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A B S T R A C T   

The COVID-19 pandemic has changed the way we practice medicine. Cancer patient and obstetric care land
scapes have been distorted. Delaying cancer diagnosis or maternal-fetal monitoring increased the number of 
preventable deaths or pregnancy complications. One solution is using Artificial Intelligence to help the medical 
personnel establish the diagnosis in a faster and more accurate manner. Deep learning is the state-of-the-art 
solution for image classification. Researchers manually design the structure of fix deep learning neural net
works structures and afterwards verify their performance. The goal of this paper is to propose a potential method 
for learning deep network architectures automatically. As the number of networks architectures increases 
exponentially with the number of convolutional layers in the network, we propose a differential evolution al
gorithm to traverse the search space. At first, we propose a way to encode the network structure as a candidate 
solution of fixed-length integer array, followed by the initialization of differential evolution method. A set of 
random individuals is generated, followed by mutation, recombination, and selection. At each generation the 
individuals with the poorest loss values are eliminated and replaced with more competitive individuals. The 
model has been tested on three cancer datasets containing MRI scans and histopathological images and two 
maternal-fetal screening ultrasound images. The novel proposed method has been compared and statistically 
benchmarked to four state-of-the-art deep learning networks: VGG16, ResNet50, Inception V3, and DenseNet169. 
The experimental results showed that the model is competitive to other state-of-the-art models, obtaining ac
curacies between 78.73% and 99.50% depending on the dataset it had been applied on.   

1. Introduction 

Since the outburst of the COVID-19 pandemic in 2020, cancer patient 
and obstetric care landscapes have been distorted. While hospitals got 
more and more crowded with COVID-19 patients, disturbances appeared 
through all aspects of cancer care from diagnostic to tailored or classical 
treatment [1–5], as well as maternal-fetal care [6–8]. Europe and North 
America experienced a lot of pressure on the healthcare system, and 
changes in the routine cancer and maternal-fetal care were necessitated. 
Even if the cancer care remained available, cancer screening programs 
were interrupted. Delaying diagnosis ultimately increased the number of 
preventable cancer deaths [9–11]. The onset of the fear and the anxiety 
of being infected with COVID-19 among individuals, prevented patients 
with potential non-specific symptoms of cancer to avoid consulting 
specialists [12]. 

Colonoscopy rates fell by 4.1%–75% [13], lung screening rates were 
reduced by 57%, 74%, and 56% respectively [13,14]. Cancer biopsies 
also recorded reductions, i.e colon (− 33 to − 79%), and lung (− 47 to 

− 58%). In the case of neuro-oncology patients, things seem even worse 
since the urgency in their care is changing at a much faster pace. So far, 
the impact on brain tumor patients of the COVID-19 pandemic is yet 
unknown [15]. In what regards maternal-fetal care in the COVID-19 
pandemic, long-lasting congenital anomalies of infants have been 
observed, caused either by the actual infection, or by therapeutic ma
neuver (Khan et al., 2020). The number of caesarean sections has also 
increased as a secondary cause of the pandemic, [16]. The importance of 
a correct interpretation of the ultrasound is given by the fact that it al
lows a detailed discussion regarding the prognosis with parents (i.e. 
procedural risks, long-term mortality, morbidity, and, ultimately, 
quality of life). The current approaches have limitations. A study of the 
pre- and postnatal diagnosis discrepancy of congenital anomalies ob
tained by a manually interpreted ultrasound reported a performance 
sensitivity that ranged from 27.5% to 96%, [17]. The lack of necessary 
sonography know-how, fatigue, time pressure, fetal involuntary move
ment, and different characteristics of the patient, such as obesity might 
make it difficult, or in some cases, even impossible for a sonographer to 
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get a clear ultrasound image. Studies reported that obesity can lead up to 
50% in misreading ultrasound in women with a body mass index over 
30 kg/m2 versus women with normal weight, [18]. 

It is a reality the fact that the COVID-19 pandemic has changed the 
face of medical practice. We must find means to support medical care at 
a faster rhythm. Early, fast, and accurate diagnosis from medical 
imagining can be achieved by employing Artificial Intelligence methods, 
such as deep learning (DL) neural networks (NNs). The COVID-19 
pandemic has opened the path for a fast integration of deep learning 
algorithms in the healthcare system. The Food and Drug Administration 
has already granted the regulatory approval for select DL diagnostic 
software to be used in clinical practice [19,20]. This puts even more 
pressure in optimizing the design of the deep NNs, so that their appli
cability should improve the healthcare system [21]. In this paper we are 
interested in brain, lung, colon cancer, and maternal-fetal ultrasound 
classification using medical imagining. 

Several research studies have applied DL for the classification of lung 
nodules into benign and malignant using CT scans. For instance, Kumar 
et al. used an autoencoder with deep features to classify lung cancer, 
obtaining an accuracy of 75.01% [22], while Sun et al. obtained an 
81.19% accuracy using deep belief networks, [23]. Non-small cell lung 
cancer histopathology images were classified using a deep convolutional 
neural network (DCNN) achieving a 0.97 AUC, [24]. Another CNN 
achieved 84.15% accuracy, 83.96% sensitivity, and 84.32% specificity 
in classifying lung nodules on CT images, [25]. Other obtained results 
are a merger between Unet and Resnet obtained 84% accuracy [26], 
while a CNN applied on PET/CT lung images reached a 90% sensitivity 
[27]. 

Deep learning architectures achieved competitive results when 
applied on histopathological images of colon tumors. Two of such ex
amples are: a shallow neural network that obtained an accuracy of 84% 
in classifying colon cancer [28], and a spatially constrained CNN merged 
with a neighboring ensemble predictor that obtained and AUC of 0.917, 
and F1 of 0.784 [29]. 

