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Electron‑acoustic solitary potential 
in nonextensive streaming plasma
Khalid Khan1,4, Obaid Algahtani2,4, Muhammad Irfan3,4 & Amir Ali1,4*

The linear/nonlinear propagation characteristics of electron-acoustic (EA) solitons are examined 
in an electron-ion (EI) plasma that contains negative superthermal (dynamical) electrons as well as 
positively charged ions. By employing the magnetic hydrodynamic (MHD) equations and with the aid 
of the reductive perturbation technique, a Korteweg-de-Vries (KdV) equation is deduced. The latter 
admits soliton solution suffering from the superthermal electrons and the streaming flow. The utility 
of the modified double Laplace decomposition method (MDLDM) leads to approximate wave solutions 
associated with higher-order perturbation. By imposing finite perturbation on the stationary solution, 
and with the aid of MDLDM, we have deduced series solution for the electron-acoustic excitations. 
The latter admits instability and subsequent deformation of the wave profile and can’t be noticed in 
the KdV theory. Numerical analysis reveals that thermal correction due to superthermal electrons 
reduces the dimensionless phase speed (Ūph) for EA wave. Moreover, a random motion spread out the 
dynamical electron fluid and therefore, gives rise to Ūph . A degree enhancement in temperature of 
superthermal (dynamical) electrons tappers of (increase) the wave steeping and the wave dispersion, 
enhancing (reducing) the pulse amplitude and the spatial extension of the EA solitons. Interestingly, 
the approximate wave solution suffers oscillation that grows in time. Our results are important for 
understanding the coherent EA excitation, associated with the streaming effect of electrons in the EI 
plasma being relevant to the earth’s magnetosphere, the ionosphere, the laboratory facilities, etc.

The reduction in binary interactions of the plasma components reduces the particles correlations that restore 
the ionized matter to non-extensive state. The latter has relevance to ionosphere1, magnetosphere2, solar winds3, 
laboratory plasma4, etc. Intriguingly, Maxwell’s statistics fail to describe the dynamics of particles in non-extensive 
plasmas. Vasyliunas5 introduced the distribution function that extended Lurentzian/kappa accounts correctly for 
the superthermal plasmas compositions. Importantly, a long tail associated with the Lorentzian/kappa particle 
distribution function shows deviation from the non-thermal thermodynamic equilibrium. Plasmas with low 
density and/or high-temperature6 have fewer binary collisions and correlation effects among components, and 
they can become non-thermal. In such plasmas, the statistical distribution of particles changes dramatically, 
rendering the traditional Maxwell-Gibbs statistics useless. The kappa or extended Lorentzian distribution func-
tion was initially developed by Vasyliunas7 to characterize the superthermal composition of the collisionless 
plasma in the magnetosphere. The extended Lorentzian function has a long-tailed particles distribution function, 
which deviates considerably from the thermodynamic equilibrium. Furthermore, when holds, the superthermal 
index ( κe → ∞ ) associated with non-thermal constituents restores a Maxwellian plasma state. It’s worth noting 
that superthermal particle states have been seen both in space and in laboratories. The reported thermal and 
superthermal velocity spectra for space plasmas8–10 match well with the Lorentzian distribution function. The 
electron fluid in laser-induced plasma11 achieves a nonequilibrium condition within the typical period, thus the 
kappa distribution function is suitable. The dispersion and damping rates measured for electron-acoustic waves 
(EAWs) in laboratory plasma12 precisely match the calculated superthermal index κe range of 3−4, validating 
the Lorentzian distribution function for hot electrons. Sultana et al.13 studied the nonlinear development of ions 
acoustic (IA) excitations in plasma with kappa distributed electrons and discovered that superthermal electrons 
permit smaller shocks with greater amplitude. The kappa dispersed ions in magneto-dusty electron depletion 
plasma ignite the negative polarity oblique dust-acoustic isolated potentials studied by Shahmansouri and Aline-
jad in14. The Lorentzian plasma approximation may also be used to wave dynamics and related instabilities in 
the interstellar medium15, solar wind16, ionosphere17, auroral zone18, and other areas.

Fried and Gould19 first put forward an idea for excitation of the electron-acoustic (EA) mode. They have 
pointed out that the EA potentials suffer a Landau’s damping effect that decreases with the increase of wave 
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number. In the later investigations20 revealed weak damping of the EA in plasma, that contains both high and 
low-temperature electrons. Such plasma conditions had already been observed in diverse contexts21. Iwamoto22 
has examined the evolution of electron-acoustic wave as well as the high frequency Langmuir mode in nonrelativ-
istic electron-positron plasma. It has been shown therein22 that the low frequency EA excitation Landau damped 
with a relatively larger growth rate in comparison of the Langmuir wave. Saberian and Esfandyari-Kalejahi23 have 
investigated the propagation characteristic of Langmuir excitations in nonextensive electron-positron plasma. 
They have pointed out that super thermal electron/positron give rise to damping/growth of the Langmuir waves. 
Saberian et al.24 investigated the high frequency Langmuir waves in nonextensive electron-positron plasma. It has 
been shown that, superthermal electron/positron cause damping/growth of the longitudinal waves. Importantly, 
a broadband electrostatic noise (BEN) observed at the Earth’s magnetosphere25 as well as at the auroral zone26, 
have confirmed the evolution of EA perturbations. The BEN is thought to be created by EA solitons traveling 
fast the observing spacecraft. Indeed, EAW solitons have been seen in wave activity in the auroral area and the 
geomagnetic tail using FAST satellite data27. Mace and Hellberg28 studied the impact of a magnetic field on such 
electron acoustic solitons using a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) model, and addressed its 
significance to the challenge of BEN interpretation.

