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Allergic rhinitis (AR) is a common disorder affecting up to 40% of the population worldwide
and it usually persists throughout life. Nasal epithelial barrier constitutes the first line of
defense against invasion of harmful pathogens or aeroallergens. Cell junctions comprising
of tight junctions (TJs), adherens junctions, desmosomes and hemidesmosomes form the
nasal epithelial barrier. Impairment of TJ molecules plays causative roles in the
pathogenesis of AR. In this review, we describe and discuss the components of TJs
and their disruption leading to development of AR, as well as regulation of TJs expression
by epigenetic changes, neuro-immune interaction, epithelial-derived cytokines (thymic
stromal lymphopoietin, IL-25 and IL-33), T helper 2 (Th2) cytokines (IL-4, IL-5, IL-6 and
IL-13) and innate lymphoid cells. These growing evidence support the development of novel
therapeutic approaches to restore nasal epithelial TJs expression in AR patients.
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INTRODUCTION

Allergic rhinitis (AR) is a global health problem affecting 10–40% of the population worldwide and
it usually persists throughout life (1, 2). AR is a symptomatic disorder of the nose induced by an
immunoglobulin E (IgE)-mediated inflammation after allergen exposure of the membranes lining
the nose, and it is usually accompanied by classical symptoms such as nasal itching, sneezing,
rhinorrhea, and nasal congestion (1, 3, 4). Epithelial cells play important roles as physical barrier to
prevent the entry of allergens, pathogens and other foreign particles (5). Tight junctions (TJs)
comprise of cell-cell adhesion complexes between epithelial cells required for epithelial barrier
function. Previous studies have reported that impairment of nasal epithelial is one of the underlying
causes of AR (6, 7). Differential expression of TJ molecules has also been found in distinct
inflammatory phenotypes of allergic airway inflammation in mice compared to controls (8). These
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findings suggest that TJs disruption plays causative roles in the
development of allergy through increased exposure of nasal
tissues to environmental allergens (9). In this review, we
present and discuss the association of TJs disruption in AR, as
well as regulation of TJs expression by epigenetic changes, neuro-
immune interaction, epithelium-derived cytokines, T helper 2
(Th2) cytokines and innate lymphoid cells (ILCs).
NASAL EPITHELIAL BARRIER AND TIGHT
JUNCTIONS

Nasal Epithelial Barrier
Epithelial barrier is the first line of defense where an intact
mucosal barrier is crucial in protecting the host immune system
from the exposure of harmful pathogens (10). This epithelium
also plays vital roles in regulating both innate and adaptive
mucosal immunity through activation of functional molecules
(e.g. pro-inflammatory cytokines, growth factors and
chemokines) (11). Epithelial cells also secrete antimicrobial
substances known as antimicrobial peptides (AMPs) such as
lysozyme, defensins (a and b), lactoferrin and S-100 proteins,
and they are essential in the first line defense to hinder the entry
of pathogens (12, 13). Mucociliary clearance conducted by
ciliated epithelial cells involves trapping of microbes and
microparticles in mucus layer secreted by glands, goblet cells
or ciliated cells from the nasal cavity into the esophagus (14).

Apical junctional complexes (AJCs) connect epithelial cells to
one another and they consist of TJs, adherens junction,
desmosomes and hemidesmosomes (15). TJs are the most
apically located epithelial junctions composed of over 40
proteins either as transmembrane proteins or cytoplasmic
actin-binding proteins (16). TJs function in regulating
homeostasis of ions, water and certain macromolecules (17,
18). Thus, TJs are crucial in producing rate-limiting barrier
to inhaled pathogens. Adherens junctions are essential for
cell adhesion (19), cell proliferation and differentiation (16).
Desmosomes are in close connectivity with adherens
junctions (10), and they play key roles in maintaining
intercellular cohesion and cellular integrity (20, 21). Lastly,
hemidesmosomes are responsible to facilitate the stable
adhesion of the basal epithelial cells to the basement
membrane (22–24), and to link the extracellular matrix to the
intermediate filaments of the actin cytoskeleton.