Regarding the classification of brain tumors, an input cascade CNN 
applied on MRI images obtained 0.84 dice, 0.88 specificity, and 0.84 
sensitivity [30], while a multi-layer stacked denoising auto-encoder 
network obtained an average accuracy of 98.04% [31]. Other reported 
results include: a U-net which obtained around 0.88 sensitivity for high 
grade glioma, and 0.84 sensitivity for low grade glioma, [32]; a condi
tional generative adversarial network which obtained 0.68 dice, 0.99 
sensitivity, and 0.98 specificity, [33]; a fully convolutional neural 
network which obtained 0.86 dice, [34]; a multi-view deep learning 
framework which obtained a 0.55 accuracy, [35]; and a deep wavelet 
autoencoder which obtained an average accuracy of 0.93, [36]. 

In [37], the authors applied different pretrained CNNs and two 
non-deep learning methods on two datasets regarding maternal-fetal 
ultrasounds and obtained accuracies ranging from 54% to 93.6%. 
Fujitsu started a research project with the Cancer Translational Research 
team and the Department of Obstetrics and Gynecology Showa Uni
versity School of Medicine, in which they study fetal heart ultrasounds 
using deep learning, [38,39]. Namburete et al. proposed a fully CNN for 
the segmentation of the 3D fetal brain, [40]. A convolutional neural 
network was used for automated fetal cardiac assessment using 4D 
B-mode ultrasound, [41]. A segmentation of the fetal lungs and brains 
was obtained by using deep learning with sequential forward feature 
selection techniques and Support Vector Machines on magnetic reso
nance images (MRI) and ultrasounds, [42]. 

Finding the best architecture of the CNN for the problem at hand can 
be quite tricky. There is no perfect NN model that can be applied on 
every problem. This hypothesis was first introduced by Wolpert and 
Macready under the name of the ‘no-free-lunch-theorem’ [43]. All the 
NNs play the role of a certain ‘restaurant’ that provide us a ‘dish’, in our 
case a measure of performance, at a certain ‘price’ – the computational 
cost. Determining the ‘smart-deal’ takes a lot of time and effort. In recent 
years, the interest in automatically learning NN architectures has 

increased substantially. Three directions can be distinguished: rein
forcement learning [44–48], progressive neural architecture search 
[49], and evolutionary computation [50,51]; Xie & Yuille, 2017). In 
reinforcement learning, the structure of the model is encoded as the 
sequence of actions the agent makes. The built model is afterwards 
trained and tested. The reward of the agent is computed as the obtained 
validation performance. In the progressive neural architecture search a 
sequential model-based optimization strategy is used. A surrogate model 
learns simultaneously to guide the search through the structure space. In 
evolutionary computation, the NN’s structure is represented as an array, 
which is subjected to random mutations and recombinations during the 
search process. Each model is trained and evaluated on the validation 
set. The top performing model is returned. All automated methods 
outperform manually tuning of the architectures. Ingenious architecture 
representations together with interesting methodologies have delivered 
astonishing results when compared to human designed networks, 
[51–53]. The downside is represented by the necessity of significant 
computational resources. Nevertheless, neuroevolution necessitates less 
computational time than reinforcement learning models, [54]. 

We propose the use of differential evolution in determining the best 
NN architecture. We have applied and tested this approach on three 
different cancer datasets. For comparison purposes we have compared 
our best performing models with state-of-the-art DL algorithms, such as 
VGG-16, ResNet50, Inception V3, and DenseNet169. A thorough statis
tical analysis is performed, to determine is the obtained results are 
robust and trustworthy. 

The remaining part of the paper is organized in the following 
manner. Section 2 describes briefly the related work in the field, Section 
3 presents the design and implementation of the novel model, while 
Section 4 summarizes the benchmarking datasets, the design of experi
ments and parameter settings. Section 5 details the experimental results 
obtained by the proposed model and other state-of-the-art DLs, followed 
by thorough statistical assessment them. Section 6 comprises the dis
cussion. The paper ends with Section 7 that contains the conclusions. 

2. Related work 

The need for a fast and reliable diagnosis, led to the quest of finding 
the best architecture of CNNs for the problem at hand. Recent studies 
have proven that by automatically determining the network’s archi
tecture we obtain far better results rather than by performing it manu
ally. As we have state above, three directions are established: 
reinforcement learning, progressive neural architecture search, and 
evolutionary computation. By 2019, there were over 300 works pub
lished papers regarding NN architecture search, [55]. 

In [47], the authors proposed a neural architecture search method 
together with the algorithm named REINFORCE, first published in 1992, 
[56]. REINFORCE estimated the parameters of a recurrent neural 
network, parameters that represented the sequence of actions that the 
agent took. The authors used as reward for the agent the classification 
accuracy obtained by the new designed model on the validation data. 
The study has been extended in Ref. [48] through a more controlled 
search space by using stacked cells, and through the replacement of the 
REINFORCE algorithm with the proximal policy optimization algorithm, 
developed by Ref. [57]. In Ref. [46] the same neural architecture search 
method has been used, only the authors have replaced the policy 
gradient with the Q-learning method. The Q-learning algorithm was also 
deployed by Ref. [44] the difference between the studies being the lack 
of exploitation of the cell structure in the latter. In Ref. [45] the authors 
added an extra layer to the recurrent neural network trained through the 
policy gradient. In Ref. [58], the authors developed an evolutionary 
reinforcement learning scheme, which involved alternating physical and 
evolutionary dynamics, that ultimately led to building networks that 
were able to promote self-assembly of a certain structure at a faster and a 
better manner than other methods, such as intuitive cooling protocols. 
The newly developed networks were able to select between two 
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polymorphs that were equal in energy and had been formed in unpre
dictable quantities under slow cooling protocols. No human input was 
needed, beyond the specification of which target parameter to promote. 

[49] proposed a progressive neural architecture. The method im
plements a progressive scan of the neural architecture search space, 
choosing at each step the best performing ones. The networks’ valida
tion errors are collected and used to train a surrogate function which will 
predict the validation error of the succeeding architectures [59]. pro
posed a Pareto-optimal progressive neural architecture search that 
merges the architecture proposed by Ref. [49] with a time-accuracy 
Pareto optimization problem. Technically, a new time predictor is 
added in order to do a joint prediction of time and accuracy to each 
candidate architecture, searching over the Pareto front. 

