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Abstract 

The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and 
presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous 
protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient 
of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational 
changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufac-
ture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts compris-
ing Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention 
as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the 
advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Appli-
cation of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in 
customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
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Background
Several important natural compounds have been used 
as pharmaceuticals, flavourings, nutraceuticals, and 
fragrances. Most of these molecules are either plant-
derived, having difficult extraction process and less 
yield, or synthesised by organisms that cannot be simply 
employed in industrial level synthesis [1]. In spite of the 
attempts to improve the production efficiency of these 
natural synthesisers, there are still restricting features 
for industrial synthesis such as small rate of growth and 

unpredictability in yield. Recombinant protein synthe-
sis in microbes has been attaining large consideration 
because of numerous benefits such as quicker, more cost-
effective, easy gene manipulations, very easy downstream 
processes [2].

The classical baker’s yeast Saccharomyces cerevisiae 
is among the extensively studied eukaryotic yeast and 
most commonly used heterologous and homologous 
host for biopharmaceutical synthesis, gene manipulation 
and protein production [3]. In addition to S. cerevisiae, 
several non-conventional yeast species like Hansenula 
polymorpha, Pichia pastoris, Yarrowia lipolytica, Schizo-
saccharomyces pombe, and Kluyveromyces lactis have 
been developed as substitute hosts for the synthesis of 
heterologous proteins [4].

The complete genome of S. cerevisiae was published in 
1996 [5], and the full sequences of genome of many other 
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alternate yeasts are also presently accessible in the public 
domain [5] enabling the analysis of various omics gener-
ated functional genomics data. Functional genomics and 
system biology could facilitate a widespread understand-
ing of yeast molecular physiology, which could aid to 
delineate potential drawbacks in protein manufacture on 
a comprehensive level. Additionally, in the past few years 
synthetic biology and CRISPR based genome manipula-
tion techniques emerged as a revolutionary techniques to 
expedite the rational design process of yeast cell factory 
development [6].

As a recombinant production host, yeast has been tra-
ditionally applied to synthesise a large variety of com-
pounds such as, aromatics, terpenoids, sterols, alcohols, 
sugar derivatives, citric acid, lactic acid, organic and fatty 
acids, terpenes, peptides and several medically impor-
tant therapeutic proteins [7]. Among these, therapeu-
tic biopharmaceuticals are one of the fastest-developing 
multibillion dollar industries. In the year 2015, the vac-
cination trade has spawned approximately 28 billion US 
dollars and is predicted to reach up to 39 billion in 2022. 
The trade of other therapeutically components accounts 
for 163 billion US dollars in 2016 [8]. Table  1 enlisted 
the major therapeutic proteins produced in yeast. It is 
assumed that this market potential has great impact on 
dynamic growth. The global share of therapeutic proteins 
like anti-tumour necrosis factor antibodies, monoclonal 
antibodies cancer proteins, hormones like insulin and its 
analogues, growth hormone is 25% compared to other 
commercial pharmaceutical products and possess 40% of 
total trades of pharmaceuticals [9].

Conversely, yeast can efficiently resolve issues related 
to low heterologous pharmaceutical product yield in 
other expression hosts like E. coli and mammalian sys-
tem. Since it is capable to produce several heterologous 

pharmaceutical proteins, and offers less susceptibility to 
contaminations by phage and improved secretion effi-
ciency than bacteria. Furthermore, yeast has very effi-
cient tolerance to low pH, fermentation inhibitors and 
is generally recognised as safe [10]. More significantly, 
yeast efficiently modifies its recombinant proteins post 
transnationally.

The current review describes the status of gene manip-
ulation strategies for recombinant therapeutic protein 
production in yeast.

Promoter engineering
Proficient transcription is a key stage in regulating the 
expression of gene. Consequently, well-studied induc-
ible or constitutive promoters with robust transcription 
strength are normally applied to attain overexpression of 
heterologous proteins. The widely studied and efficient 
constitutive GPD and TEF1 promoters have been applied 
for robust synthesis of heterologous proteins in S. cerevi-
siae [11]. It is notable that in the scenario of production 
of secretory heterologous protein, robust protein induc-
tion and flux might somewhat lead to lowered efficiency 
of secretion because of endoplasmic reticulum accumu-
lation of unfolded proteins, as observed in the synthe-
sis of various clinically relevant antibodies, α-amylase, 
and insulin precursor in S. cerevisiae [12]. Therefore, a 
series of promoters having various rate of transcriptional 
action might be beneficial to attain optimized secreted 
expression. Conversely, native promoters might not give 
varying strength of transcription thereby restricting the 
capability to fine-regulating gene expression.

Presently, computer aided machine learning is largely 
applied for engineering of promoter in E. coli. In S. cer-
evisiae, libraries of promoter were constructed based on 
widely used wild type promoters, comprising PTDH3 

Table 1  Representative list of therapeutic proteins produced in yeast

Host Therapeutic protein Yield Reference

P. pastoris Insulin 3 g/L Insulin precursor [122]

S. cerevisiae IFNα2b 15 mg/L [142]

Y. lipolytica IFNα2b 425 mg/L [143]

P. pastoris Hepatitis B antigen 7 g/L [144]

S. cerevisiae Glucagon like peptide 2 – [145]

K. lactis Human interferon β – [40]

P. pastoris Human granulocyte–macrophage colony-stimulating factor 285 mg/L [146]

P. pastoris Human serum albumin 92.29 mg/L [147]

H. polymorpha HBV surface antigen 250 mg/L [148]

H. polymorpha Granulocyte colony stimulating factor (GCSF) – [26]

H. polymorpha Rotavirus VP6 protein (RV VP6) 3350.71 mg/L [149]

H. polymorpha HPV type 16 L1-L2 chimeric protein (SAF) 132.10 mg/L [25]
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and PZEV. Moreover, researchers have constructed mod-
els to predict promoter strength directly from sequence. 
Deep learning technology including convolutional neu-
ral networks (CNNs) has performed well on genomics 
modelling tasks. The transcription strength of promot-
ers from the library was assessed using CNN model. The 
transcriptional strength of a synthetic promoter which is 
assessed from the TDH3 promoter enhanced the activity 
by 37% and the transcriptional action of a mutant ZEV 
promoter also enhanced by induction using β-estradiol 
[13].

