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Functional magnetic resonance imaging (fMRI) studies have shown that the effect
of repetitive transcranial magnetic stimulation (rTMS) can induce changes in remote
brain regions. In the stimulated regions, low-frequency (≤1 Hz) rTMS induces inhibitory
effects, while high-frequency (≥5 Hz) stimulation induces excitatory effects. However,
these stereotypical effects arising from low- and high-frequency stimulation are based
on measurements of motor evoked potentials (MEPs) induced by pulsed stimulation. To
test the effects of rTMS on remote brain regions, the current study recruited 31 young
healthy adults who participated in three rTMS sessions (10 Hz high frequency, 1 Hz
low frequency, and sham) on three separate days. The stimulation target was based
on individual fMRI activation in the motor cortex evoked by a finger movement task.
Pre- and post-rTMS resting-state fMRI (RS-fMRI) were acquired. Regional homogeneity
(ReHo) and degree centrality (DC) were calculated to measure the local and global
connectivity, respectively. Compared with the sham session, high-frequency (10 Hz)
rTMS significantly increased ReHo and DC in the right cerebellum, while low-frequency
(1 Hz) stimulation did not significantly alter ReHo or DC. Then, using a newly developed
PAIR support vector machine (SVM) method, we achieved accuracy of 93.18–97.24%
by split-half validation for pairwise comparisons between conditions for ReHo or DC.
While the univariate analyses suggest that high-frequency rTMS of the left motor cortex
could affect distant brain activity in the right cerebellum, the multivariate SVM results
suggest that both high- and low-frequency rTMS significantly modulated widespread
brain activity. The current findings are useful for increasing the understanding of the
mechanisms of rTMS, as well as guiding precise individualized rTMS treatment of
movement disorders.
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INTRODUCTION

Repetitive transcranial magnetic stimulation (rTMS) is a safe and
non-invasive technique for the treatment of brain diseases. It
is widely believed that low-frequency (≤1 Hz) rTMS exhibits
inhibitory effects and high-frequency (≥5 Hz) rTMS exhibits
excitatory effects on brain activity (Lefaucheur, 2019). However,
these conclusions are primarily based on measurements of
the amplitude of motor evoked potentials (MEPs) elicited
by pulsed TMS of the primary motor cortex. In fact, the
modulatory effects of rTMS on brain activity are much
more complicated.

Resting-state functional magnetic resonance imaging (RS-
fMRI) is increasingly being used to detect TMS-induced brain
activity at the network level. Many studies using this technique
have found that rTMS modulates brain networks or functional
connectivity (FC) (Eldaief et al., 2011; Chen et al., 2013; Halko
et al., 2014; Nettekoven et al., 2014, 2015; Wang et al., 2014;
Watanabe et al., 2014; Andoh et al., 2015; Cocchi et al., 2015,
2016; Ji et al., 2017). While RS-fMRI studies into FC have
increased our understanding of the complex mechanisms of the
modulatory effects of rTMS on brain activity, there are two
limitations for analysis of FC or networks. First, these analyses
can only reveal the relationships between brain activity in distinct
regions. For example, one study found that rTMS modulated
the FC between the lateral parietal cortex with the hippocampus
(Wang et al., 2014), but it is not clear whether the local activity
in the hippocampus was modulated. An alteration in FC does
not indicate a change in brain activity in a specific region. FC is
probably a “bridge” to deliver the stimulus to the hippocampus.
The second limitation is that there are too many options for
the configuration of network or FC analysis. For example, the
most popular seed-based FC analysis has countless options for
the location of the seed region of interest (ROI). This makes it
difficult to compare the results between different studies using
network or FC analysis.

In contrast to network or FC analyses that compare activity
between distributed brain regions, there are a few RS-fMRI
metrics that reflect spontaneous local activity, such as regional
homogeneity (ReHo) (Zang et al., 2004). This measures the local
synchronization of the nearest neighboring voxels (e.g., 7, 19, or
27 voxels). Another metric, degree centrality (DC), measures the
strength of the connectivity of one voxel compared with all other
voxels in the brain (Buckner et al., 2009). DC is one of the least
computationally consuming metrics of graph theory and can be
easily accomplished at the voxel level. Combined measurements
of ReHo and DC could reflect both local and global connectivity
of a specific voxel. ReHo and DC are metrics of “voxel-level
whole-brain” analysis (Zang et al., 2015). In addition, there are
far fewer options for their analysis parameters than other FC
methods (such as the excess of options for seed selection in seed-
based FC analysis). These characteristics of ReHo and DC render
them more suitable for coordinate-based meta-analysis (Zang
et al., 2015) and are further helpful for precise localization of
abnormal activity.