The area of neuroevolution uses evolutionary computation strategies 
to define the NNs’ architecture [60]. Different types of evolutionary 
algorithms and stochastic gradient descent are used to learn the struc
ture and/or the hyperparameters of the network [61]. combined a hi
erarchical genetic representation that models the design pattern used by 
human experts, and expressive search space for complex topologies. In 
Ref. [52] AmoebaNet-A image classifier has been evolved through the 
modification of the tournament selection of an evolutionary algorithm. 
The selection was modified by introducing an age property to favor the 
young genotypes [50]. proposed a new automated method, CoDeep
Neet, that optimizes the DNN’s architecture using the neuroevolution 
technique of NEAT, [62]. NEAT is used to evolve topologies, weights, 
and hyperparameters. (Xie & Yuille, 2017) deployed a genetic algorithm 
to optimize the CNN’s architecture. 

In another study, the authors developed a scalable evolutionary al
gorithm for NN architecture search [63]. They have applied their novel 
method to the evolution of deep encoders. In Ref. [64], meta-models 
with ensemble members can be used to estimate the accuracy of 
different CNNs. Their advantage consists in reducing the training time 
from 33 GPU days to 10 GPU days, gaining the same competitive results 
as other state-of-the-art techniques. A drawback of their approach is that 
they do not report the required number of training runs needed to reach 
that performance. 

In [65] the authors show that neuroevolution performs the same as 
gradient descent on the loss function in the presence of Gaussian white 
noise. In this study numerical simulations were performed in order to 
illustrate the correspondence between the two methods which can be 
detected when applied to shallow and deep neural network. This 
connection between machine learning and statistical mechanics was also 
pointed out in Ref. [66]. The authors provide a review of recent works 
which show the associations between deep learning and different 
mathematical and physical methods such as random landscapes, jam
ming, dynamical phase transitions, chaos, spin glasses, Riemannian 
geometry, random matrix theory, nonequilibrium statistical mechanics, 
free probability. Contrary to the above-mentioned studies, authors such 
as Khadka et al. (Khadka et al., 2019), suggest that we should be careful 
when comparing neuroevolution methods to gradient descent, on gen
eration of neuroevolution being not sufficient enough for such a 
comparison. 

Thorough reviews of modern-day neuroevolution which present 
various significant features of the process, including large-scale 
computing, advantages of novelty and diversity, the power of indirect 
encoding, meta-learning and architecture search, together with future 
challenges can be studied in Refs. [67,68]. 

Different from the above methods, we propose the use of differential 
evolution for determining the architecture of CNNs. The obtained results 
of this method prove that it is competitive in terms of performance to 
other state-of-the-art CNNs. 

3. The model 

3.1. Convolutional neural Network’s architecture 

Convolutional Neural Networks (CNNs) are a specific type of NNs. 
They architecture usually consists of three types of layers: convolutional 
layer (CONV), pooling layer (POOL), and fully connected layer (FC). The 
CONV layer uses filters that perform convolution operations by scanning 
the input and producing a feature map. The CONV’s parameters include 
the filter size and the stride. The POOL layer is applied after a con
volutional layer and downsamples the feature map producing spatial 
invariance. The FC layer works on a flattened input, where each input is 
connected to all neurons. The FC is the last layer of the CNN’s 
architecture. 

In terms of hyperparameters in a CNN we encounter the size of the 
filter, the stride (i.e. number of pixel by which the window moves after 
each operation, and zero-padding (i.e. the process of boarding with zeros 
the input). 

In a CNN we have as activation functions the rectified linear unit 
layer (ReLU), with its variants the Leaky ReLU, and Exponential linear 
unit, ELU, and the softmax classifier. ReLU, Leaky ReLU, or ELU are used 
on all elements of the volume. They induce non-linearities in the 
network, whereas softmax is the generalized logistic function that takes 
as input a score vector y ∈ Rn and outputs a probability vector p ∈ Rn. 
The functions are defined as follows:  

• ReLU: 

f (x)=
{

0, for x < 0
x, for x ≥ 0 .

• Leaky ReLU: 

f (x)=
{

0.01x, for x < 0
x, for x ≥ 0 ,

• ELU: 

f (α, x)=
{

α(ex − 1), for x < 0
x, for x ≥ 0 ,

• Softmax: 

p=

⎛

⎜
⎜
⎜
⎝

p1

.

.

.

pn

⎞

⎟
⎟
⎟
⎠
,wherepi =

exi

∑n
j=1exj 

A CNN can be considered as a complex function that is trained using 
the back-propagating error signals computed as the difference between 
the ground truth and the prediction at the top layer. Designing a CNN’s 
architecture is captivating. Some researchers argue that deeper CNNs 
obtain a higher accuracy in classification problems. Many networks have 
their structures set deterministic, even if stochastic processes are used to 
avoid over-fitting, [69,70]. Having deterministic structures limits the 
flexibility of the CNNs, hence we need to automatically learn the net
works architecture. 

3.2. Differential evolution 

The inception of Differential Evolution (DE) appeared in 1997. This 
heuristic optimization algorithm is flexible, versatile, easy to implement 
and understand, [71,72]. DE mimics the natural biological evolution 
process. Technically, DE generates a temporary individual having as 
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starting point the differences within populations, followed by an 
evolutionary restructuration of the population. Several studies proved 
its suitability for solving numerical optimization problems, having a 
good global convergence and robustness. DE has been applied fruitfully 
in constrained image classification [73], image segmentation [74], 
neural networks [75], linear array [76], global optimization problems 
[77], and other areas [78–81]. 

Different from other evolutionary computation algorithms, DE uses a 
population-based global search strategy. The complexity of the mutation 
operation of the differential is reduced by using one-on-one competition. 
By adapting the candidate solutions, DE explore in parallel different 
solutions. It enables dynamic track of the current search through its 
memory capacity, making possible the adjustments of the search strat
egy. Through this a global convergence and robustness is achieved. 

Mathematically speaking, the population of each generation G con
tains N candidates. Each candidate can be written as XiG = (x1

iG, x2
iG, …,

xM
iG), i = 1, 2, …, N, where M is the number of features. 

The initial population of the candidate solutions is randomly 
generated between the upper and lower bound of the search interval for 
each feature. 

Xn
i =Xn,L

i + rand()⋅
(
Xn,U

i − Xn,L
i
)
, = 1, 2,…,M, n = 1, 2, …N,

where Xn,L
i is the lower bound of the variable Xn

i , and Xn,U
i is the upper 

bound of the variable Xn
i . 

For the mutation process to take place, we need to select three vec
tors Xr1 ,G , Xr2 ,G , Xr3 ,G . The following formula is applied: 

Vn
G =Xn

r1,G +F⋅
(

Xn
r2,G − Xn

r3,G

)
,

where Vn
G+1 is the donor vector, F ∈ [0, 1] is the variation factor that 

regulates the amplification degree of the differential variable. Xn
r2,G −

Xn
r3,G.

Regarding the recombination process, the operator develops a trial 
vector Un

i,G+1 from the target vector Xn
i,G and the donor vector Vn

G+1, using 
the following formula: 

Un
i,G+1 =

{
Vn

i,G+1, if rand()≫Cp or i = Irand

Xn
i,G, if rand() > Cp and i ∕= Irand

,

where i = 1, 2, …M, n = 1, 2, …, N, Irand ∈ [1, M] is an integer random 
number, and Cp is the recombination probability. The recombination 
strategy allows the old and the new candidate solution to exchange part 
of the code in order to form a new individual. 

After the mutation and recombination processes are over, the se
lection process begins. The target vector Xn

i,G is compared with the trial 
vector Un

i, G+1. The vector that minimizes the fitness function values gets 
selected to be part of the next generation: 

Xn
i,G+1 =

⎧
⎨

⎩

Un
i,G+1, if f

(
Un

i,G+1

)
< f

(
Xn

i,G

)

Xn
i,G, otherwise

,

where i = 1, 2, …,M, and n = 1, 2, …, N. 
The DE method’s steps are the following:  

1. Initialize candidate population.  
2. Repeat:  

2.1. Mutation operation  
2.2. Recombination operation  
2.3. Selection operation 

Until the stopping criterion is met. 

3.3. Our approach 

In this subsection we will present a DE/CNN algorithm for deter
mining competitive CNN’s architectures. At first, we define how to 
represent the network’s architecture, the size of the filters in each con
volutional layer, and the hyperparameters’ values as a candidate solu
tion using a fixed-length array, followed by several DE processes defined 
in subsection 3.2. The DE processes help us navigate through the search 
space in a more professional manner, which lead us into finding high- 
quality solutions for our problems. 

3.3.1. Network’s architecture representation 
We define a population of candidate architectures which can be 

encoded in a fixed-length integer array. A CNN is composed of an input 
layer, λ convolutional hidden layers, π pooling layers, and an output 
layer. Each hidden layer has a certain number of hidden neurons, nH. 
The number of pooling layers is smaller than the number of hidden 
layers. Each filter has a width, fw, and a height, fh. The depth of the filter 
is not variable since it matches the number of color channels the image 
has (e.g. 2 for grayscale images, and 3 for RGB images). The hyper
parameters are the recombination probability, Cp, and the mutation 
variation factor, F. Therefore, a candidate solution is an integer array 
xi = (λ, nH, fw,fh,Cp,F), i = 1,…,q, where q is the number of candidate 
solutions in the population. Because all the candidate solution must be of 
a fixed length to apply mutation, recombination, and selection, we 
decided that each hidden layer in a candidate solution contains the same 
number of hidden units. After each convolutional layer, we added in the 
network a max pooling layer, except for the last one which is a dense 
layer. 

Our study has a limitation: we have applied DE to determine only the 
number of convolutional layers, their units, the filter’s height and depth, 
and the recombination probability and mutation variation factor. In 
future studies we shall find a way to encode the candidate solution using 
different number of hidden units in each convolution. However, our 
experiments and statistical analysis prove that the proposed model can 
achieve competitive performance, using DE to tune only these features. 
Our method can be scaled up if results are unsatisfying. 

3.3.2. DE/CNN algorithm 
The ReLU function was chosen as the non-linear activation function 

for each convolutional layer. The softmax function was chosen as acti
vation function between the last dense layer and the output layer. The 
pool size was (2, 2).  

1. Input: the image dataset D, the number of generations G, the number 
of candidate solutions in each generation N, Xi = (λi, nHi, fwi, fhi,

Cpi, Fi) i = 1, 2,…,N the candidate solutions.  
2. Initialization: Randomly generate a set of candidate solutions Xi,1,

i = 1, 2,…, N, and built N CNNs having λi number of convolutional 
layers and pooling layer, nHi number of hidden units per convolu
tional layer, the filter size (fwi, fhi), and the recombination proba
bility Cpi, and mutation variation factor Fi. Train the CNNs and 
record their accuracies and losses over the validation dataset. Each 
CNN’s loss will represent the candidate solution’s fitness value. 

3.1. Mutation: for each individual perform mutation using the vari
ation factor Fi; 

3.2. Recombination: for each pair of individuals perform recombi
nation with Cpi;

3.3. Select: the individuals that will for the next generation based on 
their validation loss. 

4. Repeat 

until stopping criterion is met (number G of generations is 
reached) 
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4. Output: the best candidate solution that will represent the networks’ 
architecture 

The DE/CNN architecture is presented in Fig. 1. 

5. Application case studies: lung, colon, brain tumor images, 
and maternal-fetal ultrasound planes 

The novel proposed method has been applied on two publicly 
available cancer datasets that regard lung and colon cancer histopath
ological images, brain cancer MRI images, and two maternal-fetal ul
trasound images. In what follows we shall briefly describe the datasets. 

5.1. Datasets 

Brain Cancer Dataset (Bc) (https://doi.org/10.34740/kaggle/ds 
v/1183165). The data is split into Training and Testing. The training 
set has four decision classes: 826 cases of glioma tumor, 822 cases of 
meningioma tumor, 827 cases of pituitary tumor, and 395 cases with no 
tumor. The testing set has four decision classes: 100 cases of glioma 
tumor, 115 cases of meningioma tumor, 74 cases of pituitary tumor, and 
105 cases with no tumor [82]. Brain tumors are very complex, pre
senting abnormalities in terms of location and size. The type of tumor 
(glioma, meningioma, pituitary) determines the course of treatment and 
patient prognosis. We have preprocessed and resized them at 250 ×

250. Fig. 2 presents a sample image of each class. 

Lung and Colon Cancer Histopathological Images (LCc) (https://arxiv. 
org/abs/1912.12142v1, https://github.com/tampapath/lung_colon_i 
mage_set) dataset contains 25000 images, with 5 decision classes, each 
class having 5000 samples. The histopathological images are 768 ×

768, and we have resized them at 250 × 250. The dataset is built using 
the Augmentor package from 750 images of lung tissues (250 cases of 
benign tissue, 250 cases of lung adenocarcinomas, and 250 cases of 
squamous cell carcinoma), and 500 images of colon tissue (250 cases of 
benign tissue, and 250 cases of colon adenocarcinomas). We have split 
the dataset into two, one concerning lung cancer Lc (3 decision classes), 
and the other one concerning colon cancer Cc (2 decision classes). Fig. 3 
presents three sample images from Lc, while Fig. 4 presents two sample 
images from Cc [83]. 

The maternal-fetal ultrasound dataset (https://zenodo. 
org/record/3904280#.YfjeTPVBzL9) was collected from two different 
hospitals. The dataset is split into two different sets. The first set (FP) 
contains 6 classes, 4 of which regard the fetal anatomical planes: 
abdomen (711 cases), brain (3092 cases), femur (1040 cases), and 
thorax (1718 cases), the fifth regarding the mother’s cervix (1626 
cases), and the last one includes the less common image plane (4213 
cases). The second set (FB) contains images of the brain planes that are 
split in 3 classes: trans-thalamic (1638 cases), trans-cerebellum (714 
cases), trans-ventricular (597 cases). The first set has 12 400 images, 

Fig. 1. DE/CNN architecture.  

Fig. 2. (a) glioma tumor, (b) meningioma tumor, (c) pituitary tumor, (d) no tumor. (https://doi.org/10.34740/kaggle/dsv/1183165), [82].  

Fig. 3. (a) adenocarcinoma, (b) squamos cell carcinoma, (c) benign tissue 
(https://arxiv.org/abs/1912.12142v1, https://github.com/tampapath/lung_ 
colon_image_set) [83]. 

Fig. 4. (a) adenocarcinoma, (b) benign tissue (https://arxiv.org/abs/1912.121 
42v1, https://github.com/tampapath/lung_colon_image_set) [83]. 
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while the second contains 2949, (Burgos-Artizzu, 2020). Fig. 5 presents 
three sample images from FP, while Fig. 6 presents two sample images 
from FB [37]. 

5.2. Design of experiments and parameter settings 

In this study, we have compared the performance of the CNN, which 
had its architecture established through DE, with the performance of 
state-of-the-art DLs: VGG-16, ResNet50, Inception V3, and Dense
Net169. All models were run on the five datasets. 

To assess the models’ performances, we have used the 10-fold cross- 
validation as validation method. For an effective and objective evalua
tion of the CNN algorithms, we have evaluated their results through a 
throughout statistical analysis. The following rule has been applied to all 
the methods that have been compared in this study: each method was 
executed in 100 independent runs (i.e. 100 times in a complete cross- 
validation cycle). The purpose of this procedure is to estimate the 
sample size needed for a high statistical power. A model lacks in per
formance if the sample size is too low, or on the contrary, using too many 
computational and time resources might not lead to a significant in
crease in performance. Hence, using a sample size of 100 computer runs, 
we have obtained a statistical power greater than 95%, with type I error 
α = 0.05, for all the statistical tests that have been performed. The 
average accuracy over 100 complete cross-validation cycles (ACA) is 

recorded for each model. Besides the ACA, we have computed the 
standard deviation (SD), the 95% confidence interval (CI 95%), preci
sion, recall, and F1-score. The standard deviation gives us an insight on 
the model’s stability. To demonstrate the omnibus robustness, the 
methods must be applied on multiple datasets. If the SD varies from 
dataset to dataset, from smaller to larger values, then the method has 
failed in providing the omnibus robustness. We have considered the 
Precision-Recall curves (PR AUC) and not the Area under the ROC curve 
(AUC), because the datasets are imbalanced. Imbalanced data can lead 
to a probable change in false positives, which are used in computing the 
false positive rate used by AUC. Using PR AUC we obtain more precise 
results, due to the fact that we compare false positives with true posi
tives, and not true negatives, as in the AUC case. 

The statistical evaluation involved the following tests, which have 
been applied on the sample which contained 100 performances obtained 
after running the method 100 independent computer runs on the test set:  

• Normality tests: the Kolmogorov-Smirnov & Lilliefors test and Shapiro- 
Wilk W test. We have applied both tests to check whether the per
formance samples are governed or not by the Gaussian distribution. 
We must keep in mind that if the tests’ results show that the data is 
not Normal, then we can make use of the Central Limit Theorem, that 
states that if the sample size is large enough (surpasses 30), then the 
distribution of the sample is approximately Normal [84]. 

• Equality of variances: Levene’s and Brown-Forsythe tests. If the sam
ples have unequal variances, then the Type I error might be affected, 
resulting false positives. In practice, the issue is less problematic, 
since we are using the samples with the same size (in our case 100) 
[84,85]. 

There are different methods for testing whether the data sample is 
governed by the Normal distribution or not. We have used the Shapiro- 
Wilk test because it has more power to detect the non-normality, but it is 
used in general for smaller sample sizes. Kolmogorov-Smirnov & Lil
liefors test is recommended for larger sizes, but has a lesser power [86]. 

