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Abstract

Background: Previous studies have shown that burn-elicited stress signals alter expression of
certain murine endogenous retroviruses (MuERVs) in distant organs of mice. These findings suggest
that MuERVs may participate in a network of pathophysiologic events during post-burn systemic
response. To gain a better understanding of the biological roles of MuERVs in post-burn systemic
response, we examined the genome-wide changes in the MuERV expression profiles in distant
organs and the biological properties of the putative-burn related MuERVs were characterized.

Results: Female C57BL/6) mice were subjected to an approximately 18 % total body surface area
flame burn and tissues (liver, lung, and kidney) were harvested at 3 hours and 24 hours after injury.
The changes in the MuERV expression profiles in these tissues were examined by RT-PCR using a
primer set flanking the non-ecotropic MuERV U3 promoter region within the 3' long terminal
repeat. There were differential changes in the expression profiles of MUERY U3 regions after injury
in all three tissues examined. Subsequently, a total of 3| unique U3 promoter sequences were
identified from the tissues of both burn and no burn mice. An analysis of viral tropisms revealed
that putative MuERVs harboring these U3 promoter sequences were presumed to be either
xenotropic or polytropic. Some putative transcription regulatory elements were present
predominantly in U3 promoter sequences isolated from burn and no burn mice, respectively. In
addition, in silico mapping using these U3 sequences as a probe against the mouse genome database
identified 59 putative MuERVs. The biological properties (coding potentials for retroviral
polypeptides, primer binding sites, tropisms, branching ages, recombination events, and neighboring
host genes) of each putative MuERV were characterized. In particular, 16 putative MuERVs
identified in this study retained intact coding potentials for all three retroviral polypeptides (gag,
pol, and env). None of the putative MuERVs identified in this study were mapped to the coding
sequences of host genes.

Conclusion: In this study, we identified and characterized putative MuERVs whose expression
might be altered in response to burn-elicited systemic stress signals. Further investigation is needed
to understand the role of these MUuERVs in post-burn systemic pathogenesis, in particular, via
characterization of their interaction with host genes, MuERV gene products, and viral activities.
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Background

Endogenous retroviruses (ERVs) are found in the genome
of all vertebrates. They are derived from retroviral infec-
tions of germ-line cells followed by permanent incorpora-
tion, called colonization, into the host's genome. ERVs are
transmitted vertically to the offspring as part of the paren-
tal genome by Mendelian order [1]. It is estimated that
human ERVs (HERVs) and murine ERVs (MuERVs) con-
stitute approximately 8 % and 10 % of their genomes,
respectively [2,3]. The majority of ERVs have defective
genomes as a result of the accumulation of deletional or
insertional mutations as well as recombinations since
their initial colonization. However, certain ERVs retain
the full coding potentials for all or individual retroviral
polypeptides [2,3]. It has also been well-documented that
retroviral long terminal repeats (LTRs), which harbor
unique U3 promoter and enhancer sequences, are capable
of directly regulating the transcriptional activities (e.g.,
primary transcription, splicing, and polyadenylation) of
neighboring host genes [4-6]. Therefore, in conjunction
with the diversity of the ERV U3 promoter sequences,
these findings infer active participation of ERVs in a range
of normal physiologic as well as pathologic events of the
host [7,8].

The association between ERVs and pathologic events
underlying tumorigenesis and autoimmune diseases has
been described in a number of reports [9,10]. For
instance, expression of retroviral proteins from the
human teratocarcinoma-derived virus (HTDV), a member
of the HERV-K family, has been detected in tetratocarci-
noma cell lines, breast cancer, and testicular tumors [11].
Further support for the ERVs' roles in various disease proc-
esses comes from studies that show some HERVs (HERV-
H, HERV-W, and HERV-R) contain the intact envelope
(env) gene capable of coding an env glycoprotein called
syncytin [12-14]. Syncytin was originally identified as a
fusogenic glycoprotein, which plays a crucial role in syn-
cytiotrophoplast formation and placenta morphogenesis
during periimplantation of embryos [15]. In recent stud-
ies, the proinflammatory properties of syncytin have been
attributed to axonal demyelination, at least in part, during
the development of autoimmune multiple sclerosis in
humans [16]. In addition, HERVs are implicated in the
pathogenesis of a number of other autoimmune diseases,
such as schizophrenia, insulin-dependent diabetes melli-
tus, and systemic lupus erythematosus [17-19]. However,
further investigations are needed to fully understand the
roles of ERVs in these and other disease processes in
humans and animals.