Tight Junctions (TJs)
TJs in the epithelial cells consist of three primary constituents of
transmembrane proteins namely occludin (OCLN), claudin
(CLDN) and junctional adhesion molecules (JAMs) (25).
OCLN (~65 kDa) is the first identified integral membrane
protein present in both epithelial and endothelial cells (26, 27).
OCLN has two extracellular loops, N- and C-terminal
cytoplasmic domains. The C-terminal is important for the
barrier formation of TJs which it directly interacts with zonula
occludens-1 (ZO-1), and the N-terminus is involved in the
regulation of paracellular permeability (5).
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The CLDN family contains more than 25 protein members
(28). CLDNs are four-transmembrane spanning proteins
consisting of a short cytoplasmic N-terminal, two extracellular
loops and a C-terminal cytoplasmic domain. CLDNs serve as
cellular gate to restrict the elements to pass through the epithelial
(5, 10). The C-terminal of CLDNs is vital for stability and
interactions with ZO-1 (28). CLDNs can be divided into two
groups based on their effects on airway epithelial barrier namely
the pore- and barrier-forming CLDNs (10). Pore-forming
CLDNs compr i se o f CLDN2, CLDN10 , CLDN10b
and CLDN17, while barrier-forming CLDNs are CLDN1,
CLDN3, CLDN4 and CLDN7 (29, 30). The unique functional
groups and co-expression of CLDN family members are thought
to determine the selectivity and build the strength of TJs (30).

The JAM family of proteins comprise of classical JAMs (JAM-
A, JAM-B and JAM-C) and four related proteins (JAM-4, JAML,
CAR and ESAM). JAMs are type I transmembrane glycoproteins
composed of two immunoglobulin-like domains i.e. one
transmembrane domain and one cytoplasmic tail of variable
length containing a PDZ domain that can interact with ZO (31).
They have a significant role in the regulation of cell polarity and
endothelium permeability (31).
DISRUPTION OF TIGHT JUNCTIONS IN AR

Occludin
Breakdown of nasal epithelial integrity is attributable to reduced
expression of TJ molecules, and both OCLN mRNA and protein
expressions are decreased in the nasal epithelium of AR patients
compared to controls (32). Nasal epithelial barrier function has
been known to be impaired in HDM-induced AR patients (33).
Lower OCLN mRNA expression also occurred in HDM-induced
AR patients compared to non-allergic controls (33, 34).
Moreover, reduced ordered arrangement of OCLN was found
in AR patients and the defect might expedite the passage of
allergens and environmental pro-inflammatory agents through
nasal epithelial barrier (33). This was demonstrated by reduced
trans-tissue resistance and increased passage to fluorescein
isothiocyanate (FITC)-dextran 4 kDa (FD4) in the tissues.

A lower mRNA expression of OCLN was present in the nasal
biopsies of AR patients compared to healthy subjects and
idiopathic rhinitis (IR) patients (7). This was supported by
immunofluorescent imaging of OCLN from paraffin-embedded
mucosal biopsy specimens of AR patients which displayed a
severely disrupted layer and irregular pattern of OCLN
expression compared to controls (7). OCLN expression also
showed a decreased pattern in the mouse model of HDM-
induced allergic airway inflammation with increased FD4 levels
and bronchoalveolar lavage (BAL) albumin levels (7).
Furthermore, HLA-DR- and CD11c-positive dendritic cells
(DCs) penetrated beyond OCLN in the epithelium of the nasal
mucosa of AR patients (35). OCLN is found at the uppermost
layer of pseudostratified columnar epithelium of the nasal mucosa.
Hence, these results indicated that DCs may gain access to
antigens beyond epithelial TJs in the human nasal mucosa of AR.
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Claudins
Previous studies have shown the defect in epithelial barrier due
to decreased expression of CLDNs that contribute to AR in both
patients and animal models. Recently, we demonstrated a
decreased expression of CLDN3 and CLDN7 in nasal epithelial
cells (NECs) of HDM-induced AR patients compared to non-
allergic controls (34). CLDN1, CLDN3, CLDN7 and CLDN12
mRNA and protein expressions were significantly decreased in
nasal epithelium of AR patients compared to controls subject
(32). In pollen-induced AR mouse model, mice were sensitized
and nasally challenged with Japanese cheddar (JC) or ragweed
pollens with or without recombinant human (rh) Cystatin SN
(an endogenous cysteine protease inhibitor) to investigate the
effects of rhCystatin SN on the epithelial barrier in vivo (36).
CLDN1 expression in the nasal mucosa was reduced in JC and
ragweed-challenged mice, and only CLDN1 expression in
rhCystatin SN-treated-JC-challenged mice was maintained
(36). This indicates that Cystatin SN specifically inhibits JC-
induced but not ragweed-induced nasal TJ disruption through
inhibition of protease activities.