Typical univariate neuroimaging analyses compare differences
between groups in a voxel-wise or region-wise manner.

Multivariate analyses can be applied using machine learning
classification techniques, such as support vector machine (SVM).
In most studies where it is applied, machine learning is used
for differentiating between two independent groups, for example,
comparing patient group to healthy control. Sometimes, machine
learning methods are used to differentiate two conditions
within a group. Borrowing from the concept of paired t
tests, Zhou et al. (2017) proposed a PAIR method for SVM.
Compared with conventional UNPAIR SVM (i.e., taking two
within-group conditions as independent conditions), PAIR SVM
yielded similar performance when applied to an RS-fMRI dataset
with two conditions (eyes closed vs. eyes open), but better
performance when validating in a completely new dataset
(Zhou et al., 2017), suggesting that PAIR SVM could be
better generalized.

The motor cortex is one of the most frequently reported
stimulation targets for rTMS modulation in both healthy
populations (Hartwigsen and Siebner, 2015; Cona et al., 2017)
and those with brain disorders including movement disorders
(Wagle Shukla et al., 2016; Brabenec et al., 2019), stroke
rehabilitation (Ludemann-Podubecka et al., 2016; Lee et al.,
2019), and other disorders (Siebner et al., 2003; Odorfer et al.,
2019; Pei et al., 2019; Zhang et al., 2019). Some of these studies
performed RS-fMRI before and after modulation and analyzed
the network changes. However, there is large variation in the
analytical methods applied from study to study. These included
voxel-to-voxel based dynamic FC (Zhang et al., 2019), graph
theory using 24 ROIs (Lee et al., 2019), whole-brain graph
theory (Pei et al., 2019), and seed-based FC (Brabenec et al.,
2019). While it could be concluded that rTMS of the motor
cortex modulates the motor network, such a conclusion appears
too general since it is difficult to identify which specific brain
areas are modulated.

The current study aimed to investigate the modulatory
effects of rTMS on specific brain areas by measuring local
RS-fMRI metrics. We compared low-frequency (1 Hz)
and high-frequency (10 Hz) rTMS with a sham condition.
For precise and individualized localization of rTMS, self-
initiated finger movement task was performed and the
fMRI activation peak voxel in the motor cortex was
taken as the stimulation target for each individual. We
hypothesized that local spontaneous activity in motor-
related subcortical regions could be modulated. In addition
to univariate statistical analyses (ANOVA and t tests), we
used PAIR SVM (Zhou et al., 2017) to differentiate between
rTMS conditions.

MATERIALS AND METHODS

Participants
Thirty-three healthy right-handed participants were recruited
through an online advertisement. Two participants were
excluded, one because head motion exceeded 2 mm in translation
or 2◦ in rotation in any direction, and one because there
was no task-related activation in the fMRI. A total of 31
participants were included in the final analysis (23 females,
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FIGURE 1 | Finger tapping, a block design task with a self-paced rhythm at around 2 s, during a 4-min MRI scan.

mean age ± SD: 23 ± 2.8 years). All participants met the
inclusion criteria of no history of neuropsychiatric disorders
or head trauma, no substance abuse, and no psychiatric
disorders. The whole study was approved by the Ethics
Committee of the Center for Cognition and Brain Disorders
(CCBD) at Hangzhou Normal University (HZNU). Informed
consent was obtained from each participant before the first
scanning session.

Experimental Design
Our experiment consisted of a within-subject, single-blinded,
and placebo-controlled design. Each participant received three
sessions of rTMS intervention (one each of 10 Hz, 1 Hz, and sham
stimulation) across three separate days with an interval of more
than 1 week between each session. The order of the conditions
was balanced across participants. Participants underwent an RS-
fMRI scan session, a task fMRI session, and a 3D-T1 session
before rTMS. They then received an rTMS intervention in the
TMS room near the MRI room. Immediately (less than 30 min)
after that, both RS-fMRI and task fMRI were scanned again.