In our previous studies, we demonstrated that burn-elic-
ited stress signals altered the expression of MuERVs in dis-
tant organs of mice in a tissue-specific manner [20-22].
These MuERVs had unique U3 promoter sequences sug-
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gesting different profiles of transcription regulatory ele-
ments in each of these sequences. Interestingly, some of
these MUERVs are very similar in viral genome structure to
the murine acquired immune deficiency syndrome
(MAIDS) virus, which is known to cause immune disor-
ders in infected mice [20,23]. These findings led to the
hypothesis that burn-elicited stress signals are responsi-
ble, at least in part, for the genome-wide response of spe-
cific MuERVs. In addition, they may play causative roles in
post-burn pathogenesis as well as in other stress-related
disease processes. In this study, we identified putative
MuERVs whose expression was altered in response to
burn-elicited stress signals. Subsequently, the biological
properties (coding potentials for retroviral polypeptides,
primer binding sites (PBSs), viral tropism, branching ages,
recombination events, and neighboring host genes) of
these MUERVs were analyzed, and their roles in post-burn
pathogenesis are discussed.

Results

Differential alterations in MuERY expression profiles in
distant organs of mice after burn

To investigate the changes in genome-wide MuERV
expression after burn, we examined the transcription pro-
files of non-ecotropic MuERV U3 regions in the liver,
lungs, and kidney from both burn and no burn mice
(female C57BL/6J) by RT-PCR (Figure 1). It needs to be
noted that the no burn groups were subjected to anesthe-
sia and fluid resuscitation. The U3 regions were selected
for expression analysis because of their highly polymor-
phic sequences among the MuERV population compared
to the rest of the viral genome. The U3 expression profiles
of these individual tissues were compared to the genomic
(C57BL/6]) profile as well as the expression profiles of
corresponding tissues harvested without any treatment,
such as anesthesia and resuscitation (no treatment con-
trol). Changes in the U3 expression profiles in all three tis-
sues were evident at 24 hours after burn and these changes
were tissue-specific. In addition, substantial differences in
U3 expression profiles were observed in lung samples at 3
hours after burn (Figure 1B). These changes were mani-
fested by either an increase or decrease in the expression
of specific U3 regions after burn. The U3 regions ampli-
fied in this experiment, which include an approximately
120 bp of additional sequence upstream and downstream
of the U3, were represented by seven major groups rang-
ing in size from 461 bp to 798 bp. Interestingly, the U3
expression profiles of no burn controls (treated with
anesthesia and resuscitation) of all three tissues at 3 hours
were different at 24 hours. In addition, the U3 expression
profiles of tissues without any treatment were substan-
tially different from no burn controls at both time points.
The difference in the U3 expression profiles among no
burn controls at two different time points and no treat-
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Changes in mRNA expression profiles of MUERVs in distant organs after burn. (A) Schematic representation of primer locations on MuERV. A
set of primers (ERV-U2 and ERV-UI) flanking the 3' U3 region are indicated by arrows. (B) RT-PCR analysis of the MuERV expression after burn in the
liver, lung, and kidney. Tissues (liver, lung, and kidney) harvested at 3 hours and 24 hours after 18 % TBSA burn were subjected to RT-PCR analysis of
MuERYV expression using a primer set flanking the 3' U3 region. Respective tissues harvested without any treatment, except for cervical dislocation, serve
as a no treatment control in comparison to no burn controls (subjected to anesthesia, resuscitation, and CO, inhalation). One representative sample out
of three no treatment controls for each tissue is presented. In addition, a genomic MuERYV profile was used as a reference.

ment controls suggests that anesthesia and resuscitation  analyses were performed (Figure 2). In the liver, there was
transiently affected the expression of MuERVs. significantly increased reactivity in a band slightly smaller

than 50 kD (arrow) at day 1 after burn. Similarly, induc-
To investigate whether there are post-burn changes in the  tion of a reactive protein smaller than 50 kD was observed
expression of MuERV envelope protein, Western blot  in the kidney at day 1. However, there were no significant
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Post-burn increases in expression of MUERYV proteins reactive against MLV envelope antibody in distant
organs. Liver, lung, and kidney samples collected at 24 hours (burn and no burn) were analyzed for changes in MuERYV protein
expression by Western blot analysis using Rauscher MLV envelope antibody. Arrows indicate envelope antibody-reactive
MuERYV proteins in the liver and kidney whose expression is increased after burn.
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changes in the lung. It is likely that the cleavage and/or
truncation of the intact envelope protein products due to
mutation may account for the presence of the apparently
smaller than the expected size (~70 kD).