If the normality assumption and the equality of variances assumption 
are met, then we can proceed and apply t-test, One-Way ANOVA together 
with Tukey’s post-hoc test to differentiate between the algorithms’ 
performances. The One-Way ANOVA is used to establish whether there 
are any statistically significant differences between the means of three or 
more samples. It is important to understand that One-Way ANOVA is an 
omnibus test statistic that cannot reveal which groups are statistically 
significantly different from each other. Thus, to determine which sam
ples differ from the others, we need to use a post-hoc test and the t-test 
for independent variables. Tukey’s Honest Significant Difference com
pares all possible pair of means and gives us the answer. 

The initial population of the DE/CNN contained N = 20 candidate 
solutions, and G = 50 generations. The recombination probability was 
generated from the interval [0.5, 0.7], so that new architectures to be 
generated at a faster pace, while the mutation variation factor was 
generated from the interval [0.3, 0.6]. The initial population candidate 
solutions were created from the intervals [1, 6] and [20, 300], while the 
kernel sizes from [2, 5]. We have set the spatial stride 1. We have applied 
10 training epochs with a batch size of 64. The training phase of each 
candidate solution took around 4.7 min on a GeForce RTX 3070 GPU. 

Fig. 5. (a) fetal abdomen, (b) fetal brain, (c) maternal cervix, (d) fetal femur, 
(e) fetal thorax, (f) other (https://zenodo.org/record/3904280#.YfjeTPVBzL9 
[37],. 

Fig. 6. (a). trans-ventricular, (b) trans-thalamic, (c) trans-cerebellar 
(https://zenodo.org/record/3904280#.YfjeTPVBzL9 [37]. 

Table 1 
DE/CNN Average accuracy over 100 computer runs (ACA%), standard deviation (SD), CI 95%, precision, recall, F1-score, and network structure on the Bc, Lc, Cc, FP, 
and FP datasets.  

Database ACA SD CI 95% Precision Recall F1-score Structure (no. convolutions/no. hidden units 

Bc 90.04 2.322 (89.57, 90.50) 0.90073 0.90 0.90027 (4, 273) 
Lc (99.05) 0.808 (98.88, 99.21) 0.99072 0.99 0.99028 (5, 235) 
Cc 99.50 0.502 (99.40, 99.59) 0.99919 1 0.99911 (4, 214) 
FP 96.29 2.701 (95.75, 96.82) 0.99305 0.98 0.98646 (4, 233) 
FB 78.73 1.994 (78.33, 79.12) 0.78634 0.77 0.78148 (5, 220)  
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The experiment can be redone with different settings. DE was able to 
find competitive CNN’s architectures that achieved high performances. 
Even if at the begging of the process the accuracy of the best candidate 
solution was not high enough, the accuracies started to improve gen
eration by generation. Being an optimizing method, DE assures that at 
the end of the process the candidate solution will be improved. 

The results of the experiments are described in the Results section. 
The DE/CNN together with the above mentioned DLs were evaluated 
over the three benchmarked datasets. 

6. Results 

6.1. Experimental results 

The results of the experiments regarding the classification of brain 
tumors, lung, colon cancer, maternal-fetal planes, and brain planes ob
tained after applying DE/CNN are depicting in Table 1 in terms of ACA, 
SD, 95% confidence interval (CI), precision, recall, F1-score, and net
work’s structure. 

From Table 1 we can see that DE/CNN performs excellent on the Lc, 
Cc, and FP datasets, (99.05, 99.50, and 96.29% accuracies), very good 
on the Bc dataset (90.04% accuracy), and good on the FB dataset 
(78.73% accuracy). The SDs are fairly small on Bc, Lc, Cc, and FP sets, 
ranging from 0.502 to 2.701, proving the robustness and stability of the 
model. 

In what follows, we shall present the data screening process that 
involved the Kolmogorov-Smirnov and Lilliefors test and the Shapiro Wilk 
W test. Table 2 show the obtained results. 

From Table 2, we can see that no matter what dataset we have 
applied our model on, the sample data is not governed by the Normal 
distribution. Recall that we have mentioned that in this sort of situation 
we can always make use of the Central Limit Theorem, therefore by 
having a sample size of 100 ACAs we can assume that the distributions 
are approximately Gaussian, and we can carry on with the other sta
tistical tests. 

6.2. Statistical assessment 

We have evaluated the DE/CNN by statistically comparing its results 
with the performances of other DLs applied on the same datasets. The 
competitors of the proposed model are the following state-of-the-art 
DLs:  

• VGG16 is considered to have an excellent architecture. It has won the 
ILSVR (ImageNet) competition in 2014. The VGG16 does not have 
large number of hyper-parameters. Instead, its architecture consists 
of convolutional layers of 3 × 3 filter with stride 1, same padding, 
and a maxpooling layer of 2 × 2 filter with stride 2. After a series of 
convolutions followed by maxpooling, the architecture ends with 
two fully connected layers and a softmax for the output. The VGG16 
has 16 layers that have weights [87].  

• ResNet50 stands for Residual Network 50. It has won the ILSVR 
(ImageNet) competition in 2015. ResNet’s signature is the concept of 
skip connection. The skip connection allows an alternative cutoff 
route for the gradient to flow through the network. In this way, the 

model can learn an identity function so that any higher level per
forms as well as a lower layer in the CNN. The ResNet50 has 48 
convolutional layers, 1 maxpool, and 1 averagepool layer [88].  

• Inception V3 aims to be more computational efficient. Its architecture 
is progressively built starting with factorized convolutions that 
reduce the computational efficiency by reducing the number of pa
rameters in the network. Another characteristic of the Inception V3 
architecture is that it replaces bigger convolutions with smaller 
convolutions, speeding up the training process. Besides smaller 
convolutions, the network supports asymmetric convolutions, and an 
auxiliary classifier (a small CNN) inserted in its architecture during 
training between other layers. This classifier acts as a regularizer. 
Inception V3 reduces the grid size through pooling operations [89].  

• DenseNet129 is short for Dense CNN. In DenseNet each layer receives 
additional input, known as collective knowledge from all the previ
ous layers. In this way, the network is more compact, with fewer 
channels. Instead of using a deep architecture, DenseNet reuses the 
features. It does not sum the output feature map of the layer with the 
following feature map, it concatenates them [90]. 