Another synthetic promoter was effectively synthe-
sised and combined with P. pastoris AOX1 cis-regulatory 
region using computational strategies and selection of 
libraries, and these promoters core can be applied to sev-
eral species of yeast, comprising S. cerevisiae and P. pas-
toris [14]. Promoter length of E. coli is normally below 
100 bp, however yeast promoters have size above 100 bp. 
The larger nucleotide base pair not only decreases the 
efficacy of metabolic construction of pathway, but also 
obstructs the pathway regulation. The synthesis of pro-
moters with minimal elements could overcome these 
inefficiencies. The removal of non-essential promoter 
regions is one technique for promoter construction with 
minimal essential regions [15]. PTEF1 from S. cerevisiae 
was modified by deleting non-essential promoter region 
and the results showed that 69 bp core elements can per-
form transcriptional activities. Several promoters were 
constructed by combining minimal essential elements 
and upstream activating sequence which resulted a 80% 
transcriptional PTEF1 activity [15]. Conversely, the mod-
ified promoters developed by this technique possess dis-
advantage from homologous recombination since these 
promoters might still have sequences from endogenous 
promoters. Mutagenesis by saturation might be a desir-
able technique for synthesising minimal promoters [16]. 
Promoter engineering was done in S. cerevisiae, to attain 
minimal core promoter elements with size ranging from 
20 to 30 bp among TATA box and TSS were shortlisted 
for saturation mutagenesis. By joining the minimal core 
promoter elements and UASs, several minimal promot-
ers were constructed and the transcriptional level of 
many of them attained 70% of the native PTDH3, with 
only a very small percentage of its original length.

Robust and regulated promoters are an indispensable 
tool for enhanced level recombinant protein synthesis 
[17]. There has been an increasing demand in the con-
struction of synthetic promoters which drives enhanced 
heterologous protein expression, enhance protein fold-
ing and tightly regulatable transcription profile [18]. 
P. pastoris synthesised up to 22  g/L intracellular and 
15  g/L extracellular proteins with the help of highly 
regulated, robust methanol inducible AOX1  promoter 

[19]. A promoter library by deletion and duplication 
of putative transcription factor-binding sites within 
the AOX1 promoter (PAOX1) sequence was constructed. 
This promoter library provided an approximate activity 
range between 6 and 160% compared to the wild type 
promoter activity. After extensive characterization of 
the promoter library by employing a green fluorescent 
protein variant gave 5–150% of activity compared to 
native PAOX1  driven recombinant protein production. 
[20]. Some point mutations and deletions of promoter 
region caused in altered transcriptional regulation of 
these variant promoters and was found to be reasonably 
dynamic when glucose was exhausted, lacking neces-
sitating the methanol inducer [20]. This de-repression 
by glucose depletion bettered the use of promoter with 
full functional elements in definite uses particularly 
when several replicas of the expression constructs were 
incorporated in to the chromosome [21]. The promoter 
of glyceraldehyde 3 phosphate dehydrogenase gene 
(PGAP) within P. pastoris  was manipulated by a tech-
nique called random mutagenesis [22], thus exhibiting 
the capability of variant promoters for tight transcrip-
tional regulation or the generation of novel regulatory 
transcriptional circuits. Several biotechnologically rel-
evant therapeutic proteins have been produced by the 
use of synthetic promoters [23].

Major techniques for engineering heterologous pro-
duction in H. polymorpha  are based on its capability to 
methanol responsive growth. The promoters like formate 
dehydrogenase (FMD), and methanol oxidase (MOX) 
are the mainly exploited H. polymorpha  promoters and 
is methanol inducible. Induction by methanol lead to 
upregulation of MOX, DHAS and FMD genes by 17.3, 19 
and 350 fold, respectively, in comparison to glucose con-
taining media [24]. Compared to methanol inducible pro-
moter of P. pastoris, the benefit of using H. polymorpha is 
that many of them are de-repressed in glycerol contain-
ing media which is not observed in P. pastoris [19].

Several studies have been concentrated on metaboli-
cally and genetically engineered H. polymorpha  species 
for the production of different heterologous proteins 
[25–27]. The biopharmaceutical production from H. 
polymorpha was enhanced after the optimization of 
transformation and culturing procedures along with 
advanced genome editing techniques. Currently used, 
three vaccines against Hepatitis B are synthesised by 
antigens obtained from bioprocess developed in H. poly-
morpha: HepavaxGene®  (Johnson & Johnson), Gen Vax 
B® (Serum Institute of India) and Biovac-B® (Wockhardt) 
(http://​www.​dynav​ax.​com/​about-​us/​dynav​ax-​gmbh/). 
Furthermore, pharmaceutical proteins such as insulin 
(Wosulin®, Wockardt), hirudin (Thrombexx®, RheinMi-
napharm), and IFNa-2a Reiferon®  (RheinMinapharm) 

http://www.dynavax.com/about-us/dynavax-gmbh/
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are effectively synthesised using H. polymorpha for com-
mercial purpose [28].

Technologies for recombinant protein synthesis in H. 
polymorpha take benefit of the yeast capability to grow 
in methanol containing media. The promoters which are 
inducible in the presence of methanol like formate dehy-
drogenase (FMD), and methanol oxidase (MOX) are the 
widely used in gene manipulation techniques as it can 
change to methanol-substrate directed to upregulation 
of catabolic, for instance the FMD gene was about 350-
fold upregulated, whereas the MOX and DHAS genes 
were 17.3 and 19-fold upregulated compared to glucose 
cultivation [24]. The integration plasmids pHIP series of 
H. polymorpha have several highly active promoters and 
selection markers for recombinant protein production 
[29].

Among the non-conventional yeast species, Y. lipol-
ytica is well-researched, and identified with several func-
tionally characterised promoters. Robust promoters such 
as PICL1, PTEF1, PXPR2, PPOT1, PRPS7, and PPOX2 are 
widely used in Y. lipolytica [30, 31]. Nevertheless, issues 
like promoter repression due to low pH and elevated glu-
cose level, or presence of promoter activity only in the 
existence of fatty acid by-products frequently mark these 
promoters unsuited for commercial purposes [32]. The 
PEYK1 promoter identified from Y. lipolytica was found 
to be functional under varying erythrulose and erythritol 
levels of and has been anticipated to permit strict regula-
tion and induction of protein [33]. In addition, five newly 
isolated promoters of Y. lipolytica were selected to study 
the consequence of gene repression due to fatty acid 
metabolism; and one of the selected promoters could 
downregulate FAD1 and OLE1 genes under depleted 
conditions of nitrogen. These findings provided pro-
spective promoters that possibly will be applied for gene 
knock-down rather than knock-out experiments [32].