Identification and characterization of differentially
regulated MuERYV U3 sequences after burn

To determine genetic variations among differentially
expressed MUuERV U3 sequences in distant organs after a
burn, the U3 sequences isolated from the RT-PCR prod-
ucts were subjected to multiple alignment and phyloge-
netic analyses. Amplified MuERV U3 sequences from each
experimental group were subjected to cloning after purifi-
cation of the PCR reactions. Clones from each group were
picked for sequencing analysis primarily based on the dif-
ferences in size. A total of 75 MuERV U3 sequences were
initially cloned from all three tissues of both burn and no
burn mice, and subsequent multiple alignment analyses
identified 31 unique U3 sequences with nine different
sizes (346 bp, 384 bp, 392 bp, 405 bp, 406 bp, 433 bp,
556 bp, 600 bp and 601 bp) (see Additional file 1, Figure
S1). Ofthe 31 U3 sequences, 11 were isolated from tissues
of burn mice, 17 were isolated from no burn mice, and
three were from both burn and no burn mice. Both the 5'-
end and 3'-end regions of the U3 sequences analyzed in
this experiment were conserved, however, the sequences
spanning the middle region were highly variable (see
Additional file 1, Figure S1). The variations in this middle
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region included the presence and/or absence of several
direct repeats and a 190 bp insertion. These variations
may be directly associated with the different transcription
potentials of each U3 promoter. It has been documented
that MuERV tropism is closely linked to their U3
sequences. The tropism characteristics of each U3
sequence was determined by comparison analysis using
the reference sequences (direct repeats, unique region,
and 190 bp insertion) first reported by Tomonaga et al.
[30]. A total of three intact direct repeats (1/1*, 5/5*, and
6/6*), one 190 bp insertion, and one unique sequence (2)
were identified among the U3 sequences examined (see
Additional file 1, Figure S1). In Additional file 1, Figure
S1, two other direct repeats (3 and 4/4*), which were not
identified or were partially identified in this experiment,
were marked as a reference. Primarily, four direct repeats
(1/1*,4/4*,5/5%, and 6/6*), one unique region (2), and
one 190 bp insertion were used for the tropism analysis.
No obvious difference was noted between groups of burn
and no burn in regard to tropism. Table 1 summarizes the
tropism analysis of all 31 U3 sequences, 14 polytropic and
17 xenotropic. The phylogenetic analysis of the U3
sequences yielded a significant branching pattern with
bootstrap values of greater than 50. It revealed six major
U3 groups, which paralleled the size of the U3 sequences
(346 bp, 384 bp/392 bp, 406 bp, 433 bp, 556 bp, and 600
bp) (Figure 3). It was of interest to note that the 600 bp
group (marked with "I") consists of predominantly U3
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Figure 3

Phylogenetic analysis of MUERV U3 sequences related to burn and/or no burn. Based on the multiple alignment data
in Additional file I, Figure SI, the phylogenetic tree for MUuERV U3 sequences was established using the neighbor-joining
method. Branch lengths are proportional to the distance between the taxa, which are drawn to scale. The values at the branch
nodes indicate the percentage support for a particular branching after 100 bootstrap replications were performed.
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Table I: Summary of tropism characteristics of 31 unique MuERV U3 sequences