Table 2 
Testing the normality of the DE/CNN’s ACA.  

Database Kolmogorov-Smirnov Shapiro-Wilk W 

K–S max D Lilliefors p S–W W p-level 

Bc 0.268 0.01 0.690 0.000 
Lc 0.355 0.01 0.635 0.000 
Cc 0.306 0.01 0.670 0.000 
FP 0.196 0.01 0.878 0.000 
FB 0.287 0.01 0.798 0.000  

Table 3 
Average ACAs of other DLs vs. DE/CNN.  

Algorithm Datasets – validation accuracies (%) 

Bc Lc Cc FP FB 

DE/CNN 90.04 99.05 99.50 96.20 78.73 
VGG16 86.97 97.41 99.03 83.18 68.75 
ResNet50 87.14 95.84 99.11 89.44 71.45 
Inception V3 86.24 99.18 99.49 91.13 72.25 
DenseNet 169 91.04 99.47 99.52 92.98 74.02  

Table 4 
Testing the equality of variances.  

Dataset Variable Levene F(1, df)/p- 
level 

Brown-Forsythe (1,df)/ 
p-level 

Bc DE/CNN vs. VGG 5.247/0.023 4.927/0.027  
DE/CNN vs. 
ResNet50 

0.804/0.370 0.928/0.336  

DE/CNN vs. 
Inception v3 

8.997/0.003 8.654/0.003  

DE/CNN vs. 
DesNet169 

8.503/0.003 7.880/0.0054 

Lc DE/CNN vs. VGG 77.006/0.000 59.172/0.000  
DE/CNN vs. 
ResNet50 

143.537/0.000 138.422/0.000  

DE/CNN vs. 
Inception v3 

0.156/0.692 0.021/0.8824  

DE/CNN vs. 
DesNet169 

13.359/0.000 6.730/0.010 

Cc DE/CNN vs. VGG 19.355/0.000 16.708/0.000  
DE/CNN vs. 
ResNet50 

54.949/0.000 40.751/0.000  

DE/CNN vs. 
Inception v3 

0.039/0.842 0.039/0.842  

DE/CNN vs. 
DesNet169 

0.158/0.690 0.158/0.690 

FP DE/CNN vs. VGG 9.587/0.002 3.273/0.071  
DE/CNN vs. 
ResNet50 

0.505/0.477 0.300/0.584  

DE/CNN vs. 
Inception v3 

67.540/0.000 42.472/0.000  

DE/CNN vs. 
DesNet169 

2.204/0.139 1.551/0.214 

FB DE/CNN vs. VGG 54.763/0.000 29.474/0.000  
DE/CNN vs. 
ResNet50 

57.660/0.000 37.259/0.000  

DE/CNN vs. 
Inception v3 

81.663/0.000 37.723/0.000  

DE/CNN vs. 
DesNet169 

178.368/0.000 38.364/0.000  
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All the algorithms have been run under the same conditions for the 
comparison to be fair and objective. The results are displayed in Table 3. 

From both Table 3 we can see that the DE/CNN performs almost the 
same as all the other DLs on the Cc dataset, on the Bc dataset performs 
better than VGG, ResNet50 and Inception V3, but worse than DenseNet 
169, whereas on Lc dataset it performs better than VGG and ResNet50, 
and comparable as Inception V3 and DenseNet169. On the FP and FB 
dataset the DE/CNN surpassed the other DLs. This proves that using DE 
to determine a CNNs architecture can be fruitful. 

We were interested in verifying the equality of variances on each 
dataset using Levene’s and Brown-Forsythe tests. This was an important 
step in our statistical analysis, because we wanted to apply One-Way 
ANOVA and post-hoc Tukey to verify whether indeed, they were or 
weren’t any statistical significant differences between our proposed 
model and the other competitors. Table 4 presents the results of the two 
tests. 

From Table 4 we can draw the following conclusions: DE/CNN vs. 
ResNet50 on the Bc dataset, DE/CNN vs. Inception V3 for the Lc dataset, 
and DE/CNN vs. Inception V3, and DenseNet169 for the Cc dataset, DE/ 
CNN vs. ResNet50, and DenseNet169 for the FP have equal variances. 
This implies that they behave the same. In the rest of the cases all the 
models behave differently having different variances (p-level < 0.05). 
We made use of the fact that we have the same number of observations 
in each sample (100 computer runs) and proceeded with applying One- 
Way ANOVA and post-hoc Tukey, to verify whether indeed there are 
statistical difference between the competitors’ behavior. The One-Way 
ANOVA results are depicted in Table 5. 

Table 5 presents the differences between the DL’s validation 

Table 5 
One-way ANOVA results.  

Dataset SS df MS F-value p-level 

Bc 1789 4 447 75 0.0000 
Lc 949 4 237 129 0.0000 
Cc 23 4 6 13 0.0000 
FP 9472 4 2368 167 0.0000 
FB 5489 3 1372 30.20 0.0000  

Fig. 7. One-way ANOVA – Least Square Means (a) Bc dataset, (b) Lc dataset, (c), Cc dataset, (d) FP dataset, (e) FB dataset.  
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performances in terms if sums of squares (SS), degrees of freedom (df), 
mean squares (MS), F-value, and p-level (contrast quadratic poly
nomial), [91,92]. Even if the accuracies seem close enough, the test 
reveals that there are statistical differences between the competitors. In 
Fig. 7a, b, 7c, 7d, and 7e we present the visual representations of the 
least squares means for the five datasets. 

The One-way ANOVA revealed that there are significant differences 
between the competitors’ performances, but one should ask the 
following question: are there differences between all the competitors, or 
just between some of them? To answer the question above, we have 
applied Tukey’s post-hoc test. Its results presented in Table 6 shows that: 
on the Bc dataset there are significant differences between the perfor
mances of DE/CNN vs. all the rest of the DLs, except for DenseNet169; on 
the Lc dataset there are significant differences between the perfor
mances of DE/CNN vs. VGG16 and ResNet50; on the Cc dataset there are 
significant differences between the performances of DE/CNN vs. VGG16 
and ResNet50; while on the FP and FB datasets there were significant 
difference between DE/CNN and all the DLs, proving that the method 
improves the performance. 

For a better visualization, we present in Fig. 8a, b, 8c, 8d, and 8e, the 
distribution of the samples that contain the accuracies of each CNN 
recorded after 100 computer runs in the shape of boxplots together with 
the obtained p-values obtained after applying the t-test for independent 
variables. We demonstrate once more that there are statistical differ
ences between the models. 

The benchmarking process was completed by presenting results that 
have been reported in literature on the same five datasets. It should be 
noted that these results were obtained by networks which were pre- 
trained on ImageNet Large Scale Visual Recognition Challenge, and 
then fully retrained using these datasets. In our study, the networks were 
not previously pre-trained. The datasets are recent, therefore there are 
not many papers in recent literature (2020–2022) that regard them. 
Through Tables 7–10 we enable a fair and direct comparison between 
DE/CNN and the most recent methodologies. 

Regarding the FB dataset [97], reported 74% accuracy, the result of 
the best performing CNN, the DenseNet-169. 

7. Discussion 

In this study we have proposed a new manner of applying neuro
evolution for establishing the architecture of a CNN by using DE. The 
method was applied on three cancer datasets that contain MRI scans and 
histopathological images. Correspondingly to the statistical analysis 
performed, even if the validation accuracies values do not vary so much, 
there are significantly differences in performances between the models. 

Through this study we propose a new method of choosing a CNN’s 
architecture and also a statistical framework for validating the results of 
different DLs. We have demonstrated that even if the performances of 
different methods might seem almost equal, in fact the differences be
tween them are statistically significant. The statistical framework 
included benchmarking results in terms of ACA, SD, 95% CI, precision, 
recall, F1-score, along with Kolmogorov-Smirnov and Lilliefors, 
Shapiro-Wilk W, Levene, Brown-Forsythe, t-test for independent vari
ables, One-way ANOVA and Tukey’s post-hoc tests. The results revealed 
that even if on the Bc dataset there were differences between the DE/ 
CNN and the other DLs, on the Lc and Cc datasets the DE/CNN obtained 
comparable results with Inception V3 and DenseNet 169, whereas on FP 
and FB, the DE/CNN obtained better performances. It can be seen that 
the performance of a classifier depends on the dataset used. 

8. Conclusions 

In this study we propose a new way to determine the architecture of a 
deep neural network through the use of differential evolution. At first, 
we proposed an encoding method for representing the structure of each 
CNN with a fixed-length integer array, after which we have used dif
ferential evolution processes (mutation, recombination, and selection) 
to explore in an efficient manner the search space. We have tested our 
method on three cancer related datasets that contain MRI scans and 
histopathological images concerning brain, lung, and colon tumors. The 
experimental results were further statistically analyzed in comparison 
with the results obtained by other state-of-the art DLs. The findings show 
that this neuroevolution method for determining a CNNs architecture is 
competitive with other methods. 

Table 6 
Tukey’s post-hoc test results.  

Dataset  DE/CNN VGG16 ResNet50 Inception V3 DenseNet169 

Bc DE/CNN  0.0000 0.0000 0.0000 0.3098 
VGG16 0.0000  0.9881 0.2139 0.0000 
ResNet50 0.0000 0.9881  0.0691 0.0000 
Inception V3 0.0000 0.2139 0.0691  0.0000 
DenseNet169 0.3098 0.0000 0.0000 0.0000    

DE/CNN VGG16 ResNet50 Inception V3 DenseNet169 
Lc DE/CNN  0.0000 0.0000 0.9613 0.1841 

VGG16 0.0000  0.0000 0.0000 0.0000 
ResNet50 0.0000 0.0000  0.0000 0.0000 
Inception V3 0.9613 0.0000 0.0000  0.5554 
DenseNet169 0.1841 0.0000 0.0000 0.5554    

DE/CNN VGG16 ResNet50 Inception V3 DenseNet169 
Cc DE/CNN  0.0000 0.0003 0.9999 0.9995 

VGG16 0.0000  0.9150 0.0000 0.0000 
ResNet50 0.0003 0.9159  0.0005 0.0001 
Inception V3 0.9999 0.0000 0.0005  0.9977 
DenseNet169 0.9995 0.0000 0.0001 0.9977    

DE/CNN VGG16 ResNet50 Inception V3 DenseNet169 
FP DE/CNN  0.0000 0.0000 0.0000 0.0000  

VGG16 0.0000  0.0000 0.0000 0.0000  
ResNet50 0.0000 0.0000  0.0130 0.0000  
Inception V3 0.0000 0.0000 0.0130  0.0046  
DenseNet169 0.0000 0.0000 0.0000 0.0046    

DE/CNN VGG16 ResNet50 Inception V3 DenseNet169 
FB DE/CNN  0.0000 0.0000 0.0000 0.0000  

VGG16 0.0000  0.0373 0.0022 0.0000  
ResNet50 0.0000 0.0373  0.9184 00545  
Inception V3 0.0000 0.0022 0.9184  0.3411  
DenseNet169 0.0000 0.0000 0.0545 0.3411   
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Despite the interesting results, our method still has some drawbacks 
that will be resolved in future works. The limitation of the study consists 
in the fact that we use the same number of hidden neurons for each 
convolutional layer. We aim to explore how the performance changes 

when we set different numbers of hidden neurons using differential 
evolution. Also, in future studies we wish to see whether the perfor
mance improves if we use pretrained networks. 

Fig. 8. Distribution boxplot together with p-level: (a) Bc dataset, (b) Lc dataset, (c) Cc dataset, (d) Fp dataset, (e) Fb dataset.  

Table 7 
Classification performance on the Bc dataset reported in literature of other ML models.  

Reference Fully connected Gaussian Naïve Bayes AdaBoost k-NN Random Forest SVM (linear) SVM (sigmoid) ELM 

[93] 87.88% 68.51% 69.82% 86.48% 84.53% 87.48% 90.19% 86.10%  
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