22A1
expression was associated with poor prognosis, and its
interaction effect with PKM2 further reduced patient
survival. In addition, this study identified ATP1B3,
SLC25A15 and other key metabolic genes that were
deregulated in HCC and associated with patient overall
survival. However, these genes have not yet been re-
ported. Given that these genes were correlated with
PKM2, we believe that a more complex mechanism of
PKM2 and metabolic genes may exist in HCC and needs
to be further studied.
The transcriptional regulation relationships of these

key metabolic genes showed a relatively large difference
between the high- and low-PKM2 groups, especially
HNF4A and its target genes. Hepatocyte nuclear factor 4
alpha (HNF4A) is a nuclear transcription factor that
binds DNA as a homodimer, and it has distinct tran-
scriptional regulatory mechanisms in human liver and
brain tissues [35]. Similar to our findings, HNF4A and
several HNF4A target genes were down-regulated in
liver cancer patients [35]. Suppression of HNF4A in
mouse livers showed profound influences on zonated
metabolic functions, cell proliferation and oncogenesis
[36]. An HNF4A-microRNA-194/192 signaling axis was
suggested to influence glucose metabolism, cell adhesion
and migration, tumorigenesis and tumor progression, as
well as epigenetic regulation in a recent study [37]. In
our study, HNF4A transcriptionally regulated LIPC,
ACMSD, AKR1C4, CYP27A1 and other metabolic genes
and showed differential expression in the high- and
low-PKM2 groups. In addition, FOS, MYCN, POU5F1
and other TFs also showed differential expression and
regulation in high- and low-PKM2 patients. Combined
with previous reports, we speculate that the carcinogenic
effects of these TFs may be influenced by PKM2 expres-
sion in HCC.
High PKM2 expression in liver tumor cells is accom-

panied by a decrease in total cellular pyruvate kinase ac-
tivity. Notably, elevated PKM2 enzyme activity may
compromise both its proanabolic and antioxidant func-
tions and shows an anti-cancer effect in HCC [38].
Therefore, the use of small-molecule PKM2 activators
may be an appropriate approach to disrupt cancer cell
metabolism for therapeutic purposes [38], and PKM2’s
substrate may be a good target choice [39]. Many of the
drugs screened in this study are essential human metab-
olites. Although some of these supplements may pro-
mote cancer cell growth, many studies also reported that
metabolites supplement have a tumor suppressor effect.
A previous study reported that S-adenosylmethionine
(SAMe) can selectively induce Bcl-xS that promotes
apoptosis in liver cancer cells [40]. Aminooxyacetic acid
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(AOAA) is a cystathionine-β-synthase (CBS) inhibitor,
studies showed it suppresses the proliferation of colon
cancer cells in vitro and reduces tumor growth in vivo [41,
42]. Another study suggested that hexachlorophene cause
the growth arrest of B lymphoma cells by reducing the ex-
pression of cyclin-D1 and c-Myc [43]. Furthermore, stud-
ies reported that nontoxic compound disulfiram (DSF)
targeted tumor cellular copper inhibited of the proteaso-
mal activity, resulting in tumor cells apoptosis induction
[44]. The compounds screened in this study contain the
above anti-cancer activity drugs, therefore, we believe that
these screened compounds may help to liver cancer
treatment.

Conclusions
In summary, this study showed several unfavorable ef-
fects of high PKM2 expression on whole gene expres-
sion, metabolic functions, prognosis and transcriptional
regulation relationships in HCC patients. Therefore, we
recommend PKM2 and PKM2-correlated risk genes can
be used as biomarkers or therapeutic targets of HCC. In
addition, we screened several drugs that target with
these risk genes. This study pointed complex regulatory
mechanisms of PKM2 and other risk metabolic genes on
HCC, and the potential carcinogenic mechanisms re-
quire further study.
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