Group u3 Direct repeat/Unique region Tropism
1/1%* 2 4/4* 5/5% 6/6*
U-4-7 U3 Poly X-1, 11, 1V, Poly Poly Poly X-I, Poly P-ll
U-4-8 U3 Poly X-ll, Poly Poly Poly X-1, 11, 111, 1V, Poly P-I
U-2-7 U3 Poly X-ll, Poly Poly Poly X-1, 11, 111, 1V, Poly P-I
K-4-11 U3 Poly X-lI, Poly Poly Poly X-1, 11, 101, 1V, Poly P-I
K-4-8 U3 . X-1, 1I, 1V, Poly X-ll X-II, 11, 1V X-1, 11, 11, 1V, Poly X-Il
Isolated in Burn U-4-9 U3 . X-1, 1I, 1V, Poly X-l X-IL, i v X-l, Poly X-1
U-4-11 U3 . X-l, 11, 1V, Poly X-1 XA, 11, IV X1, 1010 X-1
U-4-1 U3 . X-1, 11, 1V, Poly X-ll . X1, 11, 1L, 1V, Poly X-1
K-4-10 U3 . X-1, 11, 1V, Poly X-l . X-1, 11, 11, 1V, Poly X-11
K-4-5 U3 . X-1, 11, 1V, Poly X1l . X-1, 11, 1L, 1V, Poly X-ll
L-4-3 U3 . X-1, 11, 1V, Poly X-l . X-1, 11, 1L, 1V, Poly X-11
U-3-4 U3 Poly X-lI, Poly Poly Poly X-1, 11 10, 1V, Poly P-ll
Burn/No Burn L-3-2U3 X-l X-l, 1L, IV, Poly X-ll X-I, 1, v X-l, 1L, 111, 1V, Poly X-Il
L-1-1 U3 . X-1, 11, 1V, Poly X-l . X-1, 11, 1L, 1V, Poly X-11
U-1-7U3 X-I1, 1 X-1, 11, 1V, Poly Poly Poly X-I, Poly P-ll
K-3-3 U3 X-I1, 10 X-1, 11, 1V, Poly Poly Poly X-1, Poly P-ll
K-3-6 U3 XL, 1 X-1, 11, 1V, Poly Poly Poly X-I, Poly P-ll
K-3-8 U3 X-I1, 11 X-1, 11, 1V, Poly Poly Poly X-I, Poly P-ll
L-3-5 U3 X-I1, 1 X-I1, 11 Poly Poly X-I, Poly P-ll
L-3-1 U3 Poly X-ll, Poly Poly Poly X-1, 11, 111, 1V, Poly P-I
L-3-4 U3 Poly X-lI, Poly Poly Poly X-1, 11, 101, 1V, Poly P-I
Isolated in No Burn U-1-5U3 Poly X-lI, Poly Poly Poly X-1, 11 10, 1V, Poly P-I
U-3-2 U3 Poly X-ll, Poly Poly Poly X-1, 11, 111, 1V, Poly P-I
L-1-2U3 XA, X-lll, Poly Poly XA, 1, v X-1, 11, 11 X-11
U-1-1 U3 X-I1, 1 X-lll, Poly X-l X1, 10, 1V X-1, 10, 10 X-11
L-1-6 U3 X-lll X-1, 11, 1V, Poly X-lll X-I1, 10, 1V X-1, 1, 1L, 1V, Poly X-1
L-1-8 U3 X-lil X-1, 1I, IV, Poly X-ll XL, v X-1, 1, 111, 1V, Poly X-Il
K-3-5 U3 X-Il, 11 X1, 1L, 1V, Poly X-ll XU, 10, v X-1, 10 10 X-Il
L-3-9 U3 . X-l, II, 1V, Poly X-l X-II, 11, 1V X-l, Poly X-1
U-3-8 U3 . X-1, 1I, 1V, Poly X-l X-II, 11, 1V X-l, Poly X-1
U-1-8 U3 . X-1, 11, 1V, Poly X-ll . X-1, 11, 1L, 1V, Poly X-11

Dot indicates absence of a homology with reference sequences. Underline represents the reference type closest to individual U3 sequences

examined. Naming scheme of U3 sequence: Letter (K-kidney; L-liver; U-lung), first number (

'—3 hours control; "2"-3 hours burn; "3"-24 hours

control; "4"-24 hours burn), and second number (clone number). *Direct repeat region.