We investigate the amplitude modulation of electron acoustic waves (EAWs) using the reductive perturba-
tion approach29 and a one-dimensional model of a plasma comprised of a cold electron fluid and hot electrons 
obeying the kappa type of distribution. Using the traditional reductive perturbation approach and the nonlinear 
field equations of such a plasma we obtained a non-linear KdV equation for our modulation. When comparing 
the result of plasma with vortex distribution to a solitary wave solution with advancing amplitude wave to the 
evolution equation, it is discovered that the amplitude wave takes the form of a solitary wave.

Nonlinear complex physical processes in Plasma physics are well recognised to be related to nonlinear partial 
differential equations (NLPDEs). In general, obtaining localized solutions for NLPDEs such as the non-linear 
Korteweg-de-Vries (KdV) is a difficult task. As a result, some recently improved approximate solutions have been 
developed to overcome on this issue, for example to solve a NLPDEs, researchers used the analytical methods 
like homotopy perturbation approach30,31, sine-cosine method32 and modified simple equation method33. To 
explore the nonlinear differential equation, a powerful combination of an auxiliary parameter approach combin-
ing adomain polynomials and Laplace transformation34. The purpose of this work is to look at how to solve the 
non-linear Korteweg-de-Vries (KdV) equation by using the modified double Laplace decomposition method 
(MDLDM)35,36. The proposed method is the combination of a double Laplace transform and Adomian decompo-
sition methods. This method is an authentic tool for solving the approximate solution for a non-linear problems 
appear in plasma physics. For example, the acoustic waves generated in the ionosphere may have associated 
with a very high amplitude due to the higher magnetic field. Modified double Laplace decomposition method 
(MDLDM) gives a series solution contain the higher order time dependent terms to the non-linear KdV, which 
may helpful to reduce the high amplitudes of the EAWs.

By employing the Vlaso-Poisson simulations, Valentini et al.37 have described evolution of the undamped 
electron-acoustic waves as well as the Langmuir excitations termed as the corner modes. They have also illustrated 
the regime for thumb curve where theses modes coexist. Similarly, the results for sheath formation in electron-ion 
plasma with superthermal electrons are summarised, and obtained generalized Bohm criterion24. It should be 
noted that, our analysis relies on weakly nonlinear and weakly dispersive EA solitary potentials in magnetoplasma 
with streaming electrons. By imposing the modified double laplace decomposition (MDLD) method, we have 
derived distinct numerical solution for EA potential superimposed by finite perturbations. The latter admits 
instability and subsequent deformation against finite perturbations. These results are not elaborated elsewhere.

The rest of the paper is organized as follows: In “Governing equations and model” section, we consider 
the fluid equations (MHD) in the component form. In “Linear stability/instability analysis” section, the linear 
behaviour of the MHD equation is discussed for stability analysis of the shear flow of EA plasma. “Non-linear 
wave analysis” section consists of non-linear analysis of the model. The KdV equation is derived for localized 
solutions as well as for superthermal plasma using a reductive perturbation technique. In “Modified double 
Laplace decomposition method (MDLDM)” section, we discuss some definitions of the proposed method and 
apply the technique to a general non-linear differential equation. In “Applications of MDLDM” section, we apply 
the proposed method to obtain an approximate solution. The effect of different parameters on the phase speed 
Uph , the nonlinearity coefficient A, and the dispersive coefficient B is discussed in the same section. The results 
and discussion are presented in “Results and discussions” section. The conclusion derived from the paper is 
given in “Conclusion” section.

Governing equations and model
Here, we study the propagation characteristics for the electron-acoustic (EA)solitons in a nonnegative-ion (EI) 
plasma that comprises dynamical electrons, superthermal hot electrons, and stationary ions. The EI plasma is 
assumed to be immersed in a uniform magnetic field ( B(0)Ẑ ) in Z-direction. It is assumed that the electrons 
supper a constant shear flow (U (0) = aẐ) in the Z-axis, where a stands for the magnitude of the speed. Impor-
tantly, at electron dynamical scale the phase speed for EA wave is much larger as compared to the thermal speed 
of electrons, i.e ω/K << Uth condition holds. Here UTh(=

√
KBTh/me) represent the thermal speed, with KB 

the Boltzmann constant and Th is the temperature of the hot electrons. The nonlinear evaluation of EA mode is 
governed by the following fluids equations

(1)
∂Nc

∂T
+∇(NcUc) = 0,
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and

where Nc , Uc and Pc designated the number densities, speed and pressure respectively for the cold electrons. 
Moreover, � is the electrostatic potential, e(me) is the electronic charge (mass) and Nh(Ni) represents the number 
densities for hot electrons (ions).

The hot electrons can be taken as inertialess for much large energy and therefore described by the following 
kappa distribution function (Baluku and Helberg38)

where the index ( κe ) accounts for the superthermal electrons. In the presence of magnetic field, the electrons 
may experiences the drift motion as

where UE

{

= C
(

E⊥ × Ẑ
)

/B(0)
}

 , are the electric drift, Up{= −((∂t + Uc · ∇)Uc⊥ × Ẑ)/�c} polarization drift 
and UD{= (−U2

Tc∇⊥ · Nc × Ẑ)/�cNc} are diamagnetic drift of the electron. The velocity component associated 
with the dynamical electrons turns out to be

By using Eqs. (4–6) and after some algebraic manipulation, one can reduce Eq. (1) as

where �c(= eB(0)/Cme) , UTc (=
√
KBTc/me) designate the electron gyro frequency and the acoustic speed respec-

tively with C is speed of light. The components of Eq. (2) in X, Y and Z-direction are

Equation (3) can be expressed in the form as

Equations (7)–(11) describe the evolution of electron-acoustic excitations in non-extensive plasma that comprises 
of dynamical electrons as well as kappa distributed electrons and stationary ions.