In AR patients, the mRNA expression of CLDN1 and CLDN4
in mucosal biopsies of AR patients was decreased compared to
the healthy controls (7). Lower mRNA expression of CLDN1,
CLDN4, CLDN7, CLDN8, CLDN12, CLDN13 and CLDN14 were
also detected in the nasal mucosa of AR patients (35). HLA-DR+

and CD11c+ DCs expressed CLDN1 and invaded beyond OCLN
in the epithelium of the nasal mucosa with AR but not in subjects
without AR (35). These findings demonstrate that antigens
beyond epithelial TJ in the human nasal mucosa of AR can be
accessed by DCs (35). Downregulation of CLDN4 protein
expression in AR nasal epithelium has also been observed by
immunohistochemical staining (37).
ENVIRONMENTAL FACTORS AND
DISRUPTION OF TJS IN AR

Air Pollution and Disruption of TJs in AR
Environmental factors such as urban locations, air pollutants and
presence of airborne allergens play contributive roles to the
disruption of TJs in AR. We recently demonstrated that OCLN
and CLDN7mRNA expressions were significantly reduced in AR
patients sensitized to HDMs compared with non-allergic
controls, and lower OCLN or CLDN7 expression was
associated with urban locations or exposure to second-hand
smoke, respectively (34). This is comparable with recent
findings that air pollution represents a risk factor for AR onset
whereby epithelial barrier can be negatively affected by air
pollutant such as diesel exhaust particles (DEPs) and fine
particulate matter ≤2.5 mm (PM2.5) causing sinonasal diseases
(38–41).

AR rat exposed to PM2.5 had significantly increased AR
symptoms (i.e. number of sneezes and nasal rubs) and exhibited
disorderedly arrangement of nasal mucosa epithelium (42), and a
substantial increase in goblet cell hyperplasia and collagen
deposition were also observed compared with control rats (43).
Frontiers in Immunology | www.frontiersin.org 3
The exposure of DEPs to primary nasal epithelial cells (PNECs) in
air liquid interface (ALI) culture and exposure of PM2.5 to human
nasal epithelial cell (HNEC) line (RPMI 2650 cells) significantly
reduced the expression of TJ molecules including OCLN, ZO-1
and CLDN1 (38–40). It also reduced the transepithelial resistance
(TER) of the cells and increased their permeability as monitored
by fluorescently-labeled dextran permeability in both studies (38,
39). DEP disrupted TJs through a reactive oxygen species (ROS)‐
mediated pathway, leading to increased permeability of
NECs (40).

ROS suppresses TJ proteins expression through p38 MAPK,
p65 NF-kB, and Akt signaling pathways independent of IL-8 and
through inhibition of tyrosine phosphatase (44, 45). Cultured
human epithelial cells exposed to urban PM (UPM) showed a
decrease in cell viability i.e. detached and shrunken epithelial
cells with condensed nuclei (44, 46). The exposed cell
demonstrated a significantly amplified ROS pathway leading to
decreased ZO-1, OCLN, CLDN1 and E-cadherin expression
compared to unexposed cells (44, 46).

Treatment of cultured human epithelial cells with ROS
scavenger N-acetylcysteine (NAC) or Akt inhibitor (MK-2206)
reversed the effects of UPM. Through Akt inhibition, it decreased
UPM-induced ROS formation and p38 and p65 protein
phosphorylation, and restored the expression of ZO-1 and E-
cadherin (44). Meanwhile, the mucosal epithelium was observed
to be arranged in a more orderly manner when treated with
ursolic acid (UA) (a pentacyclic triterpene extract from natural
plants) in AR model exposed to PM2.5 (42), and decrease in
number and size of goblet cells in epithelial layer, expression of
MUC5AC and proportion of collagen deposition areas (43). UA
possesses anti-inflammatory, antioxidant and anti-fibrotic
properties where it is capable of modulating the MAPK and
NF-kB signaling pathways (47).
House Dust Mites and Disruption of
TJs in AR
HDM is the most common allergens causing allergic sensitization
among AR patients and mostly affecting the 25–35 age
group without significant differences in both genders (48–52).
The major species of HDM causing allergy include
Dermatophagoides pteronyssinus (Der p) and Dermatophagoides
farinae (Der f) (53–55). HDM allergen is highly associated with
the disruption of epithelial barrier where they have proteolytic
activity that can cleave the epithelial TJs protein. Der p 1 (i.e. a
HDM cysteine proteinase allergen) has been reported to cleave
extracellular domain sites of OCLN and in CLDN1 proteins,
resulted in amplified epithelial permeability that allowed the
passage of Der p 1 through the epithelial barrier (33, 56, 57).
Inhibition of the protease activity of Der p 1 as a therapeutic
approach to reduce HDM-induced barrier dysfunction has been
proposed (58). Treatment of cultured primary HNECs in vitro
with Der p 1 showed markedly decrease in CLDN1, resulted in
significantly increased FD4 epithelial permeability (32).