sequences isolated from no burn mice, in contrast to the
346 bp group (marked with "II"), which mostly were
derived from burn mice. Comparison analysis of the sizes
of differentially expressed U3 fragments (Figure 1) and U3
clones provided information regarding the origins of
these U3 clones. Based on these comparison data, four U3
sequences isolated from burn mice (K-4-5 U3, K-4-10 U3,
L-4-3 U3, and U-4-1 U3 within group II) were likely
derived from the ~450 bp fragment (before trimming 120
bp of non-U3 sequences), which was induced 24 hours
after burn (Figure 1). In addition, five U3 sequences in
group I (K-3-3 U3, K-3-6 U3, K-3-8 U3, L-3-5 U3, and U-
1-7 U3) were presumed to originate from the ~700 bp
fragments (before trimming 120 bp non-U3 sequences)
whose expression was evident in no burn control mice
compared to burn mice (Figure 1). The L-1-1 U3 and U-1-

8 U3 in the group II were likely to be derived from the
baseline expression of the ~450 bp fragment expressed in
no burn mice (3 hours). It is also possible that these U3
sequences could be associated with stress signals from
anesthesia and resuscitation. Further comparison analysis
of the RT-PCR data and U3 clones will elucidate the rela-
tions between each differentially expressed U3 fragment
and U3 clones of different sizes examined in this study.

Comparative analysis of transcriptional potentials of 31
unique U3 promoter sequences

To gain insights into the transcription potential, the pro-
file of putative transcription regulatory elements within
each U3 promoter sequence was determined. A total of 73
putative transcription regulatory elements were identified
within all 31 U3 promoter sequences using the database
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from Genomatix (Munich, Germany) (see Additional file
1, Table S1). Among these transcription regulatory ele-
ments, five (marked with "a") (HMGA1/2 [high mobility
group A protein 1/2], Thingl/E47 heterodimer, C/EBPJ
[CCAAT/enhancer binding protein ], PAX6 [paired-box-
containing protein 6], and SZF1 [stem cell zinc finger pro-
tein 1]) were present predominantly in the U3 sequences
isolated from burn mice. On the other hand, 15 elements
(marked with "b"), such as NF-xB, c-Myb, gut-enriched
Krueppel-like factor, and PPAR/RXR heterodimer, were
mostly mapped to the U3 sequences originating from no
burn mice. Further characterization of the specific roles of
the transcription regulatory elements predominantly
present in the U3 sequences from either burn or no burn
mice in burn-elicited systemic pathogenesis is warranted.

Genomic mapping and characterization of putative
MUERYVs harboring individual U3 sequences

In this experiment, the putative MuERVs harboring the
individual U3 sequences within their LTRs were identified
and mapped by a systemic search of the mouse genome
database (C57BL/6] strain) using each U3 sequence as a
probe. When the search homology was limited to > 98%,
different U3 probes often resulted in an overlapping set of
putative MuERVs. A total of 59 unique putative MuERVs
were identified and their genomic map was established
(Table 2). The size (5'-end of 5' LTR to 3'-end of 3' LTR) of
these MuERVs ranged between 5,312 bp and 9,054 bp.
Among them, the U3 sequences of six putative MuERVs
(marked with "c") (K-4-11.1b, U-4-8.1, U-4-8.5, U-4-
8.11, U-4-8.18, and U-4-11.1) had 100 % homology with
the respective U3 sequences isolated from burn mice. In
addition, 13 putative MuERVs (marked with "b") har-
bored U3 sequences matching 100 % to their respective
U3 sequences isolated from no burn mice. The precise
location and orientation on the genome, proviral genome
size, PBS, and coding potential for the three major retro-
viral polypeptides of each putative MuERV were also char-
acterized. In regard to PBS, the 18 bp sequences located
immediately downstream of 5' LTR were surveyed to
determine the PBS of each putative MUERV. The tRNAGI
(indicated as "Q" in the table) primer is known to be used
by the reverse transcriptase of polytropic as well as modi-
fied polytropic MuERVs during replication. In contrast,
the tRNAPm (indicated as "P" in the table) primer is pre-
dominantly used by ecotropic and xenotropic MuERVs.
Except for the two putative MuERVs (L-3-9.5 and U-4-
11.1) harboring a tRNAP™ PBS, the rest (57 putative
MuERVs) had a tRNASIn PBS. The results from the analyses
of coding potentials revealed that the majority of putative
MuERVs had a defective genome leading to a missing start
codon and/or introduction of a premature stop codon.
However, 16 of them retained intact open reading frames
(OREFs) for all three retroviral polypeptides (gag, pol, and
env), therefore, they were presumed to be full-length
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ERVs. Some of those defective MuERVs had intact ORFs
for gag, pol, and/or env polypeptides. The putative MuERVs
cloned by U3 probes, which were presumed to originate
from the burn-induced U3 fragments, will be the primary
focus for future studies.

