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Purpose: To compare the performances of deep learning (DL) to radiomics analysis (RA)
in predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC)
based on pretreatment dynamic contrast-enhanced MRI (DCE-MRI) in breast cancer.

Materials and Methods: This retrospective study included 356 breast cancer patients
who underwent DCE-MRI before NAC and underwent surgery after NAC. Image features
and kinetic parameters of tumors were derived from DCE-MRI. Molecular information was
assessed based on immunohistochemistry results. The image-based RA and DL models
were constructed by adding kinetic parameters or molecular information to image-only
linear discriminant analysis (LDA) and convolutional neural network (CNN) models. The
predictive performances of developed models were assessed by receiver operating
characteristic (ROC) curve analysis and compared with the DeLong method.

Results: The overall pCR rate was 23.3% (83/356). The area under the ROC (AUROC) of the
image-kinetic-molecular RA model was 0.781 [95% confidence interval (CI): 0.735, 0.828],
which was higher than that of the image-kinetic RA model (0.629, 95% CI: 0.595, 0.663; P <
0.001) and comparable to that of the image-molecular RA model (0.755, 95% CI: 0.708,
0.802; P = 0.133). The AUROC of the image-kinetic-molecular DL model was 0.83 (95% CI:
0.816, 0.847), which was higher than that of the image-kinetic and image-molecular DL
models (0.707, 95% CI: 0.654, 0.761; 0.79, 95% CI: 0.768, 0.812; P < 0.001) and higher
than that of the image-kinetic-molecular RA model (0.778, 95% CI: 0.735, 0.828; P < 0.001).

Conclusions: The pretreatment DCE-MRI-based DL model is superior to the RAmodel in
predicting pCR to NAC in breast cancer patients. The image-kinetic-molecular DL model
has the best prediction performance.

Keywords: breast cancer, neoadjuvant chemotherapy, dynamic contrast-enhanced magnetic resonance imaging,
radiomics, deep learning
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INTRODUCTION

Breast cancer is the most common diagnosed cancer and the most
common cause of cancer death worldwide (1). Neoadjuvant
chemotherapy (NAC) has been well established in managing
breast cancer for patients with locally advanced cancer and
early-stage operable breast cancers of specific molecular subtypes
(2). Pathologic complete response (pCR) is mainly used to
evaluate the degree of regression after NAC, as pCR has been
demonstrated to be associated with better survival (3). However,
only 7%–38% of breast cancers can achieve pCR (4). Thus,
predicting pCR early before NAC is imperative and can timely
switch to a new personalized treatment strategy and exempt from
unnecessary chemotherapy toxicity patients with a low possibility
of pCR.

MRI has been proven to be most accurate for measuring
treatment response based on the change of tumor size or volume
(5). Other than morphologic criteria, kinetic parameters
including quantitative parameters, e.g., Ktrans (volume transfer
constant), Kep (reverse reflux rate constant), Ve (volume fraction
of extravascular extracellular space), and Vp (volume fraction of
plasma), and semiquantitative parameters, e.g., TTP (time to
peak), MaxConc (maximum concentration), MaxSlope
(maximal slope), and AUC (area under the curve), can be
derived from dynamic contrast-enhanced MRI (DCE-MRI),
which can reflect tumor microvascular function such as
vascular density and permeability (6). It has been reported that
reduction in the Ktrans or Kep after two cycles of NAC is
associated with the response to NAC (7, 8). However, only a
few studies with small sample sizes have evaluated the power of
pretreatment kinetic parameters in predicting pCR, with a
reported moderate predictive performance [area under the
receiver operating characteristic (AUROC) = 0.56–0.66] (9, 10).

Recently, imaging-based machine learning approaches have
been used to predict therapeutic response by quantifying the
tumor heterogeneity and irregularity of tissue components (11).
Radiomics analysis (RA) and deep learning (DL) are the two
most popular machine learning approaches, which have
immense capability to obtain minable data by evaluating
tumor features of images (11–14). RA relies on a pipeline
including extraction of numerous handcrafted imaging
features, followed by feature selection and then machine
learning-based classification (11). However, the performance of
radiomics models derived from pretreatment DCE-MRI is
limited in predicting pCR with an AUROC ranging from 0.568
to 0.79 (12, 15, 16). DL can automatically learn discriminative
features directly from images without the necessity of feature
predefinition (17). The AUROC of DL models developed
from pretreatment DCE-MRI alone ranged from 0.553 to
0.7969 (13, 14). In addition, a recent study has shown that the
convolutional neural network (CNN) model based on
pretreatment DCE-MRI (AUROC = 0.7969) had better
prediction performance than the CNN model based on
posttreatment DCE-MRI (AUROC = 0.7737) (13). So far, there
is a lack of head-to-head comparison of predictive performance
between RA and DL models based on pretreatment DCE-MRI in
predicting pCR to NAC. Furthermore, whether an integrative
Frontiers in Oncology | www.frontiersin.org 2
model, which incorporates tumor image features, kinetic
parameters, and molecular biomarkers, could improve
predictive performance remains to be determined.

In this study, women with breast cancer who received NAC
were retrospectively included. The image features and kinetic
parameters of tumors derived from pretreatment DCE-MRI and
molecular information determined by immunohistochemistry
(IHC) were used to develop prediction models. The purpose of
our study was to determine whether the DL model is better than
the RA model in predicting pCR to NAC in breast cancer
patients based on pretreatment DCE-MRI and whether
incorporating molecular biomarkers and kinetic parameters
into image features can improve the predictive performance.
MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Ethics Committee
of Sun Yat-sen Memorial Hospital, with a waiver for informed
consent from all participants. In our institution, a total of 1,757
patients with primary breast invasive cancer were diagnosed
between April 16, 2016, and April 30, 2020. The inclusion criteria
were as follows: 1) an initial diagnosis of primary invasive breast
cancer; 2) DCE-MRI performed before biopsy and within 1 week
before NAC; 3) surgical excision of the tumor whether achieving
pCR or non-pCR after NAC treatment. The exclusion criteria
were distant metastasis (n = 150), another malignant tumor (n =
16), surgery but without NAC (n = 1,187), without any treatment
(n = 33), non-standard NAC treatment (n = 8), or tumor
progression during NAC (n = 7). The patient enrollment
pathway is shown in the consort diagram (Figure 1). Finally,
356 patients were included for analysis. The entire cohorts were
split into independent training and validation dataset by 5-fold
cross-validation (18). Four-fold data (80% of the tumors)
were used as training dataset, and the remaining one-fold
data (20% of the tumors) were used as validation dataset.
The prediction probabilities of five independent validation sets
were collected as a whole set and used to evaluate the model
performance. The 5-fold cross-validation procedure is illustrated
in Supplementary E1 and Supplementary Figure S1.

MRI Protocol
Breast MRI was performed on a 1.5T unit (Magnetom Avanto;
Siemens Medical Solutions, Erlangen, Germany) with patients in
the head-first prone position. The body coil was used as the
transmitter, and a dedicated 8-channel phased-array breast coil
(Siemens Medical Solutions, Erlangen, Germany) was used as the
receiver. MRI sequences consisted of axial T2-weighted turbo
spin-echo (TSE) with short tau inversion recovery (STIR)
sequence; axial T1-weighted volume interpolated body
examination (T1W-VIBE) with Dixon sequence, and axial
diffusion-weighted imaging (DWI) with spectral attenuated
inversion recovery (SPAIR) fat saturation with 2 b values (b =
0, 800 s/mm2) and axial DCE imaging. DCE images were
acquired by using a 3D fat-suppressed T1W-VIBE sequence.
The DCE acquisition consisted of 40–70 measurements with a
March 2022 | Volume 12 | Article 846775
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temporal resolution of 8 s and a total of 5–7 min of imaging time.
After two consecutive measurements, gadodiamide (Gd-DTPA-
BMA) (Omniscan; GE Healthcare, Ireland) was administered via
intravenous bolus injection at a dosage of 0.1 mmol/kg and a
flow rate of 3.5 ml/s, followed by a 20-ml saline flush. Before
DCE acquisition, multiple flip angle images (2°, 4°, 6°, 8°, 10°,
and 12°) were obtained for the calculation of T1 maps using the
same sequence and parameters except for the flip angle. The
details of acquisition parameters of MRI pulse sequence are
provided in Supplementary Table S1.

Neoadjuvant Chemotherapy Programs
and Outcome
The diagnosis of all patients was established by a core needle
biopsy of the primary tumor before NAC. The regimens of NAC,
provided in Supplementary E2, were defined according to the
National Comprehensive Cancer Network (NCCN) guideline
(19). According to the Food and Drug Administration criteria
(20), all patients underwent surgical resection of the tumors and
sentinel lymph node dissection (SLNB) or axillary lymph node
dissection (ALND) after NAC. The resected tumors and lymph
Frontiers in Oncology | www.frontiersin.org 3
nodes were sampled for histologic examination to evaluate the
chemotherapeutic response. The pCR (ypT0/Tis-ypN0) was
defined as the absence of residual invasive tumor in the breast
and axillary lymph nodes on the operative specimen (breast
tumor and axillary lymph nodes) following NAC. In contrast,
non-pCR was defined as a residual invasive cancer in the breast
or axillary nodes.

Kinetic Parameters and Prediction
Model Building
DCE-MRI data were analyzed independently by two radiologists
(ZC and CZ with 10 years and 8 years of experience with
breast MRI) using specialized quantitative analysis software
(Omni Kinetics, GE Healthcare). The kinetic parameters were
calculated using the extended Tofts model. During measurement,
the regions of interest (ROIs) were carefully drawn to cover the
whole tumor. Necrotic or cystic areas of the lesions, if presented,
were excluded from the evaluation. The intraclass correlation
coefficient (ICC) of kinetic parameters between the two readers
was 0.834–0.977. Data from the two readers were averaged for
analysis. The least absolute shrinkage and selection operator
FIGURE 1 | Flowchart of patient enrollment in the study. *Seven patients did not complete the established neoadjuvant chemotherapy program because of tumor
progression, three patients did not have an operation, five HER2-positive patients did not receive trastuzumab plus pertuzumab treatment.
March 2022 | Volume 12 | Article 846775
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(LASSO) regression analysis was applied to select independent
predictive kinetic parameters. These selected kinetic parameters
were used to construct the kinetic-only RA model using a robust
supervised classifier, linear discriminant analysis (LDA) (21),
which was employed to classify the NAC treatment efficiency by
searching for a linear combination of the independent predictive
kinetic parameters. A multilayer perceptron (MLP) neural
network (22) was employed to construct the kinetic-only DL
model. The structure of the MLP neural network is shown in
Supplementary Figure 2A.

Molecular Information and Prediction
Model Building
Molecular information, including the status of hormone receptor
[estrogen receptor (ER), progesterone receptor (PR)], human
epidermal growth factor receptor 2 (HER2), and Ki67
expression, was recorded from IHC results. ER/PR negative
was defined as <1% of tumor cells with positive nuclear
staining and ER/PR positive as ≥1% of tumor cells with
positive nuclear staining; the cutoff for Ki67 was 14%; tumors
with IHC staining of 0 or 1 were defined as HER2 negative,
whereas tumors that either showed 3+ IHC staining or had gene
copy number >2.0 were considered HER2 positive (23). The
molecular-only LDA andMLPmodels were constructed by using
the molecular information as input. The structure of the MLP
neural network is shown in Supplementary Figure 2B.

Radiomics Analysis and
Image-Based Radiomics Analysis
Prediction Model Building
For RA, the tumors were segmented on DCE-MRI images
obtained 88 s after the beginning of the contrast agent injection,
as the clinical breast DCE-MRI guideline indicates peak
enhancement and obvious conspicuity at this time point in most
breast cancers (24). Tumor segmentation was performed using
ITK-SNAP software (https://www.itksnap.org) by one radiologist
(ZC, with 10 years of experience in breast MRI) who was blinded
to the clinical and histopathologic results. Tumors were segmented
on a section-by-section basis until the whole tumor volume was
captured and a three-dimensional ROI was acquired. A second
radiologist (JS, with 21 years of experience in breast MRI)
reviewed all the delineations to ensure correct segmentation.
The segmented images were processed by using the open-source
Python 3.7 (https://www.python.org.) and PyRadiomics toolkit to
extract 851 radiomics features, including image intensity
statistical, shape, texture, and wavelet features (Supplementary
Table S2). A coarse-to-fine feature selection strategy was applied
to reduce the dimension and avoid overfitting. Redundant features
were removed according to the Spearman correlation coefficient,
and then the optimal feature subsets (Supplementary Table S3)
were selected using least absolute shrinkage and selection operator
(LASSO) regression. The prediction models, based on optimal
image features, were built by using the five machine learning
classifiers [i.e., LDA, support vector machine (SVM), random
forest (RF), AdaBoost, and Naive Bayes] to verify the performance
of the classifiers to predict pCR successfully. Then, the optimal
Frontiers in Oncology | www.frontiersin.org 4
classifier was used to build the image-only and image-based
RA model.

The integrative image-based RA model was further developed
by incorporating kinetic parameters (image-kinetic RA model),
molecular information (image-molecular RA model), or both
(image-kinetic-molecular RA model) into the image-only model.
The optimal feature subsets of integrative image-based RA
models are shown in Supplementary Tables S4–S6. The
workflow for building RA predictive models is shown in
Figure 2. All the RA models were constructed by using Matlab
R2018b (MathWorks, Natick, MA, USA).

Deep Learning Analysis and Image-Based
Deep Learning Prediction Model Building
For DL analysis, a rectangular box of 128 × 128 × 3 pixels in size was
used to crop three consecutive slices showing the maximum cross-
sectional area of the tumor as input. To ensure comparability of the
image signal intensity across patients, image intensity was
normalized to a fixed range of 0–1. Random rotation, flip, and
translation were used for data augmentation to alleviate the possible
overfitting in the training procedure of model development. The
image features were extracted by using a deep residual neural
network, ResNeXt50 (25), pretrained on a large-scale, well-
annotated ImageNet dataset to automatically learn discriminative
image features, as illustrated in Supplementary E3 and
Supplementary Figure S3. The whole DL structure contained a
ResNeXt50 CNN and three fully connected layers, with the
probability of pCR as output to build the image-only CNN model.
Adam optimizer was used to train all DLmodels with a learning rate
of 0.0001 and a batch size of 32. The triplet loss procedure was
introduced to extract more discriminative features using the output
of ResNeXt50, and the cross-entropy was introduced as
classification loss using the final output of the fully connected
layer. Details of the loss function are provided in Supplementary E4.

The integrative image-basedDLmodelwas furtherdevelopedby
adding kinetic (image-kinetic DL model), molecular information
(image-molecular DL model), or both (image-kinetic-molecular
DLmodel) into the CNN of the image-onlymodel. The kinetic and
molecular informationwas incorporated in the first fully connected
layer of DL models. The kinetic and molecular information was
incorporated in the first fully connected layer of DL models. The
framework for buildingDL predictivemodels is shown in Figure 3.
All the DL programs were implemented in Pytorch (https://
pytorch.org.) on an Intel Core i7-7700 K processor (Intel, Santa
Clara, CA, USA) and Nvidia RTX 2080 Ti GPU with 11 GB RAM
(Nvidia, Santa Clara, CA, USA).

Statistical Analysis
Data were expressed as mean ± standard deviation for continuous
variables, and categorical variables were summarized as
frequencies and percentages. The differences in age, molecular
information, histopathologic types, tumor number type, clinical T
stage, clinical N stage, clinical TNM stage, and treatments between
pCR and non-pCR groups were compared by c2 or Wilcoxon
rank-sum tests as appropriate. The inter-rater agreement of kinetic
parameter evaluation was assessed by using the ICC. An ICC value
>0.75 indicates good to excellent agreement. The predictive
March 2022 | Volume 12 | Article 846775
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performance of the models was assessed by the ROC curve
analysis. The sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and accuracy of the
models were calculated based on a cutoff value determined by
the maximum Youden index. And their confidence intervals were
calculated by bootstrap analysis with 10,000-fold resampling.
DeLong method was used to compare the AUROC between
the models. A two-sided P value <0.05 indicated statistical
significance. All statistical analyses were performed by using
Frontiers in Oncology | www.frontiersin.org 5
SPSS software (version 21; SPSS, Chicago, IL, USA) and
MedCalc software (version 18.9.1; MedCalc, Ostend, Belgium).

RESULTS

Clinicopathologic Characteristics
A total of 356 female patients (mean age, 46.9 ± 9.4 years) were
included in this study. The clinicopathologic characteristics are
shown in Table 1. Here, 83 patients (23.3%) achieved pCR (pCR
FIGURE 2 | The workflow for building radiomics analysis-based predictive models.
FIGURE 3 | The framework for building deep learning-based predictive models.
March 2022 | Volume 12 | Article 846775
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TABLE 1 | Clinicopathologic characteristics of patients in the non-pCR and pCR groups.

Characteristics Non-pCR (n = 273) pCR (n = 83) P

Age (year)* 46.3 ± 9.4 48.2 ± 9.1 0.099
ER status <0.001
Negative 68 (25) 49 (59)
Positive 205 (75) 34 (41)

PR status <0.001
Negative 124 (45) 66 (80)
Positive 149 (55) 17 (20)

HER2 status <0.001
Negative 187 (68) 27 (33)
Positive 86 (32) 56 (67)

Ki67 status 0.199
Negative 15 (5) 2 (2)
Positive 258 (95) 81 (98)

Histological type 0.601
IDC 255 (93) 80 (96)
ILC 6 (2) 1 (1)
Others 12 (5) 2 (2)

Tumor number type 0.316
Single 224(82.1) 64(77.1)
Multicentric and multifocal 49(17.9) 19(22.9)

Clinical T stage 0.672
T1-2 154(56.4) 49(59.0)
T3-4 119(43.6) 34(41.0)

Clinical N stage 0.639
N0-1 242(88.6) 72(86.7)
N2-3 31(10.9) 11 (13.3)

Clinical TNM stage 0.920
I-II 153(56.0) 46(55.4)
III 120(44.0) 37(44.6)

Chemotherapy <0.001
AT-based 217(79.5) 57(68.7)
AC-based 38(13.9) 7(8.4)
TC-based 18(6.6) 19(22.9)

HER2 positive therapy 0.010
Trastuzumab 62(70.5) 28(49.1)
Trastuzumab+pertuzumab 26(29.5) 29(50.9)

Surgery 0.059
Mastectomy 100(36.6) 40(48.2)
BCS 173(63.4) 43(51.8)

Axillary Surgery 0.083
SLNB 63(23.1) 27(32.5)
ALND 210(76.9) 56(67.5)

Note: Unless indicated otherwise, values are numbers of patients with percentages in parentheses.
Abbreviations: pCR, pathological complete response; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor2; HR, hormone receptor; TNBC,
triple-negative breast cancer; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; BCS, breast conserving surgery; SLNB, sentinel lymph node biopsy; ALND, axillary lymph
node dissection; AT, anthracycline with paclitaxel; AC, anthracycline with cyclophosphamide; TC, paclitaxel with cyclophosphamide; TP, paclitaxel with platinum.
*Numbers are means ± standard deviations.
P values of the comparison between pCR and non-pCR patients in cohort were generated by one-way ANOVA for numerical variables and c2 test for categorical variables.

Peng et al. DCE-MRI in Predicting pCR
group), while the remaining 273 patients (76.7%) were non-pCR
(non-pCR group). pCR group had a higher prevalence of ER-
negative, PR-negative, HER2-positive compared with the non-
pCR group (all P < 0.001). There was no significant difference in
age, Ki67, histological type, tumor number type, clinical T stage,
clinical N stage, clinical TNM stage, breast surgery, and axillary
surgery between the two groups (all P > 0.05).

Image-, Kinetic-, and Molecular-Only
Prediction Models
The LDA was the most robust classifier across multiple classifiers
(Supplementary Table S7). The image-only LDA model had 12
Frontiers in Oncology | www.frontiersin.org 6
image features selected by LASSO regression (Supplementary
Table S3). The image-only CNN models had 1,000 image
features extracted by ResNeXt50. The Ktrans, Kep, and
MaxSlope were the independent predictors and included in the
kinetic-only LDA and MLP models. Their AUROC, sensitivity,
specificity, PPV, NPV, accuracy, and corresponding 95% CI are
shown in Table 2 and Figures 4A, B. The AUROC of the
molecular-only LDA model was 0.744, which was higher than
that of the kinetic-only LDAmodel (0.682, P = 0.012) and image-
only LDA model (0.55, P < 0.001). The AUROC of the
molecular-only MLP model was 0.752, which was higher than
that of the kinetic-only MLPmodel (0.652, P = 0.007) and image-
March 2022 | Volume 12 | Article 846775
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TABLE 2 | Performances of the image-, kinetic-, and molecular-only LDA and DL Prediction Models.

Model LDA model DL model

Image-only LDA
model

Kinetic-only LDA
model

Molecular-only LDA
model

Image-only CNN
model

Kinetic-only MLP
model

Molecular-only
MLP model

AUROC 0.55 0.682 0.744 0.554 0.652 0.752
(0.513, 0.587) (0.639, 0.726) (0.688, 0.799) (0.513, 0.595) (0.612, 0.693) (0.699,0.805)

Accuracy 0.58 0.638 0.673 0.558 0.65 0.663
(0.502, 0.667) (0.566, 0.711) (0.617, 0.73) (0.461, 0.656) (0.592, 0.709) (0.605,0.721)

Sensitivity 0.534 0.681 0.814 0.566 0.608 0.809
(0.409, 0.660) (0.546, 0.816) (0.688, 0.939) (0.392, 0.74) (0.513, 0.703) (0.682,0.936)

Specificity 0.6 0.625 0.632 0.556 0.663 0.619
(0.465, 0.735) (0.503, 0.748) (0.541, 0.722) (0.386, 0.726) (0.575, 0.75) 0.527,0.712)

PPV 0.273 0.352 0.396 0.262 0.349 0.387
(0.209,0.336) (0.277, 0.427) (0.322, 0.471) (0.201,0.324) (0.277, 0.422) (0.313,0.461)

NPV 0.806 0.87 0.921 0.804 0.851 0.918
(0.757,0.855) (0.824, 0.915) (0.874, 0.969) (0.751,0.858) (0.81, 0.892) (0.869,0.966)

P * <0.001 0.012 – <0.001 0.007 –

P #
– – – 0.208 0.008 0.33

Note: Data in parentheses are 95% confidence intervals. LDA, linear discriminant analysis; MLP, multilayer perceptron; CNN, convolutional neural networks; DL, deep learning; AUROC,
area under the receiver operating characteristics curve; PPV, positive predictive value; NPV, negative predictive value.
*P value of the comparison inside the LDA models and DL models, respectively.
# P value of the comparison between the LDA models and DL models, respectively.

Peng et al. DCE-MRI in Predicting pCR
only CNN model (0.554, P < 0.001). The AUROC of the kinetic-
only LDA model was 0.682, which was higher than that of the
kinetic-only MLPmodel (AUROC = 0.652, P = 0.008). There was
no significant difference between image-only LDA and image-
only CNN models (AUROC = 0.55 and 0.554, P = 0.208), as well
as between molecular-only LDA and molecular-only MLP
models (AUROC = 0.744 and 0.752, P = 0.33).

Integrative Image-Based Radiomics
Analysis and Deep Learning Models
The AUROC, sensitivity, specificity, PPV, NPV, accuracy, and
corresponding 95% CI of integrative image-based RA and DL
models are shown in Table 3 and Figures 5A, B. The AUROC of
the image-kinetic-molecular RA model was 0.781, which was
Frontiers in Oncology | www.frontiersin.org 7
higher than that of the image-kinetic RA model (0.629, P <
0.001), while it did not differ from the image-molecular RA
model (0.755, P = 0.118). The AUROC of the image-kinetic-
molecular DL model was 0.832, which was higher than that of
image-kinetic and image-molecular DL models (0.707, 0.79; both
P < 0.001). The heatmaps (Figure 6) generated from ResNeXt50
based on the Grad-Cam algorithm (26) indicated that locations
were crucial in generating the output.

Comparison Between Integrative
Image-Based Radiomics Analysis and
Deep Learning Models
The AUROC of image-kinetic, image-molecular, and image-
kinetic-molecular DL model (0.707, 0.79, and 0.83,
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves of the image-, kinetic-, and molecular-only linear discriminant analysis (LDA) (A) and deep learning (DL)
(B) models.
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TABLE 3 | Performances of the integrative image-based RA and DL models.

Model RA model DL model

Image-kinetic RA
model

Image-molecular RA
model

Image-kinetic-molecular
RA model

Image-kinetic DL
model

Image-molecular DL
model

Image-kinetic-molecular
DL model

AUROC 0.629 0.755 0.781 0.707 0.79 0.832
(0.595, 0.663) (0.708, 0.802) (0.735, 0.828) (0.654, 0.761) (0.768, 0.812) (0.816, 0.847)

Accuracy 0.619 0.695 0.731 0.661 0.752 0.772
(0.571, 0.668) (0.638, 0.753) (0.678, 0.784) (0.596, 0.725) (0.715, 0.788) (0.724, 0.821)

Sensitivity 0.647 0.778 0.795 0.692 0.797 0.781
(0.559, 0.735) (0.669, 0.887) (0.703, 0.887) (0.579, 0.806) (0.723, 0.869) (0.696, 0.867)

Specificity 0.611 0.671 0.712 0.65 0.739 0.769
(0.537, 0.685) (0.58, 0.762) (0.634, 0.791) (0.54, 0.761) (0.681, 0.797) (0.69, 0.849)

PPV 0.329 0.413 0.451 0.368 0.473 0.497
(0.267, 0.391) (0.333, 0.493) (0.367, 0.536) (0.318, 0.417) (0.401, 0.546) (0.408, 0.587)

NPV 0.855 0.911 0.922 0.88 0.925 0.924
(0.816, 0.894) (0.872, 0.951) (0.888, 0.956) (0.859, 0.902)) (0.897, 0.953) (0.896, 0.953)

P * <0.001 0.118 – <0.001 <0.001 –

P #
– – – <0.001 <0.001 <0.001

Note: Data in parentheses are 95% confidence intervals. RA, radiomics analysis; DL, deep learning; AUROC, area under the receiver operating characteristics curve; PPV, positive
predictive value; NPV, negative predictive value.
*P value of the comparison inside the RA models and DL models, respectively.
# P value of the comparison between the RA models and DL models, respectively.
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respectively) were significantly higher than that of the
corresponding image-kinetic, image-molecular, and image-
kinetic-molecular RA models (0.629, 0.755, and 0.781,
respectively; all P < 0.001). The image-kinetic-molecular DL
model had significantly higher AUROC than other integrative
models (Table 3).
DISCUSSION

Our study results showed that both the molecular-only LDA and
MLP models had a better prediction performance than the
kinetic-only LDA and MLP model and image-only LDA and
CNN model. The integrative image-kinetic-molecular RA and
DL models significantly improved the predictive performance.
Frontiers in Oncology | www.frontiersin.org 8
Moreover, the image-kinetic-molecular DL model had the best
performance (AUROC, 0.83) in predicting pCR before NAC in
breast cancer patients.

Conventionally, the tumor size is used to assess the effect of
NAC. Whereas the baseline tumor size cannot predict pCR (7,
10). It has been shown that molecular biomarkers are correlated
with NAC sensitivity in breast cancer (27). For example, HR
negativity and HER2 positivity were associated with higher pCR
rates [odds ratio (OR) = 0.497 and 1.833, respectively] (28). The
IHC4 score combining ER, PR, HER2, and Ki67 expression levels
was associated with pCR rate; furthermore, the lower the IHC4
score, the higher the pCR rate in the ER-positive breast cancer
patients (AUROC = 0.613) (29). Our results showed that the
molecular-only LDA and MLP model achieved an AUROC of
0.744 and 0.752 in the breast cancer patients, higher than kinetic-
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of the integrative image-based radiomics analysis (RA) (A) and deep learning (DL) (B) models.
March 2022 | Volume 12 | Article 846775

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. DCE-MRI in Predicting pCR
only and image-only predictive models. However, the molecular
information is acquired via invasive needle biopsy, which cannot
reflect certain pathophysiological characteristics of tumors, such
as microvascular density and permeability, and tumor
heterogeneity, which is known to be relevant to the sensitivity
of pCR NAC in breast cancer (15, 30).

The kinetic parameters can reflect the pathophysiological
microvascular characteristics of tumors (6, 31). Previous
studies (7–10) with a small sample size showed that
pretreatment Ktrans, Kep, or Ve, or their change after two cycles
of NAC, could predict pCR but has a varying AUROC (0.658–
0.93). More importantly, the metric capable of predicting pCR
before NAC is more desirable in clinical settings. Identifying
breast cancer patients who can truly benefit from NAC is crucial
for successfully sparing toxicity and optimally selecting patients
for endocrine or targeted therapy vs. chemotherapy. Whether the
pretreatment value of Ktrans, Kep, or Ve could predict pCR
remains to be determined. Our study showed that the kinetic-
only LDA and MLP models building based on the pretreatment
DCE-MRI achieved an AUROC of 0.682 and 0.656, comparable
to the change of Ktrans, Kep, or Ve after two cycles of NAC (9, 10).

Breast cancer is a highly heterogeneous disease. The
prediction performance of molecular-only and kinetic-only
Frontiers in Oncology | www.frontiersin.org 9
models was suboptimal for predicting pCR, and the highest
AUROC of the molecular-only MLP model was only 0.752 in
our study. The image features extracted from DCE-MRI could
reflect spatial heterogeneity, including volumetric distribution of
microvascular density and the extracellular compartment (32,
33). The image-only LDA and CNN models based on image
features derived from pretreatment DCE-MRI were inadequate
for predicting pCR (AUROC, 0.55 and 0.554). In theory, adding
kinetic parameters or molecular information to the image-only
model may improve predicting pCR to NAC. Indeed, the
performance of the image-kinetic, image-molecular RA, and
DL models (AUROC, 0.629 and 0.755; 0.707 and 0.79) was
also undesirable. The integrative RA and DL models, including
image features, kinetic parameters, and molecular information,
improved the counterparts of model performance in predicting
pCR to NAC with an AUROC of 0.781 and 0.83, which might
represent more tumor heterogeneity comprehensively. Previous
studies (12, 14) have also shown that the prediction performance
of the RA or DL model based on pretreatment MRI in predicting
pCR in breast cancer patients could be improved by combining
with molecular information.

Notably, our results showed that the prediction performance
of integrative DL models, including image-kinetic, image-
FIGURE 6 | Dynamic contrast-enhanced magnetic resonance (DCE-MR) images and feature heatmaps generated from the ResNet50 in pathologic complete
response (pCR) or non-pCR patients. The scaled weights of deep learning features are represented by the color bar. The color closer to red indicates that it has a
greater weight and received more attention from the model. (A, D) A 41-year-old woman with an hormone response (HR)-positive/human epidermal growth factor
receptor 2 (HER2)-negative invasive lobular carcinoma in the right breast and did not achieve pCR following 6 cycles of neoadjuvant chemotherapy (NAC). (B, E) A
53-year-old woman with a triple negative breast cancer (TNBC), invasive ductal carcinoma in the right breast, and achieved pCR following 8 cycles of NAC. (C, F) A
59-year-old woman with a HER2-positive invasive ductal carcinoma in the right breast and achieved pCR following 8 cycles of NAC.
March 2022 | Volume 12 | Article 846775

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Peng et al. DCE-MRI in Predicting pCR
molecular, and image-kinetic-molecular DL models was higher
than that of the corresponding RA models. The image-kinetic-
molecular DL model achieved the best performance (AUROC,
0.83) in predicting pCR before NAC. The most crucial aspect of
DL, which significantly departs from radiomics classifiers, is that
multiple and deep layers of perceptions capture low- to high-
image features that are not designed by human engineers but are
learned based on representation learning (11). Previous studies
have also reported that the performance of DL is better than RA
in breast lesion discrimination (17), axillary lymph node
metastasis prediction (34), and esophagus cancer treatment
prediction (35). In addition, unlike the radiomics feature
extraction procedure, DL feature extraction only needs setting
a bounding box of fixed size to the tumor region, which improves
efficiency and offers more excellent reliability and higher
reproducibility. For RA, handcrafted image segmentation is time-
consuming and labor-intensive. Automatic and semiautomatic
segmentation is less accurate for the lesions with low
enhancement, indistinct or vague borders (i.e., diffuse non-mass
enhancement), or the lesions in a moderate to marked background
parenchymal enhancement (BPE) (36, 37). Taken together, the
pretreatment DCE-MRI-based DL model in our study is clinically
more favorable than the RA model for pretreatment prediction of
pCR in breast cancer patients.

Our study has several limitations. First, the RA or DL
approaches based on T2WI or DWI were not used to develop
a prediction model. T2WI is not always able to clearly detect the
exact border of breast cancer, especially in patients with dense
breasts (38). In addition, DWI was easily affected by fat
suppression and motion artifacts, which likely caused low
reproducibility in ADC maps and ADC value (39). Previous
studies have shown that RA or DL model established based on
single T2WI, DWI, or ADC has relatively poor predictive ability
(12, 16). Second, this study was a retrospective study in a single
center. This may have caused selection bias. Third, the
heterogeneous nature of molecular subtypes in breast cancer
led to different NAC regimens and pCR probability, but this
reflects the reality in clinical settings practice. Further
investigation with multicenter and larger datasets is warranted
to determine the generalization ability of our pretreatment DCE-
MRI-based DL prediction model.

In conclusion, our study showed that the integrative image-
based DL models are superior to the image-based RA models.
Frontiers in Oncology | www.frontiersin.org 10
The image-kinetic-molecular DL model achieved the best
performance in predicting pCR to NAC in breast cancer patients.
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