Breakdown of epithelial barrier can also be caused by
proteases via fungi exposure that facilitates the access of
pathogens and directly activates immune cells (59, 60). The
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serine proteases in fungi such as Alternaria has been reported to
decrease the mRNA and protein expression of TJs including
ZO-1, OCLN and CLDN1 in PNECs (61). Reduction in
transepithelial resistance and increase of ROS was
demonstrated in the study (61). Exposure of Der p1 to HNECs
line (RPMI 2650 cells) and in vivo AR model (rats)
downregulated the expression of both mRNA and protein
levels of OCLN, CLDN1, ZO-1 and JAM-A as well as
increased TER and FD4 permeability compared to control
group (62).
EPITHELIAL CELL-DERIVED CYTOKINES
IN AR

The onset of AR is also triggered by disrupted sinonasal
epithelium through production of the inflammatory
epithelium-derived cytokines TSLP, IL-25 and IL-33. These
cytokines are key regulatory factors that connect epithelial–
mesenchymal communications and elicit pathological
modifications in the airway (63). Receptors expressed on the
surface of epithelial cells such as Toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs) have the ability to identify structurally
conservative pathogen-associated molecular patterns (PAMPs)
in pathogens and induce innate and adaptive immune response.
TSLP, IL-25 and IL-33 are important in the PAMP-TLR/NLR
interaction (64), and each cytokine is released into the sinonasal
environment upon exposure to allergens.

TSLP and TJs Disruption in AR
TSLP is an IL-7-like cytokine that potently induces
deregulation of Th2 responses, a hallmark feature in allergic
inflammatory diseases such as asthma, AD and AR (65–67).
TSLPmRNA expression was significantly increased in the nasal
mucosa of AR patients compared with controls (68). Treatment
with TSLP also rapidly enhanced the barrier function of
cultured HNECs together with an increase of TJ proteins
CLDN1, CLDN4, CLDN7 and OCLN (68). The nasal
epithelial-derived TSLP not only activates DCs but also
preserves the epithelial barrier via upregulation of TJ proteins
during the early stage of AR (68). High expression of TSLP was
found in epithelium of AR patients with recruitment and
infiltration of CD11c+ DCs (68).

TSLP was significantly upregulated in sensitized and
nasally-challenged mouse model of AR (69, 70), and the
expression of TSLP was suppressed by HDACi sodium
butyrate (SoB) with improvements in AR clinical symptoms
(69). However, TSLP expression was abolished in mast cell-
deficient WBB6F1-W/Wv mice and Fc receptor g chain (FcgR)-
deficient mice (where the IgE receptor FcϵRI was not present on
mast cells in these mice) compared to controls (70). This
suggests that direct stimulation of epithelial cells by antigens
alone may not be sufficient to induce TSLP expression in the
nasal epithelium, and epithelial TSLP expression is regulated by
mast cells via FcϵRI.
Frontiers in Immunology | www.frontiersin.org 4
IL-25, IL-33, Innate Lymphoid Cells (ILCs)
and TJs Dysfunction in AR
Both of the epithelial-derived cytokines IL-25 and IL-33 are pro-
inflammatory. IL-25, also known as IL-17E, was first identified as
a Th2 cell-derived cytokine (71). The interaction between IL-25
and IL-17RA/B leads to the activation and upregulation of
transcription factors (e.g. NFkB, STAT6, GATA3, and
NFATC1). This results in the activation and polarization of
memory Th2 cells, leading to the secretion of Th2 cytokines such
as IL-4, IL-5, and IL-13 (63). Increased production of IL-25 was
induced by dsRNA in HNECs of AR patients (72). IL-33 is most
likely released through cell necrosis or injury in mucosal
epithelial cells (73), and IL-33 plays central roles in the
initiation of Th2 cytokines and chemokines responses in AR.
IL-33 expression was increased in the serum of AR patients and
IL-33 single nucleotide polymorphism (SNP) occurs in AR
patients (74). IL-33 knockout murine model of ragweed
pollen-specific AR showed a decrease in eosinophil
accumulation, reduced ability to mount an IgE response, as
well as declined expression of Th2 cytokines compared to
controls. Importantly, ragweed-immunized IL-33 knockout
mice showed a significant reduction in the frequency of
sneezing (75).