Linear stability/instability analysis
In order to examine stability/Instability conditions of a linear mode, we expand the relevant parameters in Eqs. 
(8)–(11) in the form exp[i(KxX + KyY + KzZ − ωT)] up to first order. Thus after some algebraic manipulation, 
we obtain the following quartic equation

(2)meNc

(

∂Uc

∂T
+ Uc · ∇Uc

)

= eNc

(

E + Uc

C
× B(0)

)

−∇Pc ,

(3)∇2� = 4πe(Nc + Nh − Ni0),

(4)Nh = N
(0)
h

{

1− e�

KBTh(κe − 3
2
)

}−κe+ 1
2

,

(5)Uc⊥ = UE + Up + UD ,

(6)Uc = U (0) + UcX + UcY + UcZ + Uc⊥.

(7)

∂Nc

∂T
+

(

UcX
∂

∂X
+ UcY

∂

∂Y
+ UcZ

∂

∂Z

)

Nc + Nc

(

∂UcX

∂X
+ ∂UcY

∂Y
+ ∂UcZ

∂Z

)

+ CNc

B(0)�c

∂

∂T

(

∂2

∂X2
+ ∂2

∂Y2

)

�−
U2
Tc
Nc

�c

(

∂Nc

∂X

∂

∂Y
− ∂Nc

∂Y

∂

∂X

)(

Nc

N
(0)
c

)2

= 0,

(8)
∂UcX

∂T
+ UcX

∂UcX

∂X
− e

me

∂�

∂X
−�cUcY +

3U2
Tc
Nc

(N
(0)
c )2

∂Nc

∂X
= 0,

(9)
∂UcY

∂T
+ UcY

∂UcY

∂Y
− e

me

∂�

∂Y
−�cUcX +

3U2
Tc
Nc

(N
(0)
c )2

∂Nc

∂Y
= 0,

(10)
∂UcZ

∂T
+ UcZ

∂UcZ

∂Z
+ U (0)∂UcZ

∂Z
− e

me

∂�

∂Z
−�cUcZ +

3U2
Tc
Nc

(N
(0)
c )2

∂Nc

∂Z
= 0,

(11)
(

∂2

∂X2
+ ∂2

∂Y2
+ ∂2

∂Z2

)

� = 4πe
(

Nc + Nh − N
(0)
i

)

.
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where C0

(

= (a0 − K2)/4πe
)

,   D0

(

= e/me − 3KBTcA0/meN
(0)
c

)

 , with C1(= (−κe + 1/2)/(κe + 3/2)),

a0

(

= 4πe2N
(0)
h C1/KBTh

)

 , K2
⊥

(

= K2
x + K2

y

)

,   K2
�
(

= K2
z

)

 and K
(

=
√

K2
� + K2

⊥

)

 . Notice that in the limit when 

U (0) = 0 , the coefficients of ω3 and ω vanish and therefor Eq. (12) reduces into a biquadratic equation as already 
obtained in29. Our interest is in the case when U (0)  = 0 , the numerical solution of Eq. (12) reveals real as well as 
imaginary roots. The dimensionless imaginary root ( Im ω̄ ) in Eq. (12), corresponds to instability growth rate, 
depicted versus dimensionless wavenumber ( K̄) in Fig. 1a with variations in streaming speed U (0) = 103 cm s−1 
(solid curve), 2× 103 cm s−1(dashed blue curve) and 3× 103 cm s−1(dotted black curve). See the streaming effect 
of magnetoplasma rises the instability growth rate. The same is given in Fig. 1b versus K̄ when the magnetic field 
B(0) = 105G (solid curve), 2× 105G (dashed curve) and 3× 105G(dotted curve). It reveals that the intensifica-
tion in the B(0) favors instability of the linear EA waves.

Non‑linear wave analysis
For the nonlinear evaluation of electron-acoustic excitations in the nonextensive EI plasma, we use the reductive 
perturbation technique given by Washimi and Tanuili39. In this context, we chose the following stretching and 
the spatial-temporal variables as

where Uph is phase velocity of the waves, Kx , Ky and Kz are the direction cosines of the wave vector along X, Y 
and Z-axis respectively.