During RS-fMRI scanning, participants were asked to keep
their eyes closed, relax, remain as motionless as possible, not
think of anything in particular, and not fall asleep.

During the task fMRI session, participants were asked to
perform a 4-min block design task consisting of finger tapping.
For the finger tapping blocks, participants were asked to press
a button with their right index finger with a self-paced rhythm
about every 2 s when a picture of clock appeared in the center of
the screen. The picture remained visible for the whole 30 s of the
block (Figure 1). For the 30-s rest blocks, participants were asked
to relax with their eyes fixed on a cross in the center of the screen.

MRI Data Acquisition
MRI data were acquired on a 3T scanner (MR-750, GE Medical
Systems, Milwaukee, WI, United States) at the CCBD of HZNU.
The fMRI scanning sessions included an 8-min RS-fMRI session
and a 4-min task session with the following parameters: repetition
time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle
(FA) = 90◦, 43 slices with no gaps, matrix = 64 × 64,
field of view (FOV) = 220 mm × 220 mm, acquisition
voxel size = 3.44 mm × 3.44 mm × 3.2 mm. A high-
resolution T1 anatomical image was obtained (176 sagittal slices,

thickness = 1 mm, TR = 8.1 ms, TE = 3.1 ms, FA = 8◦,
FOV = 250× 250 mm).

Data Analysis on Pre-rTMS MRI
The pre-rTMS task fMRI data and T1 image acquired on the
first day were used to localize the stimulation target for each

TABLE 1 | Peak voxels of finger tapping activation in the motor cortex.

Subject Brodmann Coordinate t value p value
ID area (x y z)

Sub001 4 -44 -15 58 6.25 <0.001

Sub002 6 -54 -6 50 6.22 <0.001

Sub003 4 -36 -19 59 5.84 <0.001

Sub004 4 -32 -20 56 3.91 <0.001

Sub005 4 -42 -16 62 8.89 <0.001

Sub006 6 -43 -8 63 5.05 <0.001

Sub007 6 -42 -14 49 8.36 <0.001

Sub008 6 -51 -9 51 9.21 <0.001

Sub009 6 -43 -14 58 3.82 <0.001

Sub010 6 -50 -6 49 6.40 <0.001

Sub011 6 -50 4 47 6.34 <0.001

Sub012 4 -42 -15 56 8.29 <0.001

Sub013 6 -57 0 44 4.44 <0.001

Sub014 6 -42 -12 57 10.1 <0.001

Sub015 6 -36 -15 57 8.58 <0.001

Sub016 6 -30 -24 60 2.78 <0.01

Sub017 6 -39 -9 54 5.91 <0.001

Sub018 4 -36 -25 61 8.59 <0.001

Sub019 4 -48 -13 58 5.97 <0.001

Sub020 6 -51 -7 51 9.44 <0.001

Sub021 4 -45 -15 56 5.55 <0.001

Sub022 4 -36 -23 54 8.45 <0.001

Sub023 4 -54 -7 42 9.90 <0.001

Sub024 6 -45 -3 47 3.32 <0.01

Sub025 4 -55 -3 42 7.64 <0.001

Sub026 4 -43 -15 56 5.26 <0.001

Sub027 6 -51 -5 50 6.95 <0.001

Sub028 6 -51 -6 48 6.92 <0.001

Sub029 6 -50 0 48 11.28 <0.001

Sub030 6 -57 0 44 6.93 <0.001

Sub031 3 -32 -27 57 8.52 <0.001

Mean -45 -10 53
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FIGURE 2 | Three-level (1 Hz/low frequency, 10 Hz/high frequency, and sham)
one-way ANOVA on changes in brain activity (post- minus pre-rTMS). The
right cerebellum showed significant differences between the three stimulation
conditions (GRF correction, single voxel p < 0.001, cluster level p < 0.05).