ILCs are immune cells of lymphoid lineage where one of their
main functions involves the protection of mucosal barrier (76).
ILCs play important roles in the development and progression of
allergic diseases including AR (77). Type 2 ILC (ILC2)-mediated
immune microenvironment are characterized by the production
of both IL-25 and IL-33 as well as other cytokines (e.g. IL-13),
and presence of mast cells and histiocytes. ILCs especially ILC2s
are enriched in barrier tissues such as the skin, lung, and intestine
and where they regulate immune responses surrounding the
epithelium and sensitization to allergens (78).

Increased IL-13-producing ILC2s were found in the blood of
patients with HDM allergy, cat-sensitized adults and in
grass allergic patients and in the nasal fluid upon grass
pollen challenge (79–81). IL-33 is thought to be a
major cytokine that mainly activates ILC2s and signifies the
rationale to utilize IL-33-induced lung inflammation models
(82). Recently, it has been demonstrated that ILC2s facilitate
bronchial epithelial barrier disruption via downregulation of the
TJ barrier proteins (i.e. OCLN) through IL-13 in asthma (82).
However, the influence of ILC2s on the nasal epithelial barrier
has not been examined in AR and it warrants future
investigations. For further information on the roles of TSLP,
IL-25 and IL-33 in innate and adaptive immune responses,
reviews from Hong and colleagues (63), and Hammad and
Lambrect (83) are recommended.
TH2 CYTOKINES IN AR

Th2 cytokines not only enhance inflammatory cell activation
but also regulate epithelial cell barrier in allergic disease (i.e.
AR, AD [atopic dermatitis], eosinophilic esophagitis, asthma
and chronic rhinosinusitis) by reducing expression of TJs in
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epithelial cells (7, 10, 65, 84–86). The cytokines may also be
released within the sinonasal microenvironment including
sinonasal epithelial cells, altering TJs composition resulting in
the “tight” barrier properties of TJ proteins switched to “leaky”
properties (87, 88).

IL-4 is the paradigmatic cytokine involved in type-2
immune responses and plays a crit ical role in the
development of Th2 cells and subsequent allergic reactions.
Treatment with anti- interleukin-4 receptor a (IL-4Ra)
monoclonal antibodies to nasal secretion of AR patients
successfully restored the Th2-induced epithelial barrier
dysfunction (7). It was supported by in vivo findings where
anti-IL-4 treatment in HDM-challenged mice prevented the
loss of OCLN and ZO-1 mRNA expression (7). IL-4 was found
to disrupt epithelial integrity in vitro in PNECs with reduced
ZO-1 and OCLN expression (33).

Therapeutic effects of the HDACi SoB on mice with AR
and Trichostatin A (TSA) on nasal lavage fluid of AR patients
resulted in significantly decreased serum levels of IL-4 and
IL-10, and IL-4 and IL-5, respectively (69, 89). Both
inhibitors further improved clinical symptoms and SoB
enhanced the nasal mucosa epithelial morphology in AR
mice model (69, 89). IL-4, IL-5 and IL-13 were significantly
higher in the BAL fluid of HDM-induced mice, and treatment
with HDACi (JNJ-26481585) significantly reduced the
interleukins to levels in non-allergic saline control mice
(90). In terms of IL-6, IL6 SNP (rs1800795) was linked with
an increased risk of AR (91) and positively associated with the
AR severity (92). The production of IL-6 by cultured NECs of
AR was stimulated by alarmin protein high-mobility group
box 1 (HMGB1), and anti-toll-like receptor 4 (anti-TLR4)
blocking antibody significantly inhibited HMGB1-induced
secretion of IL-6 (93).

Addition of IL-4 and IL-13 to reconstructed human epidermis
cells resulted in downregulation of CLDN1 expression (85). Gene
expression of IL13 was detected in the epithelial compartment of
the nasal mucosa of perennial AR patients but not observed in
normal subjects (94). IL-13 was regulated by microRNA (miR)-
143 where overexpression of miR-143 significantly decreased the
expression of pro-inflammatory factors (e.g. eotaxin and mucin)
responsible for producing nasal symptoms (95). Taken together,
these suggest that local nasal provocation is attributable to
systemic overproduction of Th2 cytokines.
NEUROIMMUNE AND EPITHELIAL
INTERACTION IN AR

Pathophysiology of allergic diseases involves a reciprocal
regulation between neural and immune systems where both
systems work synergistically to detect and respond to harmful
stimuli. Neuronal cell types are usually found at skin and
mucosal barrier surfaces, forming neuronal‐immune cell
network (96, 97), and have been shown to regulate mucosal
immunity and mucosal barrier integrity (98, 99). Neurogenic
inflammation activates local release of neuropeptides and
Frontiers in Immunology | www.frontiersin.org 5
neurotransmitters such as substance P (SP), neurokinin A,
neuromedin U (NMU), calcitonin gene-related peptide
(CGRP), acetylcholine and norepinephrine upon activation of
sensory nerve endings. This includes regulation of itch, cough,
sneezing, bronchoconstrict ion vasodi lat ion, plasma
extravasation, recruitment of leukocytes and degranulation of
mast cells (100–102).

CGRP and SP are increased in the airways of AR patients
(103) and nasal secretions of idiopathic rhinitis (IR) patients
(104), respectively. Neuronal ILC2s that selectively express NMU
receptor 1 (NMUR1) are pro-inflammatory when exposed to
NMU, and NMU is increased in the presence of IL‐25, IL‐33, and
TSLP (105). In particular, NMU could activate ILC2s, and co-
administration of NMU with IL-25 amplifies allergic
inflammation (105).

Solitary chemosensory cells (SCCs) are found in healthy sinus
cavity and turbinate tissues of the human upper airway where
they function as epithelial sentinels by detecting pathogenic
metabolites and initiate protective immune defense (106).
Increased number of SCCs was found in the sinonasal epithelia
of chronic rhinosinusitis with nasal polyps patients (107). SCCs
include tuft cells (i.e. bottle-shaped with apical microvilli), and
they are found in the nose, trachea and proximal airways. Tuft
cells have close proximity with nerve fibre and can promote
protective respiratory reflexes such as sneezing, release
neurotransmitters (such as acetylcholine), eicosanoids and
cytokines (e.g. IL-25 and TSLP) (108, 109). Tuft cell-derived
IL-25 can initiate type-2 immune responses by activating IL-13
production in ILC2s. SCCs also utilize bitter taste receptors and
canonical taste transduction pathways that play crucial roles as
sentinels of respiration (110).

Neuronal transient receptor potential (TRPs) expressed in
epithelial cells and endothelial cells are involved in inflammatory
process and have been shown to regulate the permeability of
cellular barriers in several tissues (111–113). TRP vanilloid
(TRPV) channels are a group of non-selective cation channels
associated with the transmission of sensory information (114).
Overexpression of TRPV1 in nasal secretions were observed in
IR patients (104). In the nose, nerve growth factor secreted by
eosinophils can sensitize TRPV1 and TRP ankyrin 1 (TRPA1) in
sensory nerve endings resulting in increased SP content and
induced dendrite sprouting (115). Seasonal AR stimulated with
TRPV1 intranasally with capsaicin experienced elevated
symptoms and pain (116, 117). TRPV1 also mediated acidity-
induced barrier dysfunction by disrupting CLDN3 and CLDN4
in human bronchial epithelial cells (16HBE) in vitro (118).
Hence, barrier function in AR might be disrupted by increased
expression or activity of epithelial TRPV1. Moreover, increased
TRPV4 expression was shown in epithelial cells of AR patients
compared with normal controls and in cultured epithelial cells
stimulated by Th2 cytokines (IL-4 and IL-13) (119). Decreased
E-cadherin and ZO-1 expression was demonstrated in epithelial
cells of AR patients exposed to HDM allergen and TRPV4
agonist (GSK1016790A), suggesting possible roles of TRPV4 in
the pathogenesis of allergen-induced epithelial barrier disruption
in AR (119).
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EPIGENETICS CHANGES IN REGULATING
EPITHELIAL BARRIER IN AR

In recent years, more attention has focused on multi-
omics approaches such as epigenomics in developing precision
medicine (101). Epigenetic alterations include DNA methylation,
histone modifications and regulation of non-coding RNAs that
affect gene transcription by changing the structural conformation
and accessibility of genes without altering the gene sequence (120,
121). In AR, epigenetics disruption has been implicated in Th1/Th2
subsets, dendritic cells function, mast cells and macrophages
activation that have been well discussed (122, 123). Recently, the
role of microRNAs (miRNAs), a group of short non-coding
regulatory RNAs that target mRNAs for cleavage causing
translational repression, is implicated in regulating epithelial
barrier of AR (124). A number of miRNAs are differentially
expressed in AR and asthma patients including miR-125b, miR-
16, miR-299-5p, miR-126, miR-206 and miR-133b (125).

Exposure of Der p1 to HNECs (RPMI 2650) increased miR-
125b expression by increasing the expression and activation of
CXCR4 which downregulated FoxP3 expression (62). The
expression levels of OCLN, CLDN1, ZO-1, and JAM-A were
significantly lower in the miR-125b-overexpressed group and
vice versa in the miR-125b inhibitor group compared with the
control group. The autophagy inhibitor 3-MA restored TJ
proteins expression in the miR-125b-overexpressed group.
These findings was demonstrated in both in vitro (RPMI 2650)
and in vivo (rat AR model) (62). This study demonstrates that
the CXCR4/miR-125b/FoxP3 axis may play pathogenic roles in
AR development by promoting autophagy in epithelial cells
leading to breakdown of the epithelial barrier.

Lastly, epigenetic regulation can occur via histone
posttranslational modifications (PTMs) such as acetylation (123).
Histone deacetylases (HDACs), an enzymes responsible for removing
acetyl group from lysine residues of target proteins and block genes
transcription by allowing DNA to be wrapped by histones and
promote chromatin condensation (9, 126, 127). HDACs are
associated with defects in epithelial barrier of AR (128). Higher
expression of HDAC1 protein in nasal epithelium of AR patients was
associated with disruption of CLDN4 (129). Treatment with HDAC
inhibitor (HDACi) JNJ-26481585 successful restored ZO molecules
structure in NECs of AR patients (90).
EPIGENETIC MEMORY

Memory of previous exposure to inflammatory stimuli is not
exclusive to the hematopoietic lineage. Upon exposure to
inflammatory stimuli, epithelial cells sense the signals such as
from microbe-associated molecular pattern (MAMP) and
transmit the information to immune cells which then
facilitate chromatin remodeling of epithelial cells, resulting in
increased chromatin accessibility while embedding a memory of
the experience within their chromatin (130). This novel function of
epithelial cells is known as epigenetic memory where epigenetic
priming of enhancer regions induce stronger responses to secondary
Frontiers in Immunology | www.frontiersin.org 6
stimuli and strengthen their sensitivity towards future
encounter (131).

Naik et al. demonstrated a prolonged memory to acute
inflammation in mouse enable skin epithelial stem cells (EpSCs)
to hasten barrier restoration after subsequent tissue damage (132).
Accelerated wound healing process was observed inmice exposed to
various inflammatory stimuli (e.g. imiquimod, abrasion wounding
or Candida infection) compared to naïve mice, even 180 days later.
This was possible because at 30 days after the exposure, most
chromatin changes were still maintained in EpSCs and increased
chromatin accessibility in genes encoding molecules involved in
inflammation, interleukin signaling, oxidative stress response and
proliferation (132).

The treatment with an anti-IL4Ra monoclonal antibody
(mAb) targeting IL-4 and IL-13 receptors in patients with
polyp showed preservation of several disease-associated genes
including CTNNB1, a key WNT mediator that influences basal
cell proliferation and differentiation (133). This explained how
anti-IL4Ra mAb was capable in reducing nasal polyp burden
overtime. Meanwhile, tissue-resident memory (TRM) cells could
be maintained in barrier tissues for prolonged periods,
suggesting their roles in preserving epithelial barrier (134). It
was found that 80% of the transcriptomes in lung epithelial cells
were dependent on CD4+ TRM T cells including eosinophil
infiltration during host defense in pneumonia and maintained
even when T cells were depleted (135). CD8+ TRM cells were also
found to be maintained in the lung airways independently of
tissue-circulating effector memory T (TEM) cells via a
homeostatic proliferation mechanism (136).

The structure of nasal epithelial barrier, their associations
with ILCs and regulation of TJs expression by cytokines, nerves
activation and epigenetic changes, are presented in Figure 1. In
addition, Table 1 summarizes the TJs expression in AR patients
versus normal subjects, or in murine AR models.
CONCLUSIONS AND PERSPECTIVES

Impairment of nasal epithelial barrier through the loss of TJs
expression contributes to the development of AR. The pro-
inflammatory, epithelial-derived cytokines TSLP, IL-25 and IL-
33 play critical roles in AR inflammation. These cytokines
activate and expand ILC2s upon encounter with allergens
which subsequently induce the release of other Th2 cytokines
leading to TJs breakdown in nasal epithelial of AR patients. Thus,
targeted therapy against these cytokines is a therapeutic
opportunity for the disease. For instance, tezepelumab, a
human monoclonal therapeutic antibody that targets TSLP, is
currently being evaluated for the treatment of airway allergic
diseases including asthma and AD (63). Although therapeutic
inhibition of TSLP or IL-33 has not been investigated in clinical
trials of AR patients, murine model studies have shown that
knockout of these epithelium-derived cytokines could reduce AR
manifestations (75, 137). In addition, future studies should also
examine the potential disruption of other components of the cell
junctions such as desmosomes in AR. In conclusion, barrier
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FIGURE 1 | The structure of nasal epithelial barrier comprises of tight junction (TJ), adherens junction, desmosomes and hemidesmosomes. TJs are composed of
occludin, claudin and JAMs that span the intercellular space and intracellular adaptor proteins ZO. Adherens junctions are composed of E-cadherins and adaptor
proteins. Desmosomes consist of desmoglein and desmocollin proteins that bind internal adaptor proteins. F-actin and intermediate filaments act as cytoskeleton for
these cell junctions. Hemidesmosomes comprise of plectins that link to the intermediate filaments and integrins, the transmembrane linkers of extracellular matrix and
actin cytoskeleton. Epithelial cells secrete antimicrobial substances such as defensins and conduct mucociliary clearance. Epithelial activation by airborne allergens
during allergic response in AR leads to the activation of epithelial cells and release of epithelial-derived cytokines TSLP, IL-25 and IL-33. This triggers subsequent
activation of ILC2s and production of Th2 cytokines such as IL-4, IL-5, IL-6 and IL-13. Released cytokines promote DCs where they present antigens and activate
naïve B cells to induce IgE class switching and maturation into plasma cells, which produce IgE. Secreted IgE binds the FcϵRI receptor on submucosal mast cells,
leading to the release of preformed mediators such as histamine and inflammatory cytokines. In the late allergic phase, recruited eosinophils and basophils release
mediators that further contribute to AR symptoms via epithelial damage and microvascular leaking. Blood-derived monocytes differentiate into DCs and
macrophages that promote allergic responses. The overproduction of Th2 cytokines by a variety of cells suppresses the transcription of TJ molecules causing the
breakdown in the nasal epithelial barrier of AR patients. Sensory neuron release NMU, SP and CGRP upon activation at sensory nerve endings. NMUR1 expressed
on ILC2 intensifies the inflammatory response in the presence of IL‐25, IL‐33, and TSLP. TRP and tuft cells also have roles in regulating epithelial barrier. Epithelial
barrier is also regulated by epigenetic changes through histone modification by HDACs and miRNAs. Epithelial cells exhibit epigenetic memory by embedding the
memory of previous encounters within their chromatin, and tissue-resident memory cells preserve the epithelial barrier. DC, dendritic cell; ECP, eosinophil cationic
protein; MBP, major basic protein; MHC, major histocompatibility complex; IgE, immunoglobulin E; ILC2, type 2 innate lymphoid cell; JAMs, junctional adhesion
molecules; TCR, T cell receptor; Th2, T helper 2; TSLP, thymic stromal lymphopoietin; TSLPR, thymic stromal lymphopoietin receptor; ZO, zonula occludens; HDAC,
histone deacetylases; miR, microRNA; NMU, neuromedin U; NMUR1, neuromedin U receptor 1; SP, substance P; CGRP, calcitonin gene-related peptide; TRP,
transient receptor potential. Created with BioRender.com.
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defects are the results of multiple exogenous (e.g. air pollution,
HDMs) and endogenous (e.g. cytokines, neuroimmune–epithelial
interaction, epigenetics) triggers trapping the epithelium in a
diseased state contributing to AR development, and protection of
the nasal epithelial barrier integrity through restoring TJs expression
is a promising therapeutic approach for AR patients.
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