The relevant plasma parameters are represented in the form as

(12)

(

C0 −
CN

(0)
c K2

⊥
B(0)�c

)

ω4 +
(

CN
(0)
c U (0)K�K2

⊥
B(0)�c

− 2C0(U
(0))K�

)

ω3

+
(

C0(U
(0))2K2

� − C0�
2
c +

eN
(0)
c K2

⊥
me

− 3C0KBTcK
2
⊥

me
+ D0K

2
� + CN

(0)
c �cK

2
⊥

B(0)

)

ω2

+
(

2U (0)C0K��
2
c −

e U (0)N
(0)
c K�K2

⊥
me

+ 3C0KBTc U
(0)K�K2

⊥
me

− CU (0)N
(0)
c �cK�K2

⊥
B(0)

)

ω − C0(U
(0))2K2

⊥�
2
c − D0K

2
��

2
c = 0,

(13)ζ = ǫ1/2(KxX + KyY + KzZ − UphT), τ = ǫ3/2T ,

Figure 1.   The dimensionless imaginary root Imω̄ (whereω̄ = ω/ω0 with ω0 = 1012 rad/s) in Eq. (12), is plotted 
against the dimensionless wavenumber K̄(= K/K0 with K0 = 106 cm−1 ) with variation in (a) streaming speed 
U (0) = 103 cm s−1 (solid curve), 2× 103 cm s−1 (dashed curve) and 3× 103 cm s−1 (dotted curve). The same 
is depicted versing K̄ when (b) magnetic field B(0)=105G (solid curve), 2× 105G (dashed curve) and 3× 105G 
(dotted curve) when Tc = 103K(Th = 104K) and κe = 3 .
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similarly, the transverse components of electrons speed can be expressed as

it should be noted that ǫ is a trivially very small dimensionless factor that calculates the energy of the disper-
sion and non-linearity. The occurrence of the magnetic field B(0) in the system leads to anisotropy, because of 
which the perpendicular components ( UcX and UcY ) can be stated in an upper order of the parameter ǫ than the 
corresponding factors of velocity UcZ . Therefore, the gyro-motion effects in the higher-order influence in the 
model. The transverse velocity components are extended to jump with ǫ3/2 , while the corresponding component 
of velocity starts with ǫ . The components having ǫ3/2 represent weak velocity perturbation as compared to the 
component having order ǫ.

By using Eqs. (13–15) in Eqs. (7–11) we get lowest orders in ǫ

where C1 = (κe − 1/2)/(κe − 3/2) . By solving Eqs. (15–19) we can acquire phase speed of the EAWs as

where C3 = C1eN
(0)
h /KBTh stands for an expansion parameter. The expansion of the perturbation series beyond 

the first order of ǫ leads to the following perturbations

where C2 = −(−κe + 1
2
)(−κe − 1

2
)/2(κe − 3

2
) . The next higher orders in ǫ for momentum and continuity equa-

tions respectively are

(14)

�

UcZ

Nc

�

�

=





0

N
(0)
c

0



+ ǫ





U
(1)
cZ

N
(1)
c

�(1)



+ ǫ2





U
(2)
cZ

N
(2)
c

�(2),



+ · · · ,

(15)
(

UcX

UcY

)

=
(

0

0

)

+ ǫ
3
2

(

U
(1)
cX

U
(1)
cY

)

+ ǫ2

(

U
(2)
cX

U
(2)
cY

)

+ · · · ,

(16)U
(1)
cY = −CKx

B(0)

(

1+ 3U2
Tc

U2
Th

C1N
(0)
h

N
(0)
c

)

∂�(1)

∂ζ
,

(17)U
(1)
cX = −CKy

B(0)

(

1+ 3U2
Tc

U2
Th

C1N
(0)
h

N
(0)
c

)

∂�(1)

∂ζ
,

(18)U
(1)
cZ = C1eN

(0)
h

KBTh

(

U (0) −
Uph

Kz

)

∂�(1)

∂ζ
,

(19)
∂

∂ζ
U

(1)
cZ = U (0)Kz

Uph

∂U
(1)
cZ

∂ζ
+ U (0)Kz

Uph

∂U
(1)
cZ

∂ζ
− eKz

Uphme

∂�(1)

∂ζ
+

3U2
Tc
Kz

UphN
(0)
c

∂N
(1)
c

∂ζ
,

(20)N
(1)
h = −C1eN

(0)
h

KBTh
�(1) = N (1)

c ,

(21)Uph =
(

U (0) +
√

3C3U
2
Tc
m2

e (N
(0)
h )2 + eN

(0)
c

)

Kz ,

(22)U
(2)
cY =

meUphKy

e

(

1+ 3U2
Tc

U2
Th

C1N
(0)
h

N
(0)
c

)

∂2�(1)

∂ζ 2
,

(23)U
(2)
cX =

meUphKx

e

(

1+ 3U2
Tc

U2
Th

C1N
(0)
h

N
(0)
c

)

∂2�(1)

∂ζ 2
,

(24)
∂2�(1)

∂ζ 2
= 4πe

(

N (2)
c + C1eN

(0)
h

KBTh
�(2) + C2N

(0)
h

e2

K2
BT

2
h

(�(1))2

)

,

(25)

Uph
∂U

(2)
cZ

∂ζ
= 2U (0)Kz

∂U
(2
cZ

∂ζ
+

(

U
(1)
cZ Kz

∂

∂ζ
+ ∂

∂τ

)

U
(1)
cZ

+
(

3U2
Tc
Kz

N
(0)
c

∂

∂ζ
+

3U2
Tc
KzN

(1)
c

(N
(0)
c )2

∂

∂ζ

)

N (2)
c − e

me
Kz

∂�(2)

∂ζ
,
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Using Equations (16–26) we can find the following Korteweg de-Vries (KdV) equation for EAWs as

where A =
(

A2

A1

)

 and B =
(

A3

A1

)

 corresponds to the nonlinearity and dispersion coefficients respectively. Where

also �
(

= �(1)/�0

)

 with �0

(

= 10−11statV
)