The industrial relevance of another well-established 
non-conventional yeast K. lactis relies on high expres-
sion of heterologous gene; the aforementioned could 
be accomplished via concentrating on the comparative 
potency of the native promoter. Merely less number of 
constitutive and inducible promoters is utilized for het-
erologous gene expression in K. lactis. The widely used 
inducible LAC4 promoter system can split up the grow-
ing and gene expression stages to facilitate enhanced 
production or to synthesise lethal heterologous proteins. 
The extensively-utilized constitutive promoters of S. 
cerevisiae—ADH1 and PGK1 (glycolytic pathway based 
promoters) can be utilized for heterologous gene expres-
sion in K. lactis [34, 35]. The LAC4 promoter of K. lactis 
was widely used for the synthesis of heterologous pro-
tein production and has assisted the synthesis of several 
industrially important proteins. This promoter is lactose 

inducible, but it is not fully suppressed when lactose is 
lacking [36]. The LAC4 transcription is controlled by lac-
tose or galactose induced upstream regulating regions 
UAS I and UAS II (Anders et al., 2006). Interleukin-1 and 
globulin proteins were synthesised by using the consti-
tutive promoter—PGK in K. lactis [37]. Interleukin-1 is 
also produced by using PHO5 promoter in K. lactis [38]. 
In another study, cellobiohyrolase promoter from Tricho-
derma reesei has been used as hybrid promoter along 
with LAC4 promoter of K. lactis for the production of 
GFP [39]. Engineered LAC4 promoter with fungal signal 
peptide has been used for the production of human inter-
feron β [40–42].

CRISPR technology for gene manipulation in yeasts
CRISPR/Cas9 technique has permitted the manipula-
tion of the Cas9 endonucleases into ‘non-active’ endo-
nucleases (dCas9), for regulating at transcription level. 
Similar to the CRISPR/Cas9 system, the CRISPR/dCas9 
contains sgRNA that guides the dCas9 towards the pre-
ferred sequence of the DNA. The dCas9 lacks nuclease 
activity and hence inhibits breakage in target DNA [43]. 
The dCas9 attachment on the transcription factor bind-
ing sites stops other transcription factors from bind-
ing and resulted in inhibition of transcription. CRISPRi 
technique established in P. pastoris regulates the AOX1 
gene expression, which was positioned under methanol-
inducible pAOX1 promoter. The attachment of dCas9 to 
the regions between − 468 and − 487 region of the AOX1 
gene resulted in its repression [44].

The CRISPR-Cas9 technology can speed up the genetic 
recombination in cell factories to enhance the synthe-
sis of pharmaceuticals. CRISPR-Cas9 mediated multi-
plex genome editing permits to insert the resveratrol 
metabolic pathway into cluster with rDNA repeats of O. 
polymorpha resulting in 21 fold increase in the synthe-
sis of resveratrol [45]. Introduction of E. coli cadA gene 
and ALB (human serum albumin) gene by multiple-inte-
gration allowed high product yield. Nevertheless, multi-
ple-integration at single locus has certain challenges in 
creation of large metabolic pathways. Recently Schwartz 
et al. identified five integration locus that was appropriate 
for creation of large pathways in Y. lipolytica. The genes 
for lycopene biosynthesis—crtB, crtI, crtE, HMG1 and 
GGS1 were integrated into the newly identified integra-
tion sites separately enhanced the production of lycopene 
by 8.6 folds [46].

Among the non-conventional yeast strains, the 
CRISPR-Cas9 genome editing technique was first 
established in K. lactis [47]. With the help of FBA1p 
promoter Cas9 gene was inserted at GAL80 locus, and 
ku80 gene was removed to reduce the consequence of 
NHEJ. The gRNA was expressed under the control of 
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SNR52 pol III promoter and transcription was termi-
nated using SUP4 terminator and an episomal struc-
ture was built by inserting another genetic element 
pKD1 to a 2 μ plasmid of S. cerevisiae. This developed 
gene manipulation system effectively integrated for-
eign DNA with flanking regions of 1 Kb on either sides 
to NDT80, DIT1, and ADH1 site [47].

The thermo tolerance and rapid growth potential of 
O. polymorpha, makes it a suitable candidate for vari-
ous industrial applications. A codon optimized human 
Cas9 gene was introduced into a plasmid with TEF1 
promoter (ScTEF1p) and terminator (ScTEF1t) from S. 
cerevisiae to develop the CRISPR-Cas9 genome manip-
ulation system [48]. The integrating sgRNAs—ADE8, 
ADE12 and PHO85 were expressed under the small 
non-coding RNAp OpSNR6 promoter. This CRISPR-
Cas9 system provided low gene interference efficacy. 
Additional introduction of a Hyg resistance expres-
sion cassette to a 60  bp homologous arms enhanced 
the gene disruption efficacy till 47%, that proved the 
reduced expression of sgRNA for directing Cas9 to 
targeting site. Thus, aim proved system with tRNA 
CUG-sgRNA fusion expression cassette was applied 
to enhance the sgRNA function, which considerably 
improved the gene disruption efficiency to 17–71% 
[48].

The CRISPR-Cas9 based technique was applied to 
form a toolkit for quick and easy strain manipulation 
of S. cerevisiae [49]. This technology for S. cerevisiae 
comprises 37 strong promoters, 10 protein tags, and 
Cas9-sgRNA constructs capable of integrating in to 
23 different targeting loci. Heterologous proteins can 
thus be enhanced by investigating various promoters 
and its strength, integration loci, cultivation strategies, 
and protein tags for analysing recombinant protein 
localisation, protein stability and solubility. They also 
designed a web tool for CAS designing, which enables 
to design the oligonucleotides required for the crea-
tion of the integration cassettes. The developed tech-
nique was applied to enhance the taxadiene synthase 
expression, resulting in 25 fold progress in taxadiene 
synthesis [49].

Currently, a combination of Cas9 assisted genome 
editing and dCas9 mediated transcription regulation 
was established by manipulating  S. cerevisiae  for syn-
thesis of naringenin, a flavonoid precursor. The Cas9 
was used for insertion of a multigene controlled path-
way into an intergenic site of S. cerevisae leading to 
synthesis of naringenin from phenylalanine. In another 
study the naringenin synthesis was enhanced through 
dCas9-assistedrepression of anvital gene  TSC13  to 
stop the synthesis of phloretic acid, a by-product [50].

Yeast secretory pathway engineering 
for therapeutic proteins
The therapeutic proteins play an important role among 
the biopharmaceuticals used for the treatment of vari-
ous diseases [51]. Proteins with therapeutic potential 
have had quite a great clinical impact, since they are 
highly specific and potent with extended effect and are 
less toxic [52]. After the approval of insulin produced by 
recombinant DNA technology [53], it became evident 
that therapeutic proteins have immense medical appli-
cations. Industrial scale production of therapeutic pro-
teins is a difficult process; however microbial systems 
along with advanced genetic engineering techniques 
have extensively overcome the hurdles. Microbial sys-
tems including bacteria, yeast and algae are used for the 
production of proteins of human interest [54]. E. coli was 
one of the commonly exploited microbes for the pro-
duction of recombinant proteins [55], however bacteria 
fails to carry out post-translational modifications which 
significantly affects the proper functioning of the desired 
protein. In this context, yeast has gained attention as it 
shows prokaryotic and eukaryotic features simultane-
ously and performs post-translational modification of 
proteins. Recombinant protein production using yeast 
is economically feasible due to low production cost and 
high titre value. Yeasts are classified under GRAS organ-
isms and hence production of therapeutic proteins using 
them is quite appreciable.

S. cerevisiae, popularly known as baker’s yeast, is 
exploited widely for the production of therapeutic pro-
teins. S. cerevisiae was used to produce hepatitis B sur-
face antigen, insulin, albumin, hirudin, transferrin, 
glucagon and growth factors [56, 57]. Non-conventional 
yeasts such as P. pastoris, K. lactis, Y. lipolytica, H. poly-
morpha and S. pombe are also used for the synthesis of 
recombinant proteins. As the genome sequence data of 
these microbes are available [58], scientists can rely on 
the database to implement the “omics” methods such as 
metabolomics [59], transcriptomics [60], and proteom-
ics [61], so as to overcome the hurdles that arise during 
the production of proteins using yeast. In this section, 
we will discuss genetic engineering tools that are used to 
enhance secretory protein production in yeast.

Since yeast secretes only a small number of its own 
proteins and its secretion pathways are similar to that of 
eukaryotic system, they are preferred over other organ-
isms for the synthesis of recombinant proteins. Though 
the heterologous protein secretion in yeast experiences 
some limitations especially in glycosylation and pro-
teolytic degradation [58], researchers had developed 
excellent genetic tools like glycosylation engineering, 
manipulation of golgi translocation, and protein fold-
ing engineering to modify the protein secretion pathway 
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of yeast favouring its industrial application. The protein 
secretion is initiated by transferring the protein through 
the membrane of endoplasmic reticulum. For this trans-
location, secretion signals are required which have sig-
nificant role in influencing the ultimate yield of the 
heterologous protein. Usually, prepro leader sequences 
of alpha-mating factor protein from S. cerevisiae are used 
as signal sequences of heterologous proteins. However, 
Kjeldsen et al., has reported that prepro leader sequences 
without N-linked glycosylation sites enhances secretion 
than that of the original sequence [62].

If the protein is misfolded prior to secretion, it will 
be degraded and ends in enhanced stress in endoplas-
mic reticulum. Hence for the proper secretion of het-
erologous proteins, the protein folding chaperones and 
redox enzymes in S. cerevisiae [63, 64], K. lactis [65, 66] 
and P. pastoris [67] are overexpressed. The folding and 
secretion of proteins is controlled by Hsp70 and Hsp40 
families of chaperones. Zhang et  al. had overexpressed 
Ssa1p, Kar2p, Sec63, PDI, and YDJ1p chaperones from S. 
cerevisiae in P. pastoris, for the better secretory expres-
sion of the recombinant protein from P. pastoris [68]. The 
expression level of anti-transferrin receptor single-chain 
antibody in S. cerevisiae was enhanced considerably by 
the overexpression of BiP and PDI [69]. When process-
ing huge and complicated proteins, such as human anti-
bodies, the folding rate in S. cerevisiae is inadequate. 
In another study, it was observed that deletion of OPI1 
causes expansion of endoplasmic reticulum resulting 
in reduction of stress in S. cerevisiae. The mutant strain 
overexpressing CPR5 chaperone showed enhanced anti-
body production [70]. Cwh41p enzyme initiates folding 
process by trimming N-glycan, and its overexpression in 
S. cerevisiae reduces misfolding of the heterologous pro-
tein [71]. The consecutive expression of HSR1 in S. cer-
evisiae reduces the misfolding due to the protein folding 
chaperones [72].

The upregulation of proteins involved in vesicle traf-
ficking of protein from endoplasmic reticulum via golgi 
apparatus to plasma membrane enhances the yield of 
secretory proteins. It was found that overexpressing 
vesicle trafficking proteins Sly1p and Sec1p, accelerates 
the secretion of various heterologous proteins including 
human insulin precursor from S. cerevisiae [73]. GTP-
binding proteins of the ARF/SAR family are important 
regulators of intracellular protein trafficking. These GTP-
binding proteins are basically controlled by two classes of 
factors: guanine nucleotide exchange factors (GEFs) and 
GTPase activating proteins (GAPs). GAP proteins are 
bound to ARF proteins. Yeast homologues of ARF GAPS 
are Gcs1p and Glo3p. Gcs1p and Glo3p are involved in 
vesicle formation and their overexpression in S. cerevisiae 
expressing SEC16 improves protein secretion [74, 75].

Another hurdle is caused by the proteases expressed by 
yeast, as some of these are confined in the secretory path-
way which ultimately cleaves the recombinant protein 
resulting in lower production. Protease deficient strains 
were developed to overcome this. The cleavage of para-
thyroid protein was significantly reduced when S. cerevi-
siae lacking multiple yapsin protease genes such as YPS1, 
YPS2, YPS3, YPS6, and YPS7 [76]. The interruption of 
PRB1 and PEP4 proteases in S. cerevisiae enhances pro-
duction of interferon β [77]. The proteolytic cleavage of 
fusion protein—albumin and parathyroid hormone in 
P. pastoris was reduced by deleting PEP4 and YPS1 pro-
teases [78]. Idiris et al., has enhanced the production of 
human growth hormone using S. pombe to several folds 
by manipulating various genes simultaneously. Along 
with the deletion of seven proteases, the gene respon-
sible for synthesizing vacuolar sorting protein—VPS10 
was also deleted to increase the secretion rate of human 
growth hormone [79]. Human transferrin production 
from S. cerevisiae was enhanced after deleting YPS1 
(reduces protein degradation) and HSP150 (eases protein 
purification) and overexpressing PDI1 (helps in protein 
folding) [80].

The engineering strategies adopted to modify yeast 
secretory pathway were reviewed in Fig. 1 and Table 2.

Glycoengineering for humanized 
biopharmaceuticals in yeast
Glycoengineering is a tool for enhancing and modify-
ing the properties of proteins by altering the site for gly-
cosylation [81]. Glycosylation is one of the important 
post-translational methods and accurate engineering of 
this result in proper folding and affect pharmacokinetic 
properties of the therapeutic protein [82]. Glycosylation, 
which is a type of post-translational modification, refers 
to adding various sugar molecules or polysaccharides to 
protein chains via specific amino acids like asparagine, 
serine and threonine by means of a covalent bond [83]. 
N-linked and O-linked glycosylation are two forms of 
glycosylation.

Even though yeast can do N- and O-glycosylation, there 
is significant difference in the outline when compared to 
the pattern of human glycosylation. Yeast glycosylation 
causes α-1,3-mannose linkages and high mannose type 
glycans which often results in increased immunogenic-
ity and reduced half-life period of the synthesized thera-
peutic proteins [84]. Glycoengineering techniques have 
succeeded in developing strains that follow glycosyla-
tion pattern similar to that of humans. This is achieved 
in three levels of engineering to reduce hyper mannosyla-
tion, modifying mannose at N terminal and sialylation of 
recombinant proteins [82].
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OCH1 protein commences the production of outer 
chain in yeasts. Man5GlcNAc2 glycan suitable for human 
is synthesised using an engineered S. cerevisiae which 
lacks OCH1 gene and expressing Aspergillus saitoi α-1,2 
mannosidase gene [85]. Similarly, OCH1 deletion has 
been performed in K. lactis, H. polymorpha, Y. lipo-
lytica, S. pombe and P. pastoris with an aim to human-
ize the glycosylation pathway in them [12, 86–89]. These 
non-conventional yeast strains produce glycans with 
fewer mannose and are deficient in terminal α-1,3-linked 
mannose residues that causes hyperimmunogenicity 
[58]. The deletion of OCH1 and MNN1 encoding α-1,6-
mannosyltransferase and α-1,3-mannosyltransferase 
respectively in K. lactis reduces mannose addition during 
glycosylation and favours the production of active human 
granulocyte macrophage colony stimulating factor pro-
tein [12].

The glycosylation pathway in yeast is engineered to 
make it familiar as in human by accurately introducing 
human glycosyltransferases and glycosidases in yeast 
secretory pathway. Choi et al. has engineered P. pasto-
ris to synthesize glycans similar to that of humans. This 
is made by deleting the gene α-1,6-mannosyltransferase 
and introducing α-1,2-mannosidase and human β-1,2-
N-acetylglucosaminyltransferase I in P. pastoris [90]. 
ALG3 gene was deleted from H. polymorpha [86] and 

P. pastoris [91] to produce humanized glycoproteins. S. 
cerevisiae was engineered to synthesize N glycans with 
trimannosyl moiety similar to humans [92]. The poten-
tial and life time of therapeutic proteins expressed in 
yeast depends on the presence of sialic acids in termi-
nal end. Hamilton et  al., were successful in generating 
P. pastoris strains that produce glycoproteins carrying 
sialic acids in terminal position similar to humans. They 
have eradicated yeast glycosylation pathway by deleting 
4 genes involved and introduced 14 genes to synthesize 
sialic acid [93].

Besides N glycosylation, O linked glycosylation is also 
engineered in yeast to synthesize glycans with elongated 
mucin having N-acetylgalactosamine bound to seriene 
or threonine [94] and is further elongated with the same 
or other sugar moieties such as fucose, galactose xylose, 
glucuronic acid, and sialic acid [95, 96]. P. pastoris was 
engineered to synthesize sialylated glycans by overex-
pressing enzymes β-1,2-N-acetylglucosaminyltransferase 
and mannosidase that are involved in the production of 
sialic acid [97]. Genes expressing core1 β1-3GalT, ppGal-
NAc-T1, UDP-Gal/GalNAc 4-epimerase and UDP-Gal/
GalNAc were over expressed in S. cerevisiae to synthe-
size mucin type glycoproteins [98]. The human epider-
mal growth factor domain with terminal O-fucose was 
produced using genetically engineered S. cerevisiae 

Fig. 1  Schematic representation of engineered yeast secreting humanized therapeutic proteins
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expressing fusose transporter and O-FucT-1 genes from 
human [99].

Currently, very few biopharmaceuticals in the mar-
ket are produced by yeast due to their non-optimal pat-
tern of glycosylation. Yeasts alter glycoproteins with 
N-glycans enriched-mannose content in P. pastoris to 

hypermannosylated N-glycan in S. cerevisiae. Further-
more, P. pastoris could add β-1,2-mannose, and terminal 
α-1,3-mannoses were added by S. cerevisiae and both of 
them might be highly immunogenic [100, 101]. Recombi-
nant proteins derived from yeast with high mannose con-
taining N-glycans attach with respective C-type lectins 

Table 2  Engineering of protein secretory pathway in yeast

Yeast strain Gene targeted Outcome Reference

S. cerevisiae HSF1 Reduce stress [72]

SCJ1 Involved in protein folding [150]

PDI1 Formation of disulfide bonds [151]

SIL1 Endoplasmic reticulum translocation [63]

JEM1 Chaperone binding

HAC1 Regulation of unfolded protein response [152]

UBI4 Post translation modification [153]

CYM1 Remove protease activity by gene disruption [154]

KEX2 Remove protease activity by gene disruption [155]

VPS10 Enhance protein secretion [156, 157]

MON2 Deletion prevents vesicle formation and enhance secretion [158]

SSO Helps in transportation from golgi to plasma membrane [159]

ALG3, ALG11 Formation of N glycans similar to humans [92]

OCH1 Elongation during glycosylation [160]

MNN4 Mannosylphosphorylation [85]

S. pombe PPP20 Disruption of aminopeptidase [79, 161]

ATG4 Disruption of cysteine protease

FMA2 Disruption of methionine aminopeptidase

OMA1 Disruption of metalloendopeptidase

FMA2 Disruption of methionine aminopeptidase

VPS10 Enhance protein secretion

OMH1 Modifying O linked glycans [162]

GMS1 UDP galactose transportation [87]

P. pastoris SSA1 Protein folding [67, 68]

SSA4

SSE1

SEC63 Transportation of proteins [155]

CUP5 [67]

BFR2

KIN2

OCH1 Decrease addition of mannose [89]

ALG3 Proper glycosylation

YPS1 Diminish protease activity [163]

K. lactis PDI1 Disulfide bond formation [65, 164]

ERO1 Folding of protein [65]

OCH1 Decrease addition of mannose [88]

MNN1 Decrease addition of mannose [12]

Y. lipolitica OCH1 Decrease addition of mannose [88]

H. polymorpha CNE1 Protein folding [165]

ALG3 Proper glycosylation [86]

OCH1 Decrease addition of mannose [86]
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receptors on the endothelial cells of liver and lymph 
node, macrophages and dendritic cells, which resulted in 
clearance from serum [102].

Even though N-glycosylation is significant in the pro-
cess of protein folding of most of the recombinant ther-
apeutic proteins; it also exercises a greater role on the 
pharmacodynamics and pharmacokinetics of therapeu-
tic proteins. Therapeutic proteins with N-glycans with 
oligomannose-type are susceptible to fast clearance from 
macrophages resides in liver-Kuppfer cells by attaching 
to the cell surface mannose receptor [102, 103]. Phar-
maceutical recombinant proteins with sialic acid termi-
nally in glycans, display lengthier half-lives by less level of 
clearance [104]. Asparagine is normally the site of N-gly-
cosylation which would be asparagine-X-serine/threo-
nine- Asn-X-Ser/Thr situation (where X should not be 
proline). The primary reactions of N-glycosylation modi-
fications are general to most of the eukaryotic organisms. 
Briefly, a Glc3Man9GlcNAc2 lipid-linked oligosaccharide 
(LLO) is assembled in the endoplasmic reticulum (ER) by 
several glycosyltransferases encoded by asparagine linked 
glycosylation (ALG) genes. This predecessor is trans-
ferred co-translationally to a new chain of amino acid 
by a complex of oligosaccharyltransferase. Glucosidase I 
and II perform N-glycan deglucosylation and resulted in 
the synthesis of a monoglucosylated structure which can 
bind calnexin or calreticulin and helps in protein folding. 
Consequently, α-1,2-mannosidase residing in ER elimi-
nates α-1,2-mannose. Additionally, Htm1p in the ER pro-
cess α-1,2-mannosidase and could uncover the terminal 
α-1,6-mannose residue, which act as a signal for protein 
degradation and proteins do not attain appropriate fold-
ing. Appropriately folded proteins are conveyed to the 
Golgi bodies, and their N-glycans are additionally pro-
cessed in a precise way.

Yeast glycoengineering includes the elimination of gly-
cosylation specific to yeast, occasionally pursued by the 
synthesis of hybrid human type glycans. Subsequent to 
the alteration of the of N-glycan type on the recombi-
nant protein, significant struggle has been dedicated to 
decreasing the macro and micro heterogeneity in glyco-
proteins. To reduce macro heterogeneity, the basic vari-
ety of recombinant proteins created by unusual activity 
of N-glycosylation sites, various approaches have been 
attempted to enhance the efficacy of co-translational 
transfer of N-glycan to glycoproteins. Another technique 
includes controlling the dolichol pathway flux.

The very first step of humanizing yeast for N-glycosyla-
tion is the elimination of the mannose rich residues and 
hypermannosylated compositions, either by the removal 
of glycosyltransferases or by blocking the assembly of the 
lipid linked oligosaccharide. Another strategy is the incor-
poration of various glycosyltransferases and glycosidases 

to create hybrid N-glycans. Another approach is the 
introduction of endo-β-N-acetylglucosaminidase which 
proficiently converts yeast N-glycosylation which 
removes high-mannose N-glycans and produces degly-
cosylated product. The incorporation of N- and O-glyco-
sylation pathways similar to humans in yeasts resulted in 
the expression of glycoproteins improved with complex 
N-glycans or humanised O-glycans [105].

In yeast glycoengineering, N-glycan humanization 
mainly takes place in three steps. Firstly, yeast hyperman-
nosylation is to be limited or eliminated through path-
way manipulation perturbations. One of the method is 
to interrupt or delete glycotransferase OCH1 genes and 
expressing mannosidase enzyme, resulting in Man5Glc-
NAc2 (human-like) glycoform [106]. In another strat-
egy, ALG3 gene was removed and various modifications 
were done to attain humanised Man3GlcNAc2 glycoform 
[106]. In the subsequent stage, further alteration of ter-
minal mannose residue is attained using N-acetylglu-
cosaminetransferase, GnT-I, and formed glycoform with 
terminal GlcNAc. The addition of another GlcNAc moi-
ety to mannose is executed using GnT-II gene, resulted in 
GlcNAc2–Man3GlcNAc2. The final step is carrying out 
sialylation of those humanised glycoforms by the incor-
poration of heterologous genes to synthesise sialylated 
glycoproteins with 90% or more terminal sialylation [93].

Fermentation and scale‑up approaches 
for pharmaceutical protein production in yeast
Recent advances in omics technologies and metabolic 
engineering have made incredible improvements in the 
area of biopharmaceuticals synthesis by recombinant 
yeast. But the commercial scale synthesis of pharmaceu-
tical proteins is still at initial stages. The major step after 
recombinant strain construction and pathway engineer-
ing is the optimisation of strain cultivation conditions for 
the process scale up, strain improvement through screen-
ing, growth kinetics, and production kinetics, optimiz-
ing biomass growth and developing suitable fed batch 
production processes. Various attempts have been tried 
to increase the protein synthesis by optimising media, 
temperature, pH, inoculum and production kinetics [1]. 
Carbon substrates were optimized in various studies to 
reduce the production cost and also for improved bio-
synthesis. Finding an appropriate growth media was also 
vital to enhance the production. This section focuses on 
specific features of heterologous protein synthesis related 
to deviations in biomass growth and their consequences 
for strain construction and screening, as well as on the 
concept of rational evaluations between culturing sys-
tems for the designing of particular bioproduction tech-
niques in bioreactors.
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The methylotrophic yeast P. pastoris is well known for 
its very high growth rate, high cell concentrations during 
fermentation, its capability to produce huge amounts of 
properly refined prokaryotic or eukaryotic recombinant 
proteins (intracellular or secreted) consisting of AOX1 
promoter [107]. P. pastoris, as a protein production sys-
tem has an enormous future significance as it is already 
known to produce a wide range of proteins [108]. Here, 
we have considered the methylotrophic yeast P. pasto-
ris to discuss the scale up strategies for pharmaceutical 
protein production as P. pastoris is very well known for 
its very high growth rate, high cell concentrations during 
fermentation and its capability to produce huge amounts 
of properly refined prokaryotic or eukaryotic and human-
ised recombinant proteins.

Growth kinetics of recombinant strains 
during heterologous protein production
P. pastoris are capable of growing in glucose, glycerol 
and methanol as they are the preferred carbon sources 
in industrial processes. During batch mode of fermen-
tation, where surplus substrate is present, direct assess-
ment of unhindered biomass growth features is possible. 
P. pastoris exhibits better growth when methanol is used 
as carbon source instead of glucose or glycerol. Basically 
diauxic performance is present in batch cultures. That 
means glucose or glycerol supress the use of methanol 
and these carbon sources are then used successively. 
Strains expressing recombinant proteins often display 
maximum specific growth rates considerably less than 
those detected with a non-recombinant host strain. Max-
imum specific growth rate is one crucial factor point-
ing out the altered and stressed cell physiology during 
recombinant protein production. Specific growth rate 
(μmax) determination is hence an inevitable step before 
commencing strategies for method improvement. Engi-
neered Mut+ strains of P. pastoris are found to grow in 
methanol containing media at growth rates from 0.028 
to 0.154/h, and strains with MutS in a narrow collec-
tion from 0.011 to 0.035/h. Hence, fedbatch with well-
controlled environments, the same lower μ-value can be 
used to regulate any of MutS or Mut+ organisms. The 
subsequent benefit in production processes involving 
MutS organisms is their vigour in tolerating and manag-
ing methanol overfeeding [109–111].

There is a rising attention in the pharma industry to 
improve biosynthetic efficacy via shifting batch to con-
tinuous biomanufacturing. Rahimi et al. established that 
under similar process condition, continuous fermentation 
of P. pastoris Mut+ expressing hepatitis B surface antigen 
(HBsAg) has remarkably greater proficiency compared to 
the fed-batch process. In another work same group eval-
uated various dilution rates, process efficiency, and also 

assessed several strain-specific parameters. According to 
them, continuous process at the dilution rate of 0.015 L/h 
confirmed the maximum efficacy compared to other dilu-
tion rates. In the optimised dilution rate, the HBs antigen 
titer was 4.26 mg HBsAg/L/h, respectively [112].

Process kinetics of recombinant protein production
The biomass specific growth rate of (μ) is a key factor 
in enhancing product synthesis [113]. The association 
between specific productivity and growth rate affects 
the balance between several mechanisms such as pro-
tein folding and trafficking in a cell until the protein is 
secreted. The association is termed as production kinet-
ics and is significant in strategic designing to maintain 
ideal growth rate by adding the precise carbon-source in 
fedbatch manner [114]. GAP-promoter controlled syn-
thesis of secreted proteins are found to be growth asso-
ciated as it typically proportionately increases with rise 
in specific growth rates till it reaches near to the respec-
tive specific growth rate (μmax)values. Similar to GAP-
controlled kinetics, it would appear ideal to frame better 
approaches for process development at growth rates close 
to maximum specific growth rate (μmax). Nevertheless, 
slow controlling of μ in a reducing manner over time dur-
ing cultivation P. pastoris for recombinant protein pro-
duction is recommended as this can result in best titres 
and best productivities possible. Unlike GAP-controlled 
kinetics, the kinetics of AOX1-controlled protein pro-
duction is bell-shaped. The bell shape may be correlated 
to saturation of the secretory pathway as a result of high 
expression levels.The bell shape may also be due to using 
methanol as substrate, which is less advantageous [115, 
116]. Inspite of the current information gap for AOX1-
controlled metabolite synthesis, design of processes on a 
lesser specific growth rates lesser than 0.04/h is found to 
be appropriate for achieving high titres and productivi-
ties [115–117].

Screening of recombinant strains
The highly efficient recombinant clones are usually rec-
ognized at primary phase of process development, and is 
then cultivated all through the remaining developmen-
tal stages of the manufacturing of a recombinant pro-
tein. Normally, high-throughput screening techniques 
are adopted to manage for noteworthy clonal variations 
(which is mainly observed in recombinant strains) and 
to decrease the substantial performance load in bioreac-
tor experiments. Thus screening of recombinant clones 
is a key step in the production of heterologous proteins. 
Advent of high throughput technologies revolutionised 
the field of recombinant clone screening technologies 
allowing parallel screening of several batch experiments 
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using 96-deep-well plates or similar technologies [111, 
118].

In case of pulsed screening  of recombinant P. pasto-
ris in deep welled plates, the obtained optimum growth 
rate values for product formation using methanol (AOX1 
controlled) as substrate were lesser than the maximum 
specific growth rates obtained, but in GAP controlled 
product formation is normally near to  μmax [115, 116]. 
Hence, optimal efficacy of Mut+/AOX1-strains could not 
be attained in batch cultures, and clusters of clones with 
various levels of productivity should be selected for sub-
sequent experiments [111].

The screening data obtained from GAP-promoter con-
trolled  strains in batch cultures can be scaled up and 
transferred to fed batch, as the optimum production val-
ues are close to μmax values [117].

Biomass growth characteristics and product formation
The compulsory first stage for any product development 
process is characterisation of strains physiologically. The 
maximum specific growth (μmax) rate specific to a strain 
is a key criteria limiting maximum conceivable feed 
added in order to prevent accumulation of substrate. For 
determining μmax, recurrent pulses of 1% methanol in 
batch cultures were reported to be simple and suitable 
method to follow. Product synthesis kinetics knowledge, 
and the specific productivity qp(μ)-relationship, are vital 
to the construction of a fedbatch synthesis technique 
in which strain cultivation is regulated at a particular 
μ-value which is less than μ max by the incorporation 
of carbon-source in a controlled manner [117]. Native 
strain of P. pastoris is capable to grow on several carbon 
substrates and energy sources [119], of which glycerol, 
glucose and methanol are the most widely used in indus-
trial processes. The selection of carbon source and, there-
fore, the feasible working range with respect to specific 
growth rate (μ) and optimum productivity (qp) is reliant 
on the selected promoter. In the scenario of AOX1 pro-
moter-regulated synthesis of product, fedbatch growth at 
pre-set specific growth rates of 10, 30 and 50 percentage 
of μmax, can be attained by exponential incorporation of 
carbon substrate, which is to be held stable throughout 
the entire time of cultivation [120]. A similar systematic 
process development involving three exponential fed 
batch techniques would permit an early and effective cal-
culation of kinetics of product formation, also circum-
venting need for further production and variations in the 
ultimate outcomes. Simple cyclic fed-batch culture (cfbc) 
has been applied to P.pastoris for human serum albumin 
production. The developed process comprising continu-
ous feeding of media with intermittent drawings of cul-
ture resulted in a protein yield of 13.4  mg per gram of 
biomass. In cfbc, product yield was eventually restricted 

by the rate at which the strains might assimilate metha-
nol [121]. In another study an insulin precursor cod-
ing gene was codon-optimized for heterologous protein 
expression in P. pastoris, and introduced into the genome 
P. pastoris  strain under the control of AOX1 promoter. 
The strain could grow large-cell density in a batch pro-
cess using a definite medium with low salt and elevated 
concentrations glycerol. After the batch growth, synthe-
sis of insulin precursor was performed at a methanol-
concentration of 2 g/L and kept as constant throughout 
the cultivation process. This vigorous feeding technique 
led to the synthesis of ~ 3  g IP per liter of culture fluid 
[122]. Fedbatch experiments at 25, 50 and 75 percentage 
of μmax are suggested for fully growth-associated, GAP-
controlled recombinant protein production [117, 120] 
Applications of dynamic fed batch feeding strategies can 
be considered to be very encouraging and time saving in 
the long run. However, more expertise and experience 
in generating consistent, repeatable and reproducible 
results are required [111].

Fed‑batch process for the cultivation of recombinant 
proteins
Factors such as specific productivity, biomass in the 
reactor, and time required for production are crucial in 
influencing the performance of bioprocess manufactur-
ing technologies whose target is to produce high quality 
and high quantity product within short time durations. 
Normally, a large initial biomass concentration and a low 
specific growth rate during manufacturing phases are 
advantageous. Appropriate methodologies for highest 
titre and utmost metabolite formation show a trend in 
which there is high specific growth rate initially for rapid 
growth of biomass to higher concentrations. Then, there 
is a successive decrease in specific growth rate in produc-
tion stage and maximum productivity is achieved at opti-
mum growth rate condition [117].

Y. lipolytica combines together the characteristics of 
prokaryotes (in terms of genetic engineering and simplic-
ity of growth) and eukaryotes (in terms of post-transla-
tional modifications, protein folding and assemblies) 
to stand out as a unique host system [123]. For Y. lipo-
lytica, most studies give optimized results by using the 
fedbatch method. The fedbatch strategy of cultivation 
combines the possibility of separating or differentiat-
ing growth and production stages ensuring good cellular 
activity by means of controlled nutrient utilisation. Fed-
batch strategy prevents over-nutrition and starvation of 
cells. A higher or lower concentration of nutrients is also 
not desirable as it could transform the physico chemical 
properties of cell culture media, negatively impact cell 
growth and protein manufacturing mechanisms.
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Towards the end of batch stage when the major carbon 
source has been used up, nearly all fedbatch methods 
used to begin with feeding either the complete culture 
medium [124, 125] or only the respective carbon source 
[126, 127]. This strategy ensures cell growth maintenance, 
uninterrupted metabolic activity cycles including protein 
generation pathways. In processes where cell growth and 
protein generation stages needs to be separated, such a 
type of fed-batch feeding can be performed only dur-
ing growth phase [128]. Nonetheless, opting for nutrient 
feeding throughout production phase can deliver higher 
protein biomass and the transition of cells growth-to-
production phase becomes smooth [129]. New modelling 
methods to supervise process productivity of P. pastoris 
was developed recently [130] this might be used in future 
for Y. lipolytica as the genome level metabolic models of 
this yeast can be obtained [131, 132].

Inducible promoters are utilised in fedbatch meth-
ods to separate the growth and production phases, so 
as to reduce the metabolic freight which the protein 
biosynthesis passes on to the host cells [133]. Initially, 
the cultivated biomass is endorsed to grow to achieve a 
concentration that can sustain the successive protein 
manufacturing cycles [129, 134]. Feeding of an inducer to 
the culture medium slows down the cell growth. It can 
be advantageous for protein synthesis as the metabolic 
fluxes are activated. This method was comprehensively 
executed for proteins of human origin to poise the dam-
aging impact on cell health triggered by instigation of 
human gene expression [129, 135].

Bioprocess development in non‑conventional yeast 
for enhancing recombinant proteins
Along with cell engineering strategies, several cultiva-
tion techniques are being developed to enhance the 
synthesis of heterologous biopharmaceuticals. Human 
lysozyme synthesis in K. lactis K7 was enhanced consid-
erably by adjusting the media constituents and present-
ing a biofilm reactor. Lactose (16.3%), yeast extract (0.8%) 
and casamino acid (1.2%) was considered as the optimal 
growth media composition for large scale lysozyme syn-
thesis. The biofilm reactor offers an inert immobilisa-
tion of K. lactis on solid support and might resulted in 
enhanced product synthesis [136]. The synthesis of heter-
ologous staphylokinase in O. polymorpha was enhanced 
by introducing an effective fermentation technique. A 
concise period fermentation technique of 80  L volume 
was designed for O. polymorpha. The key process factors 
such as feeding technique, temperature, media constitu-
ents and pH were adjusted. The maximum product yield 
attained was 1 g rSAK/L [137].

In  Y. lipolytica, cultivation medium and mainly C/N 
ratio have been confirmed to be key features for the 

synthesis of numerous recombinant proteins [138, 139]. 
Nitrogen starvation can stop the TCA and activate lipo-
genesis via ATP citrate lyase, considerably changing the 
supply of flux in the strains [140]. Thus, Saez-Saez et al. 
[141] recently enhanced the recombinant resveratrol 
titers of Y. lipolytica ST9671 by evaluating several growth 
media (mineral medium, YNB, and the rich medium YP) 
with varying C/N ratios.  Growth in mineral medium 
caused 33–181% high product titers compared to YNB 
medium, when evaluating the trials with the same car-
bon resources.  In controlled fed-batch fermentor, maxi-
mum titer was obtained as the strain synthesised 12.4 g/L 
recombinant resveratrol. Furthermore, the bioprocess 
was conducted in a low-cost mineral medium devoid of 
any high-priced aromatic intermediate supplements.

Conclusion
The model organism yeast exhibits the properties of both 
prokaryotic and eukaryotic organisms which makes them 
preferred over other microbial systems for the produc-
tion of compounds, especially proteins with therapeu-
tic applications. However, there are some limitations in 
yeast system which many a time reduces the quantity 
and quality of desired protein of our interest. With the 
advancements in the molecular biology techniques, the 
researchers were able to modify the yeast system and 
make them efficient to produce more or less humanized 
products. Along with S. cerevisiae, the non-conventional 
yeast systems such as K. lactis, P. pastoris were engi-
neered to enhance the production of heterologous pro-
teins. These modified systems are gaining more attention 
considering their potential to synthesize products com-
patible for human. The different steps of recombinant 
protein production in yeast, from start to end, can be 
engineered in a successful manner by improving fermen-
tation methods, expression systems, and introducing 
synthetic biology techniques. Through the years the abil-
ity to identify strains and introduce desired genes of our 
interest under active promoter system with proper secre-
tion signals was achieved. Now it is possible to control 
intracellular proteases and ubiquitination which degrade 
the recombinant proteins, reduce the stress an increase 
space in endoplasmic reticulum, proper folding and help 
in translocation to golgi complex. The improvements in 
glycosylation engineering make it possible to produce 
humanized compounds that have better half-life and less 
immunogenicity. However, more innovative engineering 
techniques should be implemented in the synthetic and 
secretory pathways of the yeast system to produce thera-
peutic proteins.
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