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Muscle-invasive urothelial cancer (MUC), characterized by
high aggressiveness and significant heterogeneity, is currently
lacking highly precise individualized treatment options. We
used a computational pipeline to synthesize multiomics data
from MUC patients using 10 clustering algorithms, which
were then combined with 10 machine learning algorithms
to identify molecular subgroups of high resolution and develop
a robust consensus machine learning-driven signature (CMLS).
Through multiomics clustering, we identified three cancer sub-
types (CSs) that are related to prognosis, with CS2 exhibiting
the most favorable prognostic outcome. Subsequent screening
enabled identification of 12 hub genes that constitute a CMLS
with robust predictive power for prognosis. The low-CMLS
group exhibited a more favorable prognosis and greater
responsiveness to immunotherapy and was more likely to
exhibit the “hot tumor” phenotype. The high-CMLS group
had a poor prognosis and lower likelihood of benefitting
from immunotherapy, but dasatinib and romidepsin may serve
as promising treatments for them. Comprehensive analysis of
multiomics data can offer important insights and further refine
the molecular classification of MUC. Identification of CMLS
represents a valuable tool for early prediction of patient prog-
nosis and for screening potential candidates likely to benefit
from immunotherapy, with broad implications for clinical
practice.

INTRODUCTION
Urothelial carcinoma is highly malignant and often leads to a poor
prognosis for patients.1 The most common urothelial carcinoma is
bladder cancer, which is the second most common urological malig-
nancy in the world, with over 430,000 people diagnosed and 170,000
deaths worldwide each year.1,2 Bladder cancers mainly progress along
two distinct pathways. Nonmuscle-invasive bladder cancer (NMIBC)
accounts for 70% of the incidence of bladder cancer. It progress slowly
but has a high probability of recurrence and requires lifelong moni-
toring. Muscle-invasive bladder cancer (MIBC) tends to progress
rapidly and metastasize and has a higher mortality rate.2–4

With the improvement of current treatment technology, people
are constantly trying to use advanced treatment methods for
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innovative treatment of urinary tumors.5 Nonetheless, strategies
aimed at treating advanced muscle-invasive urothelial cancer
(MUC) have so far made limited progress. For instance, immu-
notherapy has been the focus of substantial research efforts and
has demonstrated favorable outcomes in certain patients. How-
ever, a significant proportion of patients still fails to derive clin-
ical benefits from this approach. This may be due to the
marked heterogeneity of urothelial cancer, and molecular sub-
types may help address this difficulty.6,7 Given the substantial
costs associated with immunotherapy and the potential for se-
vere adverse reactions, there is a compelling need to leverage
large-scale multiomics data with advanced machine learning al-
gorithms to identify biomarkers capable of facilitating effective
outcome prediction and immunotherapy management in pa-
tients with MUC.

In this study, we combined mRNA, long non-coding RNA (lncRNA),
and microRNA (miRNA) expression profiles, genomic mutations,
and epigenomic DNA methylation data to develop an integrated
consensus subtype of MUC using 10 multiomics integration strate-
gies. Subsequently, we identified 32 stable prognosis-related genes
(SPRGs) based on differential expression across subtypes and em-
ployed 10 machine learning algorithms to construct the consensus
machine learning-driven signature (CMLS). In training and valida-
tion cohorts, the CMLS demonstrated significant prognostic value
while exhibiting robust performance in predicting response to immu-
notherapy and drug-based therapies. Our findings represent a critical
reference point for refining the molecular subtypes of MUC and
enhancing precision stratification and individualized treatment ap-
proaches for this malignancy.
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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RESULTS
Multiomics consensus prognosis-relatedmolecular subtypes of

MUC

The workflow of this research is shown in Figure 1. Following effec-
tive preprocessing of all data, we further verified our results by em-
ploying a principal-component analysis (PCA) to analyze the data
before and after processing the batch effect (Figures S1A and S1B).
We independently identified three subtypes from 10 multiomics
ensemble clustering algorithms, and the number of subtypes was
determined by comprehensively referring to the cluster prediction in-
dex, gap statistical analysis, silhouette score, and previous research
experience (Figures S2 and S3). Then, the clustering results were
further combined through the consensus ensemble approach with
distinctive molecular patterns of expression across transcriptomes
(mRNA, lncRNA, and miRNA), epigenetic methylation, and somatic
mutations (Figures 2A–2C). Our classification system was closely
related to overall survival (OS) (p < 0.001; Figure 2D). Notably, cancer
subtype 2 (CS2) exhibited the most favorable survival outcomes
among all subtypes evaluated.

Partitioning of MUC integrative consensus molecular subtypes

At present, most of the molecular subtypes of MUC are classified
based on molecular expression levels and may be related to specific
biological functions. Therefore, we also tried to explore the different
molecular features of these CSs. The single-sample gene set enrich-
ment analysis (ssGSEA) algorithm measured the enrichment of
different molecular signatures in the sample. Interestingly, we found
that pathways such as luminal differentiation and urothelial differ-
entiation were significantly enriched in CS2, while pathways such as
basal differentiation and immune differentiation were significantly
enriched in CS3, suggesting that CS2 may be more prone to the
currently recognized luminal-like subtypes and that CS3 is more in-
clined to the basal-like subtypes. Moreover, there were also large dif-
ferences in response to specific treatments among different subtypes,
and pathways such as immune-inhibited oncogenic pathways were
significantly enriched in CS2, while CS3 may be more likely to
benefit from treatments such as radiotherapy or targeted therapy
(Figure 3A).

To further research transcriptome differences, we analyzed potential
regulators associated with cancer chromatin remodeling and 23 tran-
scription factors (TFs) of MUC (Figure 3B). The close correlation of
regulator activity with CSs confirmed the biological relevance of CSs.
Androgen Receptor (AR), ERBB2, Fibroblast Growth Factor Receptor
Figure 1. The computational framework for establishing the CMLS

The top 1,500 geneswith the greatest degree of variation were screened from the omics d
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subtypes were obtained by consensus clustering using 10multiomics clustering algorith
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3 (FGFR3), and FOXA1 regulators were significantly activated in CS1
and CS2, while EGFR, TP63, HIF1A, and STAT3 were specifically en-
riched in CS3. The regulon activity profiles associated with cancerous
chromatin remodeling further highlight potential patterns of differ-
ential regulation between CSs, suggesting that epigenetically driven
transcriptional networks may be important differentiating factors
for these molecular subtypes. Given the pivotal role of tumor immu-
nity in tumorigenesis and progression, we quantified the infiltration
levels of microenvironmental cells and showed that immune cell infil-
tration was significantly increased in CS1 and CS3 but relatively lower
in CS2 (Figure 3C). Based on the results of differential expression
analysis between subtypes (Table S1), we selected 20 genes specifically
upregulated for each subtype as classifiers and validated them in mul-
tiple external cohorts to further validate the stability of subtypes. The
nearest template prediction (NTP) classifies each sample in the
external cohort as one of the identified CSs. Consistent with this,
CS2 in the meta-muscle invasive urothelial cancer cohort (META-
MUC) cohort (combined with 8 cohorts) had the best prognosis of
all subtypes (p < 0.005), and similar results were obtained in other
external cohorts (Figures 3D and 3E). The consistency of CSs with
NTP and partition around medoids (PAM) algorithms was also eval-
uated (p < 0.005; Figures 3F–3J).

Development of the CMLS

We performed univariate Cox regression analysis to screen 32 SPRGs
whose expression was significantly related to OS from the consensus
genes IMvigor 210 cohort (IMvigor)-MUC,TheCancerGenomeAtlas
(TCGA)-MUC, and META-MUC. Subsequently, SPRGs were
included in the ensemble framework to perform CMLS. In the
IMvigor-MUC training cohort, we built consistent models based on
99 algorithmic combinations and calculated the average C-index for
each model in all cohorts to assess the predictive power of all models
(Figure 4A). As shown in the 99 models, the algorithm consisting of
CoxBoost and stepwise Cox (direction = forward) maintained the
highest mean C-index to build the final model. The CoxBoost algo-
rithm identified the most valuable SPRGs, and the stepwise Cox algo-
rithm filtered the most valuable model, which was constructed by 12
hub genes (Figures 4B and 4C; Table S2). Then, we calculated the
CMLS score per sample for all cohorts. High-CMLS patients had
poor clinical outcomes in the TCGA, META, IMvigor, and combined
cohorts (Figures 4D–4G).

For the hub genes of CMLS, we further verified the prognostic value of
these hub genes in bladder cancer through the Biomarker Exploration
ata of each dimension, and then the genes associated with prognosis were selected

screened candidate genes based on mutation frequency. Stable MUC prognostic
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Figure 2. The multiomics integrative consensus subtypes of MUC

(A) Comprehensive heatmap of consensus ensemble subtypes, including mRNA, lncRNA, miRNA, DNA CpG methylation site, and mutant gene. (B) Clustering of MUC

patients through 10 cutting-edge multiomics clustering methods. (C) Consensus clustering matrix for three novel prognostic subtypes based on the 10 algorithms. (D)

Different survival outcomes among the three subtypes.

www.moleculartherapy.org
for Solid Tumors (BEST) database (https://rookieutopia.com/
app_direct/BEST/) using a Kaplan-Meier analysis, and the obtained
results were basically consistent with the results we calculated by
the Cox algorithm (Figure S4). We also observed that these genes
were significantly associated with progression-free survival (PFS)
and disease-specific survival (DSS) of bladder cancer, underscoring
their close prognostic relevance for patients (Figures S5 and S6). Sub-
sequently, we utilized the GSCALite public server (http://bioinfo.life.
hust.edu.cn/web/GSCALite/) to systematically examine the multio-
mics phenotypes of CMLS across 33 distinct cancer types in TCGA.
The results showed that, in cancer types with more than 10 tumor
and normal samples, FJX1, FSCN1, EREG, BNC1, SIRPG, and
PTHLH genes were found to be highly expressed in several cancer tis-
sues (Figure S7A). We also found a positive correlation between
mRNA expression levels and copy number variations (CNVs) of
CMLS genes in most cancer types, especially for FJX1 (Figure S7B).
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Figure 3. Molecular landscape and validation of MUC CSs

(A) The enrichment of three subtypes for different treatment-related signatures and bladder cancer-related signatures. (B) Regulon activity profiles for 23 TFs (top) and

potential regulators associated with chromatin remodeling (bottom) of three subtypes. (C) Immune profiles in the TCGA-MUC cohort. The top annotation of the heatmap

shows the immune enrichment score, stromal enrichment score, and DNA methylation of tumor-infiltrating lymphocytes. The top panel shows the expression of canonical

immune checkpoint genes, and the bottom panel shows the enrichment levels of 24 TME-related immune cells. (D) Validation of MUC CSs in the nearest template of the

META-MUC cohort. (E) Survival analysis of MUC CSs in the META-MUC cohort. (F) The consistency of CSs with NTP in the TCGA-MUC cohort. (G) The consistency of

CSs with PAM in the TCGA-MUC cohort. (H) The consistency of NTP with PAM in the META-MUC cohort. (I) The consistency of NTP with PAM in the IMvigor-MUC

cohort.
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Through analysis of CNV frequency changes, the CNVs of CMLS
genes showed significant differences in various cancer types, among
which SIRPG and FSCN1 had the highest CNV frequencies, mainly
copy number heterozygous amplification (Figures S7C and S7D). In
addition, we found that the methylation levels of CMLS genes in
most cancer specimens were significantly different between tumor
and normal samples (Figure S8A). Methylation levels of CMLS
genes were negatively correlated with mRNA expression levels of
these genes in most cancers (Figure S8B). All of these indicated
114 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
CMLS genes may have an influence on the prognosis of patients
through epigenetic changes. CMLS genes could activate the pan-can-
cer epithelial-mesenchymal transition (EMT) pathway and had a sig-
nificant inhibitory effect on the hormone AR inhibition pathway
(Figures S8C and S8D).

Comparison of prognostic signatures in MUC

With the advent of next-generation sequencing technologies,
numerous gene expression-based prognostic signatures have been
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reported extensively in recent years. To enable a comprehensive com-
parison between CMLS and other signatures, we conducted a system-
atic search for relevant literature published within the past 5 years
and ultimately incorporated 22 distinct signatures into our study
(Table S3). These features are associated with different biological pro-
cesses, such as immunotherapy response, immune infiltration, and
glycolysis. Notably, CMLS showed better C-index performance than
almost all models in the TCGA-MUC, IMvigor-MUC, and META-
MUC datasets (Figures 5A–5C). Considering the clinical application
prospects of CMLS, we screened potential independent prognostic
factors for MUC by independent prognostic analysis (Figure S9)
and integrated them to construct a comprehensive nomogram in
the form of a web calculator (https://the-nomogram.shinyapps.io/
CMLS-DynNomapp/; Figure 5D). The calibration curve proved that
the nomogram has an accuracy that is consistent with the actual sit-
uation (Figure 5E). Decision Curve Analysis (DCA) indicated that the
clinical benefit of the nomogram for patients was significantly higher
than that of CMLS alone (Figures 5F and 5G), and the time-depen-
dent C-index further proved that the nomogram had better predic-
tion performance (Figure 5H).
Immune characteristics related to CMLS

Employing the Immuno-Oncology Biological Research (IOBR) R
package, we conducted a comprehensive analysis of the tumor micro-
environment (TME) of MUC and observed that immune cell infiltra-
tion levels, including T cells, B cells, and macrophages, were signifi-
cantly higher in low-CMLS patients than in high-CMLS patients,
indicative of an immune activation state (Figure 6A). These findings
suggest that MUCs characterized by low CMLS levels are more likely
to be classified as “hot tumors.” Fibroblasts and neutrophils were
mainly enriched in high-CMLS patients, and molecular markers
related to immunosuppression and exclusion, such as the EMT
pathway, were also mainly enriched in high groups, showing an
immunosuppressive state (Figures 6B and 6C). This means that
high-CMLS MUC was more inclined to be a “cold tumor.” As we ex-
pected, previously reported signatures associated with better immu-
notherapy were also significantly enriched in the low-CMLS group
(Figure 6D). Tumormutational burden (TMB) and tumor neoantigen
burden (TNB) are currently recognized biomarkers for evaluating the
response of patients to immunotherapy, and Zeng et al.8 also pro-
posed a special role of M1 macrophages in bladder cancer immuno-
therapy. Therefore, we analyzed the differences in the content of these
biomarkers between the two groups. The low-CMLS group had
higher enrichment of TMB, TNB, and M1 macrophages, which
means that the low group may have higher immunogenicity (Fig-
ure 6E–6H). Survival analysis also indicated that the CMLS could
serve as an effective complementary factor for TMB, TNB, and M1
Figure 4. The generation and prognostic value of CMLS

(A) Through a comprehensive computational framework, a combination of 99 machin

through the TCGA-MUC, IMvigor-MUC, and META-MUC cohorts and sorted by the ave

algorithm. (C) The univariate Cox regression analysis results of hub genes in training and

CMLS in the IMvigor-MUC, META-MUC, TCGA-MUC, and combined-MUC cohorts.
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macrophages to differentiate patient outcomes (Figures 6I–6K).
Lower CMLS with higher TMB or TNB or M1 macrophage infiltra-
tion tended to have a better survival prognosis for MUC patients.
The CMLS has excellent predictive power for immunotherapy

response

To comprehensively assess the role of CMLS in MUC immuno-
therapy, we conducted a systematic analysis. Initially, we conducted
a detailed analysis of the IMvigor-MUC cohort in view of the compre-
hensive prognostic and treatment-related information available for
this patient population. Unlike many prior studies, we accounted
for the delayed clinical effects of immunotherapy by comparing the
restricted mean survival (RMS) between the two groups at 6 and
12 months while evaluating long-term survival differences among pa-
tients after 3 months of treatment (p < 0.05; Figures 7A and 7B). The
lower group showed better prognostic outcomes, which indicates that
the benefit of immunotherapy is greater. The distribution of CMLS
among patients with different response degrees also showed that
the CMLS score of the responder group (complete response [CR]/
partial response [PR]) was significantly lower than that of the nonre-
sponder group (progressive disease [PD]/stable disease [SD])
(p < 0.05; Figure 7C). Then, we calculated the tracking tumor immu-
nophenotype (TIP) to explore the potential biological mechanisms
associated with CMLS, and as we expected, the low-CMLS group
showed significant differences mainly at step 4 (tumor immune-infil-
trating cell recruitment), step 5 (immune cell infiltration), and step 7
(cancer cell killing), consistent with the results of our above analysis
(Figure 7D). In addition, the tumor immune dysfunction and exclu-
sion (TIDE) algorithm was used to assess patient response to immu-
notherapy and showed better responsiveness in the low CMLS group
(P [Fisher’s exact test] = 5.38e�06; Figure 7E). The subclass mapping
algorithm was performed with another group of melanoma patients
receiving immunotherapy, and the results also showed that low
CMLS indicated a better response to PD-1 therapy (Bonferroni-cor-
rected p = 0.008’ Figure 7F). Finally, we revalidated our conclusions in
multiple immunotherapy validation cohorts with prognostic infor-
mation. Low CMLS tended to have better prognostic outcomes in
the post-immunotherapy population (GSE78220, p = 0.015 [Fig-
ure 7G]; GSE135222, p = 0.026 [Figure 7H]), and low CMLS tended
to be associated with better immunotherapy outcomes (GSE91061,
p = 0.032; Figure 7I).
Screening of potential therapeutic drugs

There were significant differences in prognosis between high- and
low-CMLS populations, and GSEA also showed that angiogenesis,
EMT, hypoxia, and other pathways were significantly activated in
high-CMLS patients (Figure 8A). In view of the poor response to
e learning algorithms was generated. The C-index of each model was calculated

rage C-index of the validation set. (B) The hub gene selected through the CoxBoost

validation cohorts. (D–G) Survival analysis of MUC patients with high CMLS and low
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immunotherapy in patients with high CMLS, we used Cancer Thera-
peutics Response Portal (CTRP) and Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM) to screen potential therapeutic
drugs for patients with high CMLS. To ensure the robustness of our
methodology, we employed cisplatin, a widely utilized treatment for
bladder cancer, as a means of validating whether algorithm-derived
sensitivities were consistent with established clinical practices. A pre-
vious report indicated that ERCC1 is a prognostic biomarker in pa-
tients with advanced bladder cancer receiving cisplatin-based chemo-
therapy.9 Our algorithm yielded similar findings, demonstrating that
patients characterized by low ERCC1 expression levels exhibited a
more robust response to cisplatin therapy, thereby conferring poten-
tial benefits for patient chemotherapy (Figure 8B). Then, we system-
atically explored potential drugs for high-CMLS patients according to
the previous studies (Figure 8C). Finally, we screened one CTRP-
derived agent (dasatinib; Figure 8D) and two PRISM-derived agents
(romidepsin and ispinesib; Figure 8E). We then assessed the differ-
ences in the expression levels of target genes for drug candidate action
in tumor tissues and normal tissues (including paired and unpaired
analyses) (Figures 8F and 8G). A higher fold change indicates greater
potential for drug candidate therapy (dasatinib: ABL1, FYN Proto-
Oncogene, Src Family Tyrosine Kinase [FYN], KIT Proto-Oncogene,
Receptor Tyrosine Kinase [KIT], STAT5B; romidepsin: HDAC1).
Finally, we searched for evidence of candidate compounds in
PubMed (https://www.ncbi.nlm.nih.gov/PubMed/). Overall, dasati-
nib and romidepsin are considered promising potential drugs for
treatment of high-CMLS patients.

DISCUSSION
Gene expression is finely regulated by various genetic/epigenetic pro-
cesses, such as methylation, mutation, and histone modifications.10

Therefore, comprehensive analysis of multiomics data from patients
will help us gain insights into disease-specific regulatory mecha-
nisms.10,11 However, most studies to date have focused primarily on
individual -omics research.12 The choice of clustering methods for
omics is also largely based on personal preference, which further ex-
pands the limitations of a certain method with expansion of the scope
of use. Our research tries to make up for this. We integrated the latest
10 clustering algorithms to identify three types of prognostic subtypes
with different characteristics, which may have certain value for accu-
rate stratified treatment of MUC patients. The novel subtypes were
proven to be stable in multiple cohorts. In addition, we found that
CS2may have a certain similarity to the currently known luminal mo-
lecular subtypes, and our classification may further refine the tradi-
tional luminal/basal classification method.

Machine learning algorithms are currently an effective method for
analyzing multiomics data.13 To gain an understanding of the differ-
Figure 5. Clinical practice value of CMLS

(A–C) Comparison between the CMLS and the other 22 published models in the TCG

constructed based on CMLS and presented in the form of a web calculator for enhanc

decision curve analyses demonstrating the benefit for the comprehensive nomogram in

between the comprehensive nomogram and CMLS.
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ences in molecular characteristics among different prognostic sub-
types and improve clinical practical value, we included 10 MUC
multicenter cohorts in this study and finally combined them into 1
training set and 2 validation sets and then selected the best CMLS
through 99 algorithm combinations to overcome the limitations
caused by algorithm selection. At present, when algorithms such as
artificial intelligence are deeply integrated with a large amount of bio-
logical big data, overfitting is an important problem that cannot be
ignored in the process of model construction.14 It is not uncommon
for models that demonstrate favorable performance in the training set
to prove challenging to generalize effectively to other validation sets.
To avoid the trouble caused by overfitting of the training cohort, we
used the average of the C-index of multiple validation cohorts as the
sorting criterion. As found in the study, when trained with random
survival forest (RSF), it has excellent performance in the training
set, but it is difficult to generalize in validation sets. Along similar
lines, we observed that CMLS, which had been meticulously screened,
exhibited robust prognostic value in each cohort compared with other
published signatures. Conversely, while four other signatures demon-
strated marginally superior performance than CMLS in the training
set, their predictive performance markedly decreased across all vali-
dation sets, which was potentially related to overfitting of the model.

Through theGSEAalgorithm and the IOBRR package, we analyzed the
enrichment of dozens of immune-related signatures between the two
groups. We found that various oncogenic pathways were significantly
activated in the high-CMLS group, which was more prone to the cold
tumor phenotype.15 The low-CMLS group has higher TMB and TNB,
is rich in immune cell types, and may have stronger antitumor immu-
nity.16 Survival analysis also shows better prognostic outcomes, and this
is also validated inmultiple immunotherapy cohorts in conclusion. Two
widely used predictive tools, TIDE and subclass mapping, also demon-
strated a better response to immunotherapy in the low-CMLS group,
which is consistent with our analysis and indicates that CMLS may be
useful for early identification of immunotherapy-sensitive populations.

In view of the current situation of poor prognosis response to immuno-
therapy in the high-CMLS group, we systematically screened its poten-
tial therapeutic drugs using a comprehensive screening framework that
has been proven effective in previous studies,17,18 and finally screened
dasatinib and romidepsin as possible candidates for the high-CMLS
group. Previous reports have found that the combination therapy of
anti-PD-1 and dasatinib can lead to a reduction in tumor burden in tu-
mor-bearing mice.19 Dasatinib combined with a selective FGFR inhib-
itor could be an option to overcome the intrinsic drug resistance of ur-
othelial cancer patients with FGFR3 alterations.20 In addition,
romidepsin has also been shown to effectively and safely control uro-
thelial carcinoma by compensatory combination of gemcitabine and
A-MUC, META-MUC, and IMvigor-MUC cohorts. (D) A comprehensive nomogram

ed usability. (E) Calibration curve for the comprehensive nomogram. (F and G) Net

clinical practice for MUC patients. (H) Comparison of the time-dependent C-index

https://www.ncbi.nlm.nih.gov/PubMed/


Figure 6. The TME-related molecular characteristics of high- and low-CMLS patients

(A) The distribution of TME immune cell type signatures between high- and low-CMLS patients. (B) The distribution of immune suppression signatures between high- and low-

CMLS patients. (C) The distribution of immune exclusion signatures between high- and low-CMLS patients. (D) The distribution of immunotherapy biomarkers between high-

and low-CMLS patients. (E) The distribution of TMB between high- and low-CMLS patients. (F) The distribution of TNB between high- and low-CMLS patients. (G) The

distribution of M1 macrophages between high- and low-CMLS patients. (H) The relationship between CMLS and M1 macrophages. (I–K) Survival analysis combined CMLS

with TMB, TNB, and M1 macrophages.
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cisplatin,21 and their combinationwith 2,3-dimethoxycinnamoyl azide
can also enhance the resistance of romidepsin to bladder cancer in vitro
and in vivo.22

Compared with earlier published research, our study features several
notable distinctions. First, recognizing the marked heterogeneity of
urothelial cancer, we conducted our analyses specifically in MUC, af-
fording more precise patient stratification and treatment. Second, we
incorporated omics information from all five dimensions of MUC
and utilized a comprehensive set of 10 clustering algorithms to fully
leverage the informative content of each omics dimension while miti-
gating the impact of clustering method selection preferences on our
analyses. Third, our modeling factors were selected based on SPRGs
derived frommultiple cohorts, enhancing the stability and prognostic
value of our model genes. Fourth, by systematically incorporating
data from 10 MUC multicenter cohorts and leveraging 10 widely
used machine learning algorithms, we identified the model with
the best average C-index performance to establish CMLS, aiming to
minimize the potential impact of overfitting on our findings. None-
theless, we acknowledge that our study still has some limitations.
For instance, the cohorts we included differed in size and sequencing
platform despite utilizing correction algorithms to mitigate these
differences. Additionally, the specific mechanisms underlying the
tumorigenesis-associated activity of CMLS genes warrant further
exploration. Furthermore, the clinical value of CMLS should be vali-
dated more extensively in larger, prospective multicenter cohorts.

Conclusions

This study identified three molecular subtypes of MUC via multio-
mics consensus clustering, revealing significant differences in prog-
nosis among them and potentially refining the molecular typing of
MUC. Leveraging a machine learning algorithm framework, we
defined CMLS, which exhibited superior performance across multiple
cohorts for robustly predicting patient prognosis while demonstrating
close associations with immunotherapy response. Given the observed
poor prognoses and low immunotherapy responses among high-
CMLS groups, we further explored the potential therapeutic benefits
of dasatinib and romidepsin for this population. Through integrating
multiomics data and cutting-edge computational algorithms, this
study provides a foundation for early diagnosis and precise treatment
of MUC patients.

MATERIALS AND METHODS
Multiomics data of MUC and data preprocessing of multicenter

cohorts

We first collected multiomics data of MUC from the TCGA (https://
portal.gdc.cancer.gov) Bladder Cancer (BLCA) cohort, including pa-
Figure 7. The value of CMLS in predicting immunotherapy response in MUC p

(A) The restricted mean survival (RMS) time difference by 6 months and 1 year after tre

ference after 3 months of treatment between high- and low-CMLS groups. (C) The distr

degree of activation between high- and low-CMLS groups at each step of TIP. (E) The

groups. (F) The subclass mapping algorithm predicts response to immunotherapy betwe

in GSE78220. (H) Survival analysis of high- and low-CMLS group in GSE135222. (I) Di
tients with complete transcriptome expression, DNAmethylation, so-
matic mutations, and clinical information available. The transcrip-
tome profiles of mRNA and lncRNA were obtained by the
TCGAbiolinks package.23 The ID of the mature miRNA of TCGA
was noted via the miRBaseVersions.db package. The somatic muta-
tions were also obtained by TCGAbiolinks and were processed
through the maftools package. The DNA methylation profile and
clinical information were downloaded from UCSC xena (https://
xenabrowser.net/). In addition, we collected full information
on MUC from nine other cohorts, including six from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo; GEO:
GSE13507,24 GSE31684,25 GSE32548,26 GSE32894,27 GSE48075,28

and GSE482763), one from ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/; E-MTAB-180329), one from the Sequence ReadArchive
(SRA; https://www.ncbi.nlm.nih.gov/sra, Su et al.30), and one clinical
trial from http://research-pub.gene.com/IMvigor210CoreBiologies,
which is available under the Creative Commons 3.0 license.31 The
high-throughput sequencing of the transcriptome was converted to
transcripts per kilobase million (TPM), and all expression profiling
by array was deduplicated and standardized. In this study, we defined
samples with Ta- or T1-stage tumors as NMIBC that were initially
removed. Patients with an OS time of less than 1 month were also
excluded to enhance the robustness of downstream analyses.32

For the data from microarrays, the expression matrix and clinical in-
formation were downloaded from the official website. After down-
loading, the data were processed using the robust limma package
for background correction, log 2 transformation, and quantile
normalization and visualized using the boxplot function to assess
the uniformity of sample expression abundance value distribution.33

Similar methods have been applied in previous studies on glioma,34

esophageal cancer,35 liver cancer,36 thyroid cancer,37 and lung adeno-
carcinoma.38 When multiple probes were mapped to a single gene
symbol, the probe with the highest expression was annotated as
gene expression. For RNA sequencing (RNA-seq) data from high-
throughput sequencing, we used TPM values because they are more
similar to gene expression frommicroarrays and enhance the compa-
rability between samples.39 For the cohort of Su et al.,30 we down-
loaded the raw data from the BioProject (PRJNA678814), used fastqc
to quality control the raw data, and used trim-galore for filtering.
Then the data were compared through hisat2 with the gencode27
version of the genome. Next, we used featureCounts to quantify the
bam files and filter the low-expressed genes according to the criteria
of Su et al.30 The clinical information was obtained from the supple-
mentary files reported by Su et al.30 For the merging of different data-
sets, the “ComBat” function in the sva package was used to adjust for
batch effects from non-biological technical biases of each dataset
atients

atment between high- and low-CMLS groups. (B) The long-term survival (LTS) dif-

ibution of CMLS in different immunotherapy response groups. (D) Differences in the

TIDE algorithm predicts response to immunotherapy between high- and low-CMLS

en high- and low-CMLS groups. (G) Survival analysis of high- and low-CMLS groups

stribution of CMLS in different immunotherapy response groups of GSE91061.
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using an empirical Bayes framework.40,41 Similar algorithms have
been reported in many high-quality studies, ensuring the scientific
validity of our methods.13,42–46 To further validate the effectiveness
of data merging, similar to the study conducted by Liu et al.,47 we
also performed PCA on the merged samples before and after merging.
Multiomics consensus ensemble analysis

To effectively perform a comprehensive analysis, we first matched the
omics information of the five dimensions through the sample ID (n =
386). The TPM expression data were transformed by log2. For DNA
methylation data, we selected probes of promoter CpG islands. For
the gene mutation matrix, we identified the gene mutated when it
contained any of the following nonsynonymous variations: frameshift
insertion or deletion, in-frame insertion or deletion, nonsense or
missense or nonstop mutation, or splice site or translation start site
mutation.

In this study, we utilized the “getElites” function of the Multi-Omics
integration and VIsualization in Cancer Subtyping (MOVICS) package
to screen gene features. For continuous variables (mRNA, lncRNA,
miRNA, and methylation), we set the “method” parameter of the “ge-
tElites” function to “mad” to screen for the top 1,500 genes with the
greatest degree of variation. We then set the “method” parameter to
“cox” and combined clinical data to identify prognostic genes with a
significance level of p < 0.05 in each data dimension. For binary variable
gene mutation data, we first used the “oncoPrint” function of the maf-
tools package to screen for the top 5,000 genes with the highest degree
ofmutation.We then further screened based onmutation frequency by
setting the “method” parameter to “freq” to identify the top 5% most
frequently mutated genes. The resulting data from these five dimen-
sions were included for further analysis in our study.

After preliminary feature selection, we further determined the
optimal number of clusters for our study. As is well known, the
optimal number of clusters for data should be small enough to reduce
noise but large enough to retain important information. Therefore,
we employed the “getClustNum” function from the MOVICS pack-
age, which integrates Clustering prediction index (CPI), Gaps-statis-
tics, and Silhouette score to estimate the number of subgroups.48,49

We also incorporated our prior knowledge of urothelial carcinoma
from previous studies and ultimately decided to classify it into three
subtypes. Subsequently, we applied the “getMOIC” function for clus-
tering analysis. We used 10 clustering algorithms (CIMLR,
ConsensusClustering, SNF, iClusterBayes, PINSPlus, moCluster,
NEMO, IntNMF, COCA, and LRA) as input for the “methodslist”
parameter and utilized the default parameters provided by the
MOVICS package. As a result, we obtained the clustering results
Figure 8. Potential agents for patients with high CMLS

(A) Discovery of pathways significantly activated in the high-CMLS group through the GS

the computational algorithm. (C) The comprehensive computational pipeline for the sc

sensitivity for potential drugs screened from the CTRP and PRISM datasets. (F and G) T

screened drugs in normal and tumor tissue. *p < 0.05, **p < 0.01, ***p < 0.001.
for each method. After computing the clustering results for the
10 methods, we integrated the results from different algorithms using
the “getConsensusMOIC” function based on the concept of
consensus clustering to improve the robustness of the clustering.;
he “distance” parameter was set to “euclidean,” and the ’”inkage”
parameter was set to “average.”50,51 The final clustering result was ob-
tained through this integration process.
Specific molecular characteristics and stability of consensus

subtypes

Through gene set variation analysis (GSVA),52 we calculated the
enrichment scores of multitherapy-related signatures, including sig-
natures positively associated with the response to atezolizumab in
BLCA from Mariathasan et al.,53 BLCA molecular subtype-related
signatures from the Bladder Cancer Molecular Taxonomy Group,
and signatures associated with targeted therapy and radiotherapy.
These gene signatures were collected from the research of Hu
et al.54 The transcriptional regulatory networks (regulons) were con-
structed through the Reconstruction of Transcriptional regulatory
Networks and analysis of regulons (RTN) R package, including 23
induced/repressed target-associated TFs and 71 candidate regulators
related to cancerous chromatin remodeling collected from Lu et al.45

Then, the distribution of immune checkpoints among these sub-
groups was compared, and the ESTIMATE R package was used to es-
timate the immune/stromal score of tumor tissue. The score of DNA
methylation of tumor-infiltrating lymphocytes (MeTIL) was calcu-
lated according to published protocols. The enrichment of 24 kinds
of tumor immunemicroenvironment cells was also evaluated through
GSVA. For the stability of subtypes, we first validated the clustering
results using subtype-specific biomarkers in the validation cohort
and then compared the consistency of consensus clustering with
the NTP and PAM classifier.55
Establishment of a consensus machine learning-driven

prognostic signature

To enhance the comparability via different cohorts, we performed
Z score processing on all data in advance. Then, to evaluate the rela-
tionship among CMLS, immunotherapy, and prognosis, we selected
the IMvigor-MUC cohort with relatively complete treatment infor-
mation as the training set and the other cohorts were used as valida-
tion sets. Considering that some cohorts had fewer sample accounts,
we combined 8 cohorts into the META-MUC cohort and removed
batch effects using the sva package. To construct CMLS with high ac-
curacy and generalizability, we integrated 10 machine learning algo-
rithms, including CoxBoost, stepwise Cox, Lasso, Ridge, elastic net
(Enet), survival support vector machines (survival-SVMs), general-
ized boosted regression models (GBMs), supervised principal
EA algorithm. (B) Pre-predicting the sensitivity of cisplatin to validate the feasibility of

reen of potential agents. (D and E) The correlation and differential analysis of drug

he unpaired and paired differential expression analyses for potential target gene of
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components (SuperPC), partial least Cox (plsRcox) and RSF. Notably,
algorithms such as stepwise Cox, RSF, CoxBoost, and Lasso possess
feature selection capabilities. During the model-building phase, we
used the IMvigor210 cohort as the training set for preliminary model
construction.

For the CoxBoost model, we first called the “optimCoxBoostPenalty”
function to determine the optimal penalty (shrinkage) value. We
then combined this with cross-validation to perform 10-fold cross-vali-
dation on the CoxBoost model to search for the best number of boost-
ing steps. Finally, the “CoxBoost” function was used to fit the model.
The stepwise cox analysis was performed using the survival package,
and the complexity of the statistical model was evaluated based on
the Akaike information criterion (AIC). We calculated all possible
combinations for the direction parameter, including “both,” “back-
ward,” and “forward.” Lasso, Ridge, and Enet models were imple-
mented using the glmnet package and the “cv.glmnet” function. The
regularization parameter lambda was determined through 10-fold
cross-validation, while the tradeoff parameter alpha was set between
0 and 1 (interval = 0.1). When alpha is equal to 1, Lasso is executed,
while Ridge is executed when alpha is equal to 0. For other values of
alpha, Enet is executed. The survival-SVMmodel was implemented us-
ing the “survivalsvm” function from the survivalsvm package, which
employs support vector analysis on datasets with survival outcomes.
The GBM model was implemented using the gbm package. The
“gbm” function was used with 10-fold cross-validation to fit a GBM.
The SuperPC model was implemented using the superpc package,
which is an extension of PCA. The “superpc.cv” function was also
used with 10-fold cross-validation. For the plsRcox model, the
“cv.plsRcox” function of the plsRcox package was used. For the RSF
model, we utilized the randomForestSRC package and used the “rfsrc”
function with two important parameters: “ntree” and “nodesize.” The
parameter “ntree” represents the number of trees in the random forest,
while “nodesize” represents theminimum size of the terminal nodes. In
this study, we set “ntree” to 1,000 and “nodesize” to 5.

The CMLS development pipeline is as follows.

� We conducted univariate Cox analysis in the IMvigor-MUC,
TCGA-MUC, and META-MUC cohorts. Genes with p < 0.05
and the same hazard ratio (HR) orientation in all cohorts were
considered SPRGs.

� Ten machine learning algorithms were used. Ninety-nine combi-
nations of these algorithms were used to construct the most predic-
tive CMLS with the best C-index performance.

� After model establishment on the training set, we further tested all
validation cohorts. We calculated the average C-index for each
model, where the model with the highest value was considered
optimal.

Prognostic value of CMLS and potential clinical application

We scored each sample in the training and validation sets according
to the resulting model and divided the samples into high- and low-
CMLS groups based on the score. The prognostic significance of
124 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
CMLS was evaluated through the Kaplan-Meier survival curve. In
addition, we systematically retrieved 22 prognostic features associated
with urothelial cancer and calculated the score for each sample based
on the published coefficients. The ability of all signatures to predict
prognosis was assessed in each cohort by the C-index. To enhance
the clinical utility value of CMLS, we constructed a nomogram using
factors obtained after multivariate Cox regression. The time-depen-
dent C-index curve and calibration curve were drawn to describe
the accuracy, and the decision curve was used to calculate the clinical
benefit to patients.

Comprehensive analysis of immune-omics molecular

characterization and immunotherapy response based on CMLS

Based on the IOBR package,56 we collected dozens of previously pub-
lished signatures related to TME cell types, immunotherapy re-
sponses, immune suppression, and immune exclusion and used a
unified method to calculate the enrichment score for each sample,
which comprehensively analyzed the immunological differences be-
tween high- and low-CMLS patients. Differences in the distribution
of TMB, TNB, and M1 macrophages between these two groups
were compared, and patients were regrouped in combination with
CMLS. For the immunotherapy response, we first evaluated the pa-
tients’ delayed response survival to immunotherapy and combined
the TIP algorithm, the subclass mapping, and TIDE algorithm to es-
timate the immunotherapy response.57–59 This was further verified in
GSE78220,60 GSE135222,61 and GSE91061.61

In silico analysis to screen potential therapy agents for patients

with high CMLS

The activation status of oncogenic pathways between high- and low-
CMLS patients was analyzed through the GSEA algorithm.62 Expres-
sion data for human cancer cell lines (CCLs) were obtained from the
Broad Institute Cancer Cell Line Encyclopedia (CCLE). The CTRP
v.2.0 (https://portals.broadinstitute.org/ctrp) and PRISM Repurpos-
ing datasets (19Q4; https://depmap.org/portal/prism/) were used to
obtain drug sensitivity data for CCLs. The area under the dose-
response curve (AUC) values acted as a measure of drug sensitivity.

Statistical analysis

For comparisons of two groups, the normally distributed variables
were tested by unpaired Student’s t tests, and the non-normally
distributed variables were tested by the Wilcoxon rank-sum test. For
comparisons of more than two groups, the parametric and nonpara-
metric variables were tested by one-way ANOVA and Kruskal-
Wallis tests, respectively. A two-sided Fisher’s exact test was per-
formed for the contingency tables. The cutoff value of the CMLS score
was determined through the “surv-cutpoint” function of the surv-
miner package.We repeatedly tested all possible cutoff points to iden-
tify the maximum rank statistics and then used the two-classification
method to classify the CMLS score. According to the maximum
selected logarithmic rank statistics, patients could be distinguished
into high- and low-score groups in each cohort to reduce the compu-
tational batch effect, which is similar to previous research.63–65 The
differential expression analysis was analyzed by the limma package,
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andmultiomics clustering was completed through theMOVICS pack-
age.55 All statistical analyses were performed in R v.4.1.0.
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