Examination of evolutionary relationship among putative
MUERYVs by phylogenetic analysis of their reverse
transcriptases

Due to the highly conserved nature of the reverse tran-
scriptase (RT) among different retroviruses compared to
the rest of viral proteins, the RT sequence has been used to
determine phylogenetic relationships among retroviruses
as well as other retroelements [24,25]. To examine the
evolutionary relationship of the putative MuERVs identi-
fied in this study, a phylogenetic tree of RT sequences was
constructed following a multiple alignment analysis (Fig-
ure 4). This phylogenetic analysis was based on the seven
conserved domains of the RT, a total of 178 amino acids,
which served as a reference for a number of evolutionary
studies [24]. Among the 59 putative MuERVs, only 42 of
them were subjected to the analysis because the other 17
MuERVs had an incomplete RT due to a deletion and/or
premature stop. It appeared that they were subgrouped
into four main branches (I ~ IV). The putative MuERVs
derived from the same U3 probes tended to cluster into
the same branches. Interestingly, four out of the five puta-
tive MuERVs (red triangle) identified using the U3 probes
from burn mice (K-4-11, U-4-8, and U-4-11) clustered
into a unique branch (IIT), implicating a close evolution-
ary relationship. It needs to be noted that these MuERVs
had 100 % sequence homology with the respective U3
probes used for mapping.

Examination of tropism of 16 putative full-length MuERVs
by restriction fragment length polymorphism analysis

The MuERV coding sequences are relatively conserved
except for the env sequences. For instance, the env amino
acid sequences of ecotropic MuERVs are substantially
divergent from the other classes (xenotropic, polytropic,
and modified polytropic) [26,27]. MuERVs can be
grouped into four different classes (ecotropic, xenotropic,
polytropic, and modified polytropic) based on restriction
fragment length polymorphism (RFLP) following diges-
tion with three enzymes (BamHI, EcoRI, and HindIII) [27].
In this experiment, 16 putative full-length MuERVs with
intact coding potentials for all three polypeptides were
subjected to an in silico RFLP analysis to determine their
tropism (Figure 5). Six (U-1-5.5b, K-4-11.2, K-4-11.4b, K-
4-11.10b, K-4-11.114a, and K-4-11.X) of them were poly-
tropic and another six (K3-3.3b, K-3-3.5b, K-3-3.10b, K-3-
3.11a, K-3-3.11¢, and K-3-6.7) were modified polytropic.
The RFLP tropism data (polytropic and modified poly-
tropic) was consistent with the results regarding the tro-
pism of the corresponding U3 probes/sequences (Table 1
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Table 2: Genomic location, proviral size, primer binding site, and coding potential of putative MuERVs