individual. Statistical parametric mapping 12 (SPM121) was
used for subject-level activation analysis (high-pass filtering,
>1/128 Hz, was selected in “fMRI Model specification”) after
preprocessing, which included slice timing correction, head
motion correction, co-registering the functional images to T1
image, and then spatial smoothing with a Gaussian kernel of
6 mm full width at half maxima (FWHM). Finally, the individual
activation map was generated using a linear general model. Then,
for each participant, the individual peak activation voxel around
“hand knob/M1” (Yousry et al., 1997) was identified as the
individualized rTMS stimulation target. The motor cortex was
successfully activated in 31 participants (Table 1).

fMRI-Navigated rTMS
The individual activation map was loaded into BrainSight
TMS navigation system (Rogue Research, Montreal, Canada)
for fMRI-guided rTMS intervention. TMS (Magstim Rapid2,
Magstim Co., Whitland, United Kingdom) was applied with a

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

figure-of-8 coil (diameter = 70 mm). Surface electromyogram
(EMG) leads were placed over the right abductor pollicis brevis
(APB) muscle. Participants sat in a cozy chair with both arms
relaxed on their thighs. Full muscle relaxation was confirmed
through visual observation and EMG monitoring. The coil
(toward forehead) was firstly placed over the left primary motor
area (M1, hand knob) at an angle of 45◦ from the coronal
midline for measuring the MEPs in the target muscle during
rTMS sessions. To determine the hotspot, the coil was moved
by distances of 0.5 cm around the hand knob area. The resting
motor threshold (RMT) was quantified as the lowest intensity
that evoked a response (>50 µV) in more than 5 of 10
consecutive trials.

For each stimulation day, 1800 pulses (intensity of 100%
RMT, duration 30 min) were delivered (Eldaief et al., 2011).
For the low-frequency (1 Hz) stimulation, the pulses were
delivered continuously for 1800 s. For the high-frequency
(10 Hz) stimulation, the pulses were delivered with 60 trains of
stimulation each lasting 3 s, with rest intervals of 27 s in between
(total duration: 1800 s). For the sham stimulation, the coil was
tilted 90◦ off the scalp with one wing touching the scalp (Lisanby
et al., 2001). Sham stimulation was randomly assigned at 1 Hz
with half of participants and 10 Hz with the other half. No side
effects of rTMS occurred in the current study.

Data Preprocessing for Group-Level
Comparisons of Pre- and Post-rTMS
fMRI
The RS-fMRI data preprocessing was conducted using
DPABI_V4.02 software (Yan et al., 2016) and included (1)
discarding the first 10 volumes to allow the signal to reach
equilibrium and the subjects to adapt to the scanning noise,
(2) correcting for the acquisition time delay between slices, (3)
rigid-body realignment for estimation and correction of motion
displacement, (4) co-registering the functional images to the T1
image, (5) normalization to MNI space using the EPI template in
SPM12, (6) regressing out 24 head-motion parameters (Yan et al.,
2013), (7) removing the linear trend, and (8) band-pass filtering
(0.01–0.08 Hz). After the preprocessing, ReHo (Zang et al., 2004)

2http://rfmri.org/dpabi

TABLE 2 | Alterations in activity (post- minus pre-rTMS) in different brain regions for the High, Low, and Sham stimulation conditions from one-way ANOVAs.

Brain region MNI (x y z) Cluster size (mm3) F value Peak voxel p value

ReHo

Right Inferior Semi-Lunar Lobule 21 -78 -57 621 11.571 <0.001

Left Inferior Semi-Lunar Lobule -21 -63 -57 351 9.29 <0.001

Right Cerebellum VIII/VIIb 39 -60 -54 864 15.02 <0.001

Right Brainstem 0 -27 -51 459 14.18 <0.001

Right Cerebellum Crus1 24 -69 -36 459 12.26 <0.001

DC

Right Inferior Semi-Lunar Lobule 18 -75 -57 405 8.86 <0.001

Right Cerebellum VIII/VIIb 42 -57 -54 729 12.91 <0.001

ReHo, regional homogeneity; DC, degree centrality; MNI, Montreal Neurological Institute.
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FIGURE 3 | Pairwise paired t tests between stimulation conditions on the ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates
of the peak voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.

and DC were calculated. For the ReHo calculation, the Kendall
concordance coefficient was calculated for the time courses of
seven neighboring voxels. We did not use the conventional 27
neighboring voxels because we were interested in subcortical
areas, most of which have a small volume. For DC calculation,
a correlation coefficient r > 0.25 was set as the threshold,
and the negative connections were excluded when calculating
weighted DC maps because of their ambiguous interpretation

(Murphy et al., 2009; Weissenbacher et al., 2009; Wang et al.,
2011). A predefined gray matter mask provided by SPM123, with
tissue probability >20%, was used to restrict the DC calculation
within the gray matter (Zuo et al., 2012). Spatial smoothing
with a Gaussian kernel of 6 mm FWHM was then applied to the
mReHo (ReHo value of each voxel divided by the mean ReHo

3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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TABLE 3 | Differences between stimulation conditions in the right cerebellum
(paired t tests).

Mean ± SD t value p value

ReHo (Right Cerebellum VIII/VIIb)

High vs. Low 0.13 ± 0.24 3.13 0.004

High vs. Sham 0.22 ± 0.29 4.22 0.0002∗

Low vs. Sham 0.09 ± 0.19 2.48 0.019

DC (Right Cerebellum VIII/VIIb)

High vs. Low 0.12 ± 0.23 2.96 0.006

High vs. Sham 0.20 ± 0.22 4.95 0.00003∗

Low vs. Sham 0.08 ± 0.17 2.56 0.016

ReHo (Right Semi-Lunar Lobule)

High vs. Low 0.23 ± 0.30 4.16 0.0002∗

High vs. Sham 0.17 ± 0.33 2.80 0.009

Low vs. Sham −0.06 ± 0.28 −1.17 0.253

ReHo (Right Brainstem)

High vs. Low 0.15 ± 0.21 4.11 0.0003∗

High vs. Sham 0.01 ± 0.20 0.25 0.805

Low vs. Sham −0.14 ± 0.17 −4.73 0.00005∗

ReHo (Right Cerebellum Crus1)

High vs. Low −0.13 ± 0.18 −3.98 0.0004∗

High vs. Sham −0.15 ± 0.17 −4.87 0.00003∗

Low vs. Sham 0.03 ± 0.19 −0.74 0.463

∗Surviving Bonferroni correction of 0.05/15 = 0.0033. SD, standard deviation;
ReHo, regional homogeneity; DC, degree centrality.

value of the whole gray matter mask) and weighted positive mDC
(weighted positive DC value of each voxel divided by the mean
weighted positive DC value of the whole gray matter mask) maps.

Statistical Analysis
Univariate Analysis
One-way ANOVAs were conducted on the ReHo change and
DC change (post- minus pre-rTMS) to explore differences
between the three stimulation conditions (Low, 1 Hz; High,
10 Hz; and Sham) within the predefined gray matter mask.
The ANOVA F maps were corrected using Gaussian random
field (GRF) correction (single voxel p < 0.001, cluster level
p < 0.05). The ReHo and DC values of the peak voxels in the
surviving clusters were extracted, and then were entered into
SPSS (v204) for further analysis. Paired t tests were performed
between stimulation conditions (High vs. Low, High vs. Sham,
and Low vs. Sham).

Multivariate Analyses Using SVM
Dimensionality reduction
The F map was thresholded at p < 0.05 (uncorrected) to
generate a mask for the feature extraction of each condition
(High, Low, and Sham) and each metric (the ReHo and DC
value of post- minus pre-rTMS for each condition). Thus, 4267
voxels from the gray matter mask (67,541 voxels) were used
for SVM analysis.

Grouping for PAIR SVM
PAIR SVM is a new method for differentiating two conditions
in the context of a within-group design. It has been found
to show better generalization performance in an independent
dataset than using the UNPAIR method (Zhou et al., 2017)
and was therefore implemented in the current study. To

4https://www.ibm.com/analytics/spss-statistics-software

FIGURE 4 | Paired t tests between post- and pre-rTMS on ReHo and DC value of the peak voxel of F maps in the right cerebellum. The coordinates of the peak
voxels were the same as Table 2. *Still significant after Bonferroni correction of 0.05/15 = 0.0033.
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explain, we take the comparison of ReHo change (ReHo
value of post- minus pre-rTMS) between High vs. Sham as
an example. The 31 participants were randomly divided into
groups A and B (n = 15 and 16, respectively). Group A was
assigned to be the “High minus Sham” group (labeled “ + 1”)
and group B was assigned to be the “Sham minus High”
group (labeled “−1”).