. For real values of all the parameters we have A < 0 and B > 0 , 
give rise to the negative potential of the EAWs pulses. To obtain a localized stationary solitary waves solution 
moving to the right, we transform the independent variables ζ and τ to new moving coordinates ( ξ = ζ − µ0τ ), 
where µ0 is the speed of solitary waves in the new coordinate system. Also applying the vanishing conditions as 
� → 0 , d�/dξ → 0 , d2�/dξ2 → 0 at ξ → ±∞ , the localized solution of the equation (27) can be obtained as

where δ0
(

= 3µ0

A

)

 and �
(

= 2

√

B
µ0

)

 represent the amplitude and spatial width of the EA solitons. The product 
δ0�

2(= 12B/A) giving the constant values independent of µ0 will suggest that the taller the amplitudes of the 
solitary waves will result in the faster and narrower the pulse shape accordance with the KdV theory. �

(

= 2

√

B
µ0

)

 
suggests that increasing the solitary wave speed µ0 will increase the amplitudes but a decrease will occur in its 
width. The expression for the electric field can be calculated as

where X̂ , Ŷ  , and Ẑ are the unit vectors along X, Y and Z-axis respectively.

Modified double Laplace decomposition method (MDLDM)
This method is used here for the first to study the nonlinear evolution of solitary potential in nonextensive 
plasma. The modified double Laplace decomposition method has also extensively used to reduce the spatiotem-
poral solutions corresponds for the linear as well as nonlinear deferential equation40–44.

To discuss this method. consider the following non-linear problem of the form

where L is highest order linear operator, ( L = Dn(X,T) = ∂nφ(X,T)/∂Xn ), N is non-linear operator, and R is 
the operator contains the linear terms while f(X, T) is some external function.

Consider a function φ(X,T) for X,T > 0 in XT − plane , the double Laplace transform of the function 
φ(X,T) is defined by45

where S1 and S2 are complex numbers. The double Laplace transform for the partial derivatives of the function 
φ(X,T) can be represented as

(26)

Uph
∂N

(2)
c

∂ζ
= 2U (0)Kz

∂N
(2)
c

∂ζ
+ N (0)

c

(
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∂U

(2)
cY

∂ζ
+ Kx

∂U
(2)
cX

∂ζ
+ Kz

∂U
(2)
cZ

∂ζ

)

+ Kz

(

N (1)
c

∂U
(1)
cZ

∂ζ
+ U

(1)
cZ

∂N
(1)
c

∂ζ

)

+ ∂N
(1)
c

∂τ

− CN
(0)
c

B(0)�c
Uph

(

1− K2
z

)∂3�(1)

∂ζ 3
.

(27)
∂�(ζ , τ)

∂τ
+ A�(ζ , τ)

∂�(ζ , τ)

∂ζ
+ B

∂3�(ζ , τ)

∂ζ 3
= 0,

A1 =
2C1eN

(0)
h

KBThN
(0)
c Kz

(

KzU
(0) − Uph

)

,

A2 =
C1e

2N
(0)
h

K2
BT

2
hKz(N

(0)
c )2

{

(

3C1N
(0)
h + N (0)

c

)(

K2
z (U

(0))2 − 2KzUphU
(0) + U2

ph

)

− 3U2
Tc

(

N (0)
c − C1N

(0)
h

)

}

,

A3 =
1

4Kz

{

1

B(0)�c

{

4CUph(1− K2
z )(KzU

(0) − Uph)

}

+ 1

πeN
(0)
c U2

Th

{

− 2KzUphU
(0)
(

2πme(1− K2
z )(3C1N

(0)
h U2

Tc + N (0)
c U2

Th)− U2
Th

)

+ U2
ph

(

4πme(1− K2
z )
(

3C1N
(0)
h U2

Th + N (0)
c U2
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)

− U2
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)

− K2
z U

2
Th

(

(U (0))2 − 3U2
Tc

)

}}

,

(28)�(ξ) = δ0 sec h
2

(

ξ

�

)

,

(29)E = −∇� = 3µ
3/2
0

AB1/2
sec h2

(

ξ

�

)

tan h

(

ξ

�

)(

KxX̂ KyŶ KzẐ

)−1

,

(30)Lφ(X,T)+ Rφ(X,T)+ Nφ(X,T) = f (X,T), ∀ T ∈ R,

LXLT [φ(X,T)] =
∫ ∞

0

e−S1X

(∫ ∞

0

e−S2T φ(X,T) dT

)

dX,
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and

where    n,m = 1, 2, 3, · · · . From the above definitions, we can deduce that

  The inverse double laplace transform L−1
X L−1

T {φ̄(S1, S2)} = φ(X,T) , is represented by a complex double 
integral formula

  It should be noted that φ̄(S1, S2) , is an analytic function ∀ S1 and S2 defined in the region by the inequalities 
Re (S1) ≥ c and Re (S2) ≥ d , where c, d ∈ R to be considered accordingly.

With the help of these definitions, apply double Laplace transform on both sides of Eq. (30) we obtained

  Using the idea of double Laplace on nth-derivative, we obtained

where

  Here we consider the series solution of the form

the non-linear terms are decomposed as

where An are called Adomian polynomials46 of φ(0),φ(1),φ(2) · · · , given by the following formula

  Hence applying inverse double Laplace on both sides of Eq. (35) and with the help of Eq. (37) we obtain

comparing the terms on both sides we get

(31)LXLT

{

∂n φ(X,T))

∂Xn

}

= Sn1 φ̄(S1, S2)−
n−1
∑

k=0

Sn−1−k
1 LT

{

∂kφ(0,T)

∂Xk

}

,

(32)LXLT

{

∂mφ(X,T))

∂Tm

}

= Sm1 φ̄(S1, S2)−
m−1
∑

j=0

S
m−1−j
1 LX

{∂ jφ(X, 0)

∂Tj

}

,

LXLTφ(X) ψ(T) = φ̄(S1)�̄(S2) = LXφ(X)LT�(T).