Virus Contig number Subsequence Chr* Orientation  Size (bp) PBS ** gag pol env
alL-1-1.4 NT_039267.6 2466483-2472149 4 + 5667 Q P P -
aL-1-1.8 NT 078575.5 18237577-18243244 8 + 5668 Q P P -
L-1-2.8a NT_039460.6 4167673-4158940 8 - 8734 Q + + +
L-1-2.8b NT_078575.5 12483528-12477141 8 - 6388 Q + P P
L-1-2.9 NT 039472.6 28499787-28493004 9 - 6784 Q - + +
L-1-2.14 NT_039606.6 27905917-27913739 14 + 7823 Q P + +
L-1-2.19 NT_039687.6 54108037-5409931 | 19 - 8727 Q + + +
alL-3-2.4 NT_039267.6 3529917-3535228 4 + 5312 Q + P P
bL-3-9.5 NT_165760.1 8102397-8093731 5 - 8667 P + + +
bU-1-5.5a NT_039305.6 7470573-7479554 5 + 8982 Q P + +
bU-1-5.5b NT_109320.3 817587-826568 5 + 8982 Q + + +
bU-1-5.15 NT_039621.6 37681733-37674548 15 - 7186 Q P P +
by-1-5.16 NT_039625.6 10813766-10804785 16 - 8982 Q + P P
bU-1-5.X NT 039700.6 8642080-8651060 X + 898l Q + P +
by-1-7.1 NT_078297.5 46243984-46253037 | + 9054 Q P + +
aU-3-4.8 NT_078575.5 47244198-47236723 8 - 7476 Q P P +
K-3-3.2 NT 039202.6 12947290-12938249 2 - 9042 Q P + +
K-3-3.3a NT_039240.6 16281352-16289068 3 + 7717 Q + P P
K-3-3.3b NT_039240.6 101357871-101366913 3 + 9043 Q + + +
K-3-3.4 NT_109315.3 1334988- 1327627 4 - 7362 Q P P -
K-3-3.5a NT_078458.5 8656480-8663841 5 + 7362 Q P P -
K-3-3.5b NT_039305.6 6544154-6553194 5 + 9039 Q + + +
K-3-3.5¢ NT_109320.3 32960612-32953147 5 - 7466 Q P P -
K-3-3.10a NT_039490.6 1628826-1619788 10 - 9039 Q P P P
K-3-3.10b NT_039492.6 15143818-15152862 10 + 9045 Q + + +
K-3-3.11a NT 096135.4 25877081-25869722 I - 7360 Q P P -
K-3-3.11b NT_096135.4 41839881-41848925 I + 9045 Q + + +
K-3-3.11c NT_096135.4 52173389-52182429 I + 9041 Q + + +
K-3-3.11d NT 165773.1 14484140-14493181 I + 9042 Q P P +
K-3-3.13 NT_039578.6 10683833-10691619 13 + 7787 Q + + P
K-3-5.13 NT_039589.6 14019544-14010858 13 - 8687 Q + + +
bK-3-6.4 NT 039258.6 12169957-12163352 4 - 6606 Q P P P
bK-3-6.5 NT_165760.1 9622092-9631063 5 + 8972 Q + P P
bK-3-6.6 NT_039343.6 25557034-25549676 6 - 7359 Q + P P
bK-3-6.7 NT_039428.6 4390808-4399848 7 + 9041 Q + + +
bK-3-6.8 NT_078575.5 50511987-50519348 8 + 7362 Q + P P
bK-3-6.12 NT_039551.6 28009046-28018086 12 + 9041 Q P + +
K-4-11.1a NT 039185.6 8055063-8060808 | + 5746 Q + P -
<K-4-11.1b NT_039189.6 8417864-8426844 | + 8981 Q + P P
K-4-11.2 NT_039206.6 34645399-34636419 2 - 898l Q + + +
K-4-11.4a NT 039264.5 1995942-1986961 4 - 8982 Q + P +
K-4-11.4b NT_039264.5 8278820-8269838 4 - 898l Q + + +
K-4-11.7a NT 039385.6 3682978-3673997 7 - 8982 Q P P -
K-4-11.7b NT _039413.6 9420528-9429226 7 + 8699 Q + + P
K-4-11.7¢ NT_039413.6 10493961-10502941 7 + 898l Q + P -
K-4-11.7d NT 039433.6 34095286-34100959 7 + 5764 Q P P P
K-4-11.10a NT_039492.6 961582-954449 10 - 7134 Q P P P
K-4-11.10b NT_039492.6 33845187-33854167 10 + 898l Q + + +
K-4-11.11a NT _039515.6 5820301-5829280 I + 8980 Q + + +
K-4-11.11b NT_165773.1 297443-290657 I - 6787 Q + P +
K-4-11.12 NT_039548.6 17945382-17951142 12 + 5761 Q P P -
K-4-11.13 NT_039590.6 6969427-6960447 13 - 898l Q + P +
K-4-11.19 NT_039687.6 31559507-31566568 19 + 7062 Q P P -
K-4-11.X NT_039706.6 194264-203244 X + 898l Q + + +
<U-4-8.1 NT 039185.6 26088376-26097356 | + 898l Q + P +
<U-4-8.5 NT_039324.6 798268-807248 5 + 8981 Q P + +
<U-4-8.11 NT 039515.6 3658394-3649425 I - 8970 Q + P +
<U-4-8.18 NT 039678.6 472572-481451 18 + 8880 Q P + +
cU-4-11.1 NT 039185.6 14772777-14781433 | + 8657 P + P +