SVM Classification
The linear kernel was used to extract the weight for each feature
(Fu et al., 2008). The sequential minimal optimization (SMO)
algorithm was used to handle the very large training datasets
with high speed (Platt, 1998). For optimal generalization, we
used split-half cross-validation, which is more stringent than
other methods such as n-fold or leave-one-out validation. Half
of the dataset (15 or 16 random samples from group A and
group B, respectively) was randomly selected to train the SVM
model, and the remaining half was used as test data. We
then obtained the classification accuracy and corresponding
weighted contribution vector. These calculations were repeated
100 times, and then the mean accuracy and the mean weighted
vector were obtained.

RESULTS

ANOVAs showed significant effects between the three conditions
(Low, High, and Sham) in the right cerebellum VIII extending
to VIIb for both ReHo and DC (Figure 2 and Table 2). Paired
t tests showed that the high-frequency stimulation (10 Hz)
revealed a significantly larger change than the sham stimulation
(mean ± SD = 0.22 ± 0.29, t = 4.22, p = 0.0002, Bonferroni
corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for ReHo,
and was significantly larger change than the sham stimulation
(mean ± SD = 0.20 ± 0.22, t = 4.95, p = 0.00003, Bonferroni
corrected, i.e., 0.05/15 = 0.0033; Figure 3 and Table 3) for DC.
The results of ReHo and DC were similar, while with a bit
slightly more regions for ReHo. Post- vs. pre-rTMS effects of each
stimulation condition is shown in Figure 4.

For the SVM, the classification accuracy of the split-half
validation ranged from 93.18 to 97.24%, specifically: 94.7%
(ReHo) and 93.18% (DC) for the High vs. Low condition, 95.95%
(ReHo) and 94.32% (DC) for the High vs. Sham, and 97.24%
(ReHo) and 95.57% (DC) for the Low vs. Sham (Table 4).
The spatial pattern of voxel-level contribution for discriminative
results was very similar to the spatial patterns of paired t tests
between stimulation conditions (ReHo: Figure 5, DC: Figure 6).

To compare against the SVM, we calculated the area under
the curve (AUC) of the receiver operating characteristic (ROC)
of the peak voxels of the F maps of ReHo (x = 39, y = −60,
z = −54) and DC (x = 42, y = −57, z = −54), respectively. The
pairwise comparisons showed 63–84% accuracy (Figure 7 and
Table 4). As expected, the results were similar to the results of
the pairwise t tests (Figures 5, 6 and Table 3). The comparison
of ReHo and DC values for the high-frequency (10 Hz) condition
vs. sham condition showed the most significant difference in the
right cerebellum.

TABLE 4 | The mean classification accuracy of split-half validation and the area
under the curve (AUC) of the receiver operating characteristic (ROC) of the peak
voxels of the F map of ReHo and DC for pairwise comparison between rTMS
conditions.

PAIR SVM

High Low Sham

ReHo

High 94.70% 95.95%

Low 97.24%

Sham

DC

High 93.18% 94.32%

Low 95.57%

Sham

AUC of the ROC

ReHo

High 0.72 0.84

Low 0.68

Sham

DC

High 0.73 0.82

Low 0.63

Sham

ReHo, regional homogeneity; DC, degree centrality; SVM, support vector machine;
AUC of the ROC, the area under the curve of the receiver operating characteristic.

DISCUSSION

Effects of rTMS in the Cerebellum
The motor cortex is a widely used stimulation target for rTMS
(Lefaucheur, 2019). Many studies have claimed that FC alters
after rTMS on the motor cortex (Nettekoven et al., 2014;
Esterman et al., 2017; Ji et al., 2017; Hawco et al., 2018; Riedel
et al., 2019; Shang et al., 2019). The seed selection and candidate
networks varied among these studies. Although these findings are
helpful for understanding the mechanisms of rTMS modulation,
these results are less helpful to precisely localize the changes
in activity, and hence are difficult to translate into clinical
practice as they do not provide a precisely focused target for
brain stimulation. We found significant condition effects of
rTMS on local connectivity (ReHo) and global connectivity (DC)
in areas VIII/VIIb of the right cerebellum (ipsilateral to the
finger movement) in healthy participants. The cerebellum is
involved in motor function via the cerebello-thalamo-cortical
circuit (Middleton and Strick, 2001). The VIIb region receives
projections from neurons in the subthalamic nucleus and input
from the contralateral premotor areas (Wu and Hallett, 2013).
The current rTMS study stimulated the left motor activation
area and found significantly increased ReHo and DC in the right
cerebellum in the high-frequency (10 Hz) condition, but not in
the low-frequency or sham conditions (Figures 3, 4). The motor
cortex has been commonly considered a stimulation target of
rTMS treatment of movement disorders (Wagle Shukla et al.,
2016). The current finding may therefore have direct importance
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FIGURE 5 | Left column: Brain regions that showed different contributions between stimulation conditions identified by ReHo maps within the mask of uncorrected F
map of ANOVA. Right column: Paired t tests between stimulation conditions on ReHo maps within the mask of uncorrected F map of ANOVA.

for the rTMS treatment of movement disorders with dysfunction
of the motor-thalamo-cerebellum circuit.

The Classification Accuracy of the PAIR
Method for SVM
It has been reported that the PAIR SVM method performs
better than the conventional UNPAIR method in generalization

to a completely new dataset in a within-group design (Zhou
et al., 2017). We found the discriminative accuracy to be 93–
97% (Table 4), with no apparent difference in accuracy across
pairwise comparisons or across metrics (ReHo vs. DC). The
spatial pattern of the weighted contribution identified by the
classification was very similar to that of the paired t test maps
of pairwise comparison between rTMS conditions (Figures 5, 6).
In contrast to the high accuracy of SVM, no any single
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FIGURE 6 | Left column: Brain regions that showed different contributions between stimulation conditions identified by DC maps within the mask of uncorrected F
map of ANOVA. Right column: Paired t tests between stimulation conditions on DC maps within the mask of uncorrected F map of ANOVA.

voxel could correctly differentiate between rTMS conditions,
with the highest showing accuracy of only 84% (AUC of the
ROC, Table 4). The SVM results suggest that both high- and
low-frequency rTMS significantly modulated brain activity in
widespread but distinct ways. Although only the right cerebellum
survived correction for multiple comparisons, other motor-
related regions including the left cerebellum and the bilateral
sensorimotor cortices were also modulated by high- and low-
frequency rTMS (Figures 5, 6). Although the effect size of
these brain regions was small, combinations of these brain

regions through the SVM could accurately differentiate between
rTMS conditions.

The Metrics ReHo and DC
Regional homogeneity reflects the temporal local
synchronization or local connectivity of a given voxel with
its nearest neighbors (7, 19, or 27 voxels) (Zang et al., 2004).
DC calculates the total number of connections or total weighted
connectivity of a given voxel with all other voxels in the brain
(Buckner et al., 2009). ReHo has been reported to be decreased
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FIGURE 7 | The area under the curve (AUC) of the receiver operating
characteristic (ROC) of the peak voxels of the F maps of ReHo (x = 39,
y = -60, z = -54) and DC (x = 42, y = -57, z = -54).

in the cerebellum in patients with movement disorders (Jiang
et al., 2016; Liu et al., 2017). The current findings demonstrate
that the ReHo value in the right cerebellar regions VIII/VIIb can
be significantly enhanced by high-frequency rTMS in healthy
participants, but not in low-frequency or sham stimulations.
Although the patterns of DC and ReHo were very similar
(Figure 2 upper vs. lower; Figure 5 vs. Figure 6), they did show
slight discrepancies. Future studies should further compare
the two methods.

Distinct Effects of High- and
Low-Frequency rTMS
A recently published review supported the viewpoint that high-
frequency rTMS will recruit more neural networks than low-
frequency rTMS (Lefaucheur, 2019). Since TMS activates circuits,
the neurobiological changes in activity can be observed at areas
distant from the stimulation site. For example, stimulating the
precentral gyrus contralateral to a source of pain at a frequency
of 5–20 Hz induces analgesic effects (Lefaucheur, 2016). Low-
frequency (≤1 Hz) and high-frequency (≥5 Hz) stimulation
are two classic rTMS paradigms and cause inhibitory effects
through long-term depression (LTD) of synaptic transmission,
and excitatory effects through long-term potentiation (LTP),
respectively (Chen et al., 1997; Pascual-Leone et al., 1998; Post
et al., 1999). Low-frequency pulsed TMS reduces the amplitude
of MEPs, while high-frequency pulsed TMS enhances MEP
amplitude (Lefaucheur, 2019). However, there is no evidence to
assume from the MEP amplitude that inhibitory/excitatory effects

are due to the LTD/LTP in other rTMS applications, such as
rTMS treatment (Lefaucheur, 2019). The rTMS aftereffect highly
depends on the property of the brain network and the status
of the population (Lefaucheur, 2019). This makes it difficult to
say whether low-frequency rTMS induces inhibitory effects, or
high-frequency rTMS induces excitatory effects on brain function
in remote regions. For instance, increased FC between the left
posterior inferior parietal lobule and hippocampal formation was
reported after low-frequency rTMS, and decreased FC between
default mode network nodes has been reported after high-
frequency rTMS (Eldaief et al., 2011). A similar paradox occurs
with theta burst stimulation (TBS), another rTMS technique.
Intermittent TBS (iTBS) is thought to be excitatory, and
continuous TBS (cTBS) is thought to be inhibitory (Rossini et al.,
2015). Nevertheless, increased FC was found after stimulation
of the prefrontal cortex by cTBS in healthy controls (Dan et al.,
2016), and decreased FC has been reported after stimulation
of the parieto-occipital vertex by iTBS in patients after stroke
(Volz et al., 2016).

The therapeutic importance of rTMS results from the
modulatory effects it can mediate on certain abnormal brain
areas. The results of the present study provide evidence for one
such rTMS paradigm that has these effects: a total of 1800 10-
Hz rTMS pulses successfully enhanced the ReHo and DC value
in the cerebellum VIII/VIIb. The potential clinical significance
is that high-frequency rTMS of the motor cortex could be
applied to patients with movement disorders whose pathology
is characterized by decreased ReHo or DC in the cerebellum.
We also show that self-initiated finger movements are a useful
task for individualized target localization. Multi-session rTMS
could induce more reinforced and prolonged aftereffects as 5-Hz
rTMS of the motor area for 2 weeks provides an improvement in
clinical symptoms and increases the rate of return to normal low-
frequency fluctuations (ALFF) (Liu et al., 2015). Nevertheless,
evidence from neuroimaging studies can only provide us with
suggestions for the modulatory effects of rTMS on brain function.
Clinical improvement is the ultimate aim of rTMS interventions.
More studies should be conducted to outline the underlying
mechanisms involved.

CONCLUSION

In conclusion, high-frequency (10 Hz) but not low-frequency
(1 Hz) rTMS on the left motor cortex significantly increased
ReHo and DC in the right cerebellum VIII/VIIb ipsilateral to
the finger movement. SVM multivariate analysis showed 93–97%
accuracy. Our results suggest that univariate and multivariate
analysis, such as SVM, are mutually complementary. The
univariate analysis could precisely localize the rTMS effect at
a voxel level, illustrated by the finding that high- but not
low-frequency rTMS enhanced ReHo and DC in the right
cerebellum. Meanwhile, the multivariate analysis suggested that
both high- and low-frequency rTMS significantly modulate brain
activity in a widespread but distinct manner. Future studies
should investigate which specific symptoms of movement-related
disorders could be modulated by high- or low-frequency rTMS.
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LIMITATIONS

A few limitations of the current study should be addressed
here. (1) It was a small sample study with a single session of
stimulation. This could be the reason for the weak effect. (2)
Although we used a stringent validation, the split-half test, the
feature extraction step of the F map could be considered “double
dipping” or circular analysis. Validation in a new dataset will
provide a more reliable conclusion.
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