(33)L−1
X L−1

T

�

φ̄(X,T)
�

= 1

2π i
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�

c−i∞

eS2T





d+i∞
�

d−i∞

eS1X φ̄(S1, S2) dS1



dS2.

(34)LXLT {Dnφ(X,T)} + RLXLT {φ(X,T)} + NLXLT {φ(X,T)} = LXLT {f (X,T)}.

(35)LXLT {φ(X,T)} = G(S1, S2)−
1

Sn2
RLXLT {φ(X,T)} −

1
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the final solution can be obtain as

Applications of MDLDM
In this section, we consider our model (27) with �(ζ , τ) = φ(ξ , τ) ) and apply MDLDM as discussed in (“Modi-
fied double Laplace decomposition method (MDLDM)” section) to obtained an approximate solution to the 
problem. For this, we can write Eq. (27) in the following non-linear form

with initial condition

where δ0
(

= 3µ0

A

)

 and �
(

= 2

√

B
µ0

)

 represent amplitude and spatial width of the EAWs. The variables in sub-
script of φ in Eq. (39) represent partial derivatives with respect to τ and ξ . Applying the definitions and techniques 
discussed in “Modified double Laplace decomposition method (MDLDM)” section on Eq. (39) as

where G(S1) and A0,A1,A2 · · · · · · can be obtained by using Eqs. (36) and (37) as

Using Equations (42) and (43) in Eq. (41) we get the the following solution

φ(0) = L−1
X L−1

T [G(S1, S2), ]

φ(1) = −L−1
X L−1

T
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1

Sn2
LXLT [Rφ(0)]

}

− L−1
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T
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1
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LXLT [A0]

}
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X L−1

T
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1
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LXLT [Rφ(1)]

}

− L−1
X L−1

T

{

1

Sn2
LXLT [A1]

}

,

φ3 = −L−1
X L−1

T

{

1

Sn2
LXLT [Rφ(2)]

}

− L−1
X L−1

T

{

1

Sn2
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}

,

.

.

.
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1
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}
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T

{

1
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}

,

(38)φ(X,T) =
∞
∑

n=0

φ(n)(X,T).

(39)φτ (ξ , τ)+ Aφ(ξ , τ)φξ (ξ , τ)+ Bφξξξ (ξ , τ) = 0, ∀ ξ , τ ∈ R,
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ξ

�
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,
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,
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ξ

�
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similarly, the other terms can be calculated in the same manner. The final solutions can be obtained

φ(0) = δ0 sec h
2

(

ξ

�

)

,

φ(1) = τ

[

8δ0�
−3B sec h2

(

ξ

�

)

tanh

(

ξ

�

)

+ 2δ0�
−3

(

δ0�
2A− 12B

)

sec h4
(

ξ

�

)

tanh

(

ξ

�

)]

,

φ(2) = τ 2δ0

[

(

−4δ20�
−2A2 + 148�−4AB− 1208�−6B2

)

sec h8(
ξ

�
)

+
(

3δ20�
−2A2 − 136δ0�

−4AB+ 1191�−6B2
)

(

2 sec h6
(

ξ

�

)

− sec h8
(

ξ

�

))

+ 10
(

δ0�
−4AB− 12�−6B

)

(

sec h4
(

ξ

�

)

+ sec h4
(

ξ

�

)

tanh4
(

ξ

�

))

+ 60
(

δ0�
−4AB− 12�−6B

)

sec h4
(

ξ

�

)

tanh2
(

ξ

�

)

+�−6B sec h2
(

ξ

�

)

+ 15�−6B2 sec h2
(

ξ

�

)

tanh2
(

ξ

�

)

+ 15�−6B2 sec h2
(

ξ

�

)

tanh4
(

ξ

�

)

+�−6B2 sec h2
(

ξ

�

)

tanh6
(

ξ

�
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,

Figure 2.   Phase speed ( ̄Uph=Uph/Uph0 with Uph0 = 107 cm s−1 ) varying with κe from 2 to 10 by changing (a) 
hot electron temperature values as Th = 103K (solid curve), 1.1× 103K (dashed curve) and 1.2× 103K (dotted 
curve), (b) cold electron temperature values as Tc = 103K (solid curve), 1.01× 103K (dashed curve) and 
1.02× 103K (dotted curve), (c) U (0) values as U (0) = 105 cm s−1 (solid curve), 1.2× 105 cm s−1 (dashed curve) 
and 1.6× 105 cm s−1(dotted curve) and (d) K̄z values as K̄z(= Kz/K0) = 0.6 (solid curve), 0.609 (dashed curve) 
and 0.619 (dotted curve).
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Results and discussions
For numerical illustrations, we choose an electron-ion (EI) plasma that comprises for superthermal electrons, 
and cold electrons as well as positively charged ions. The number density and magnetic field for the plasma 
ranges N (0) = 1018 cm−3 − 1020 cm−3 , and B(0) = 105G − 107G respectively. Moreover, the temperature for 
superthermal (cold) electrons are taken as Th = 104K(103K) respectively. Such plasma has relevance to the 
Earth magnetosphere, the ionosphere, the laboratory facilities. For the purpose in numerical illustrations, we 
have normalized the phase speed (Uph) , the non-linearity coefficient (A), the dispersion coefficient (B), the wave 
amplitude (� ,φ) with Uph0 = 107 cm s−1 , A(0) = 1011 cm(statVs)−1 , φ0 = 10−10statV  , respectively.

The important results of our study are presented in the following discussion.
Figure 2a depicts the dimensionless phase speed Ūph(= Uph/Uph0 , verses the superthermal index (κe) , for 

the electron-acoustic (EA) solitary pulse at Th = 103K(solid curve), 1.1× 103K(dashed curve),1.2× 103K(dot-
ted curve). It reveals that the thermal correction of superthermal electrons decreases Ūph . We have displayed 
Ūph against κe with variations in Fig. 2b temperature due to the dynamical electrons Tc = 103K(solid curve), 
1.01× 103K(dashed curve),1.02× 103K(dotted curve). See the degree enhancement in Tc gives rise to Ūph . In 
a similar fashion, Fig. 2c,d, illustrate Ūph verses κe with variation in the electron streaming speed (U (0)) , and 

(44)φ(ξ , τ) =
2

∑

n=0

φ(n)(ξ , τ).

Figure 3.   The coefficients Ā(=A/A(0) with A(0) = 1011 cm(statVs)−1 ) and B̄ (=B/B0 with B0 = 10−8 cm3 s−1 ) 
varying with κe from 2 to 10 (a) by changing hot electrons temperature values for Ā as Th = 103K (solid 
curve), 1.1× 103K (dashed curve) and 1.3× 103K(dotted curve), (b) hot electrons temperature values for B̄ 
as Th = 103K (solid curve), 1.05× 103K (dashed curve) and 1.1× 103K(dotted curve), (c) by changing cold 
electrons temperature values for Ā as Tc = 103 (solid curve), 1.3× 103 (dashed curve) and 1.5× 103K (dotted 
curve) and (d) by changing cold electrons temperature values B̄ as Tc = 103K (solid curve), 1.3× 103K (dashed 
curve) and 1.5× 103K (dotted curve).
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obliquity parameter (K̄z) . It infer that both the streaming electrons and the obliqueness (K̄z) enhances the phase 
speed Ūph.

The lower and upper panels in Fig. 3a,b illustrate the dimensionless non linearity Ā(= A/A(0)) and disper-
sion B̄(= B/B0) coefficients, respectively with variations in thermal effects of hot (cold) electrons, i.e., Th(Tc) . 
Importantly note, thermal effect spread out the super-thermal electrons that in turn rises Ā and B̄ . Moreover, 
opposite trend notices for Ā and B̄ with enhancement in Tc as shown in Fig. 3c,d.

For the impact of relevant plasma parameters on the nonlinear steepening and dispersions effects, we have 
plotted in Fig. 4a–d coefficients Ā and B̄ at different values of K̄z and U (0) respectively. Obviously, K̄z and U (0) 
reduces coefficient Ā and B̄ . Thus it reveals that oblique propagation of EA excitations suffer reduction in the 
nonlinear pulse steepening and dispersion.

To show the impact of electronic temperature, we have given the wave solution (27) for pulse-shaped soliton 
against the spatial variable ξ̄ (see Fig. 5a,b). Recall that Th(Tc) decreases(increases) coefficients Ā and B̄ , and 
therefore rises (reduces) the pulse amplitude and spatial extension for solitary potentials. Likewise, the streaming 
speed (U (0)) and the superthermality index ( κe ) also impact the wave profiles as illustrated in Fig. 5c,d.

In Fig. 6a we compare our localized solution (27) with the series solution (44) obtained by the MDLDM 
method. Obviously, at τ̄ > 0 the series MDLDM solution admits spatial deviation with amplification in pulse 
amplitude. The MDLDM solution in Fig. 6b at different values of κe shows that variation in superthermality index 
significantly modifies the EA soliton. The 3D surface plots for both the localized and approximate solution have 
been shown in Fig. 6c,d.

The MDLDM is an excellent tool to calculate analytical solutions of non-integrable system more accurately. 
The obtained results indicates that it is an effective tool for solving the KdV equation. One can see that the 
MDLDM solution satisfies the precise solution in Table 1 at τ̄ = 0.1 and Table 2 at τ̄ = 0.01 , as well as in Fig. 7a,b. 
From tables, it is observed that the absolute error between the localized and approximate solution is reducing 
and approaching to zero by taking larger values for the spatial variable ( −3 ≤ ξ̄ ≥ 3 ) with the temporal variable 
τ̄ = 0.1 and 0.01 respectively. As we know that, the KdV equation permits solitary wave solutions in plasma, 

Figure 4.   The coefficients Ā(=A/A(0) with A(0) = 1011 cm(statVs)−1 ) and B̄ (=B/B0 with B0 = 10−8 cm3 s−1 ) 
varying with κe from 2 to 10 by changing (a,b) K̄z values as K̄z = 0.6 (solid curve), 0.7 (dashed curve) and 0.8 
(dotted curve) and (c,d) Ā and B̄ varying against κe for different values of U (0)=5× 1012 cm s−1 (solid curve), 
10× 1012 cm s−1 (dashed curve) and 15× 1012 cm s−1 (dotted curve).
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and because MDLDM is a good and simple tool for studying the KdV equation, we may use this approach to 
numerically examine the localized behavior of solitons. It is also worth noting that MDLDM’s findings are quite 
near to those of precise solutions. We may use MDLDM for such non-linear equations to compare our results 
and eliminate mistakes in handling such equations because it is a simple approach.

Finally, Fig. 8 illustrates the MDLDM solution with variation in temporal variable as τ̄ = 0.1 (solid curve), 
0.2 (dashed curve), and 0.3 (dotted curve), See enhancement in τ̄ oscillates the pulse shaped soliton and involves 
into subsequent deformation. It is to mention for rigor that MDLDM solution for KdV equation admit instability 
and growth of pulse shaped soliton that cannot be noticed in analytical techniques. The results further show two 
pulse profile of the approximate solution (MDLDM) when the time is increasing from 0.1 to 0.3 respectively. The 
time dependent solutions exhibits oscillation and deviating the stationary solution.

Conclusion
We have examined the linear and nonlinear propagation characteristics of electron acoustics excitations in a 
nonextensive magnetoplasma. The latter contains cold dynamical electrons as well as super thermal electrons 
with positively charged stationary ions. It has been noticed that magnetosphere, ionospheres as well as laboratory 
scenarios are few among the possible outlets for the plasma conditions. For the linear stability analysis, we have 
deducted a fourth order linear dispersion relation admitting a positive imaginary root that corresponds to growth 
rate. We have shown the plasma streaming effect and the magnetic field strength give rise to instability growth. 
We have modelled a KdV equation for super thermal plasmas that is dependent on plasma characteristics such 

Figure 5.   The approximate solution ( �̄ = φ/φ0 with φ0 = 10−11statV given in Eq. (44) is taken against 
the spatial variable ξ̄ (= ξK0) by changing (a) hot electrons temperature values as Th = 103K (solid curve), 
1.1× 103K (dashed curve) and 1.2× 103K (dotted curve), (b) cold electrons temperature values as Tc = 103K 
(solid curve), 1.5× 103K (dashed curve) and 2.5× 103K (dotted curve), (c) U (0) values as 2× 1012 cm s−1 (solid 
curve), 10× 1012 cm s−1 (dashed curve) and 20× 1012 cm s−1 (dotted curve) and (d) changing κe values as 2 
(solid curve), 3 (dashed curve) and 5 (dotted curve).
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as hot electron temperature Th , cold electron temperature Tc , shear flow speed U (0) direction cosine K̄z , phase 
speed Ūph , and magnetic field B(0) . The KdV equation is derived using a reductive perturbation approach for 
nonlinear analysis, and the solutions are quantitatively studied. The current findings are critical for comprehend-
ing nonlinear EA wave’s excitations in the presence of a magnetic field. The approximate solution of the model 
equation is calculated using MDLDM. The analytical and numerical results are compared where good agreement 
is obtained. It should be noted that the solution obtained by MDLDM for the governing model admit instability 
and growth of the pulse shaped solitons that cannot be noticed in other analytical techniques.

Figure 6.   (a) Comparison of localized solution (28) (red curve) vs approximate solution (44)(dotted curve), (b) 
effect of κe =2 (solid curve), κe =3 (dashed curve) and κe =5 (dotted curve) on the MDLDM-solution. Similarly (c) 
3D surface plot for localized solution and (d) 3D surface plot for approximate solution.
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Table 1.   Comparison of localized solution with approximate solution for µ0 = 1,and τ̄ (= τω0) = 0.1.

ξ̄ ζ̄=ξ̄ − µ0 τ̄ Localized solution MDLDM Solution Absolute Error

− 3.0 − 3.1 − 2.2648×10
−13 − 5.0807×10

−13 2.816×10
−13

− 2.5 − 2.6 − 3.132×10
−11 − 8.2781×10

−11 5.146×10
−11

− 2.0 − 2.1 − 4.3314×10
−09 − 1.1595×10

−08 7.2638×10
−09

− 1.5 − 1.6 − 5.9901×10
−07 − 1.6053×10

−06 1.0063×10
−06

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

1.5 1.4 − 4.3028×10
−06 − 1.6056×10

−06 2.6972×10
−06

2.0 1.9 − 3.1114×10
−08 − 1.1623×10

−08 1.9491×10
−08

2.5 2.4 − 2.2498×10
−10 − 8.5107×10

−11 1.3988×10
−11

3.0 2.9 − 1.6268×10
−12 − 7.0592×10

−13 9.2093×10
−13

Table 2.   Comparison of localized solution with approximate solution for µ0 = 1,and τ̄ = 0.01.

ξ̄ ζ̄=ξ̄ − µ0 τ̄ Localized solution MDLDM Solution Absolute Error

− 3.0 − 3.01 − 5.5001×10
−13 − 5.971×10

−13 4.7095×10
−14

− 2.5 − 2.51 − 7.6063×10
−11 − 8.3828×10

−11 7.7646×10
−12

− 2.0 − 2.01 − 1.0519×10
−08 − 1.1608×10

−08 1.0885×10
−09

− 1.5 − 1.51 − 1.4547×10
−06 − 1.6054×10

−06 1.5071×10
−07

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

1.5 1.49 − 1.7718×10
−06 − 1.6055×10

−06 1.6633×10
−07

2.0 1.99 − 1.2812×10
−08 − 1.161×10

−08 1.2014×10
−09

2.5 2.49 − 9.2641×10
−11 − 8.406×10

−11 8.5812×10
−12

3.0 2.99 − 6.6989×10
−13 − 6.1689×10

−13 5.2999×10
−14

Figure 7.   (a) 3D error plot for Table 1and (b) 3D error plot for Table 2.
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