Putative MuERVs isolated with 100% homology with respective U3 probes: dlsolated in Burn/No Burn, blsolated in No Burn, and “Isolated in Burn. The last number
of putative MuERVs derived from the same U3 sequences indicates different chromosomal locations, and the letter next to this number represents different virus
defective), and ("P" partial). * chromosome number, *primer

isolates. The coding potentials for retroviral polypeptides are indicated by ("+" intact/full-length), ("-

binding site, P (tRNAproline) and Q (tRNAglutamine),
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Figure 4

Phylogenetic relationship of RTs of putative MuERVs. Seven conserved domains of full-length RT sequences from 42
putative MuERVs were subjected to a phylogenetic analysis. The phylogenetic tree was established using neighbor-joining meth-
ods. The branch length represents a degree of divergence between RT sequences. The confidence values at the branch nodes
indicate the percentage support for a particular branching following 100 bootstrap replications.

and Figure 5). In addition, four putative MuERVs (L-1-
2.19, L-1-2.8a, K-3-5.13, and L-3-9.5) had unique RFLP
profiles, which did not match with the reference, suggest-
ing "xenotropic-like" tropism [26,27]. Further investiga-
tion is necessary to confirm the tropism of these four
"xenotropic-like" putative MuERVs.

Genetic evidence of recombination events in certain
putative MuERVs

There are two unique features of MuERVs: two identical
(at least at the time of integration) copies of flanking LTRs
and a short direct repeat created at the genomic target dur-
ing integration. They serve as indicators of integration
ages as well as genomic recombination events that
occurred in the host after the initial integration. The inte-
gration age of MuERVs can be estimated based on the
degree of accumulated mutations within the presumed to
be identical flanking LTRs of each MuERV. Among the 59
putative MuERVs examined, only 6 of them had muta-
tions within each pair of LTRs ranging from 0.1349 % to
0.2869 % (Table 3). The integration ages of these MuERVs

were calculated based on a formula of "0.13 % mutation
rate between two flanking LTRs/one million years (MYr)"
[28]. The integration ages of the putative MuERVs ana-
lyzed in this study ranged from 1.037 MYr to 2.206 MYr.
In addition, as an indicator of genomic rearrangements
between MuERVs as well as in other parts of the genome,
we examined a short stretch of sequences (4 bp to 12 bp)
flanking each MuERV for a direct repeat. It turned out that
11 out of 59 MuERVs were not flanked by a direct repeat,
indicating that they were formed via recombination
between two different MuERVs (Table 3). The rest had
direct repeats of 4 bp except for the U-1-5.15 MuERV,
which had direct repeats of 12 bp.

Host genes near the integration sites of putative MuERVs

The U3 promoter and enhancer sequences residing in the
MuERV LTRs often regulate the transcriptional activities of
neighboring host genes at different levels (e.g., primary
transcription, splicing, and polyadenylation) [4-6]. To
gain insights regarding potential roles of the putative
MuERVs identified in this study, host genes within 110 kb
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Figure 5

Tropism analysis of putative full-length MuERVs. Cellular tropism of 16 putative full-length MuERVs was determined by
in silico RFLP analysis using three restriction enzymes (BamHlI, EcoRl, and Hindlll). Relative locations of each restriction enzyme
site were mapped on each MuERV. Expected RFLP patterns of ecotropic and xenotropic MuERVs are presented on the bottom

as a reference [27].

upstream and downstream from the integration sites of
each putative MuERVs were identified (Table 4). Nine
putative MuERVs were integrated within the introns of
various types of host genes, either in the same or opposite
orientation. This suggests that expression of these host
genes might be controlled by the U3 promoter and
enhancer sequences of the respective putative MuERVs. In
addition, at least one known host gene was identified
from the 42 putative MuERVs (total of 145 genes) within
the search range (see Additional file 1, Table S2). For
instance, the K-3-3.13 putative MuERV was integrated

near a cluster of various isotypes of histone genes on chro-
mosome 13. Other host genes found near the integration
sites of selective putative MuERVs include Selp, F5, Fcgr3a,
and Scpepl, which are known to participate in various
physiologic processes, such as inflammation and vascular
wall homeostasis [31-34]. Although these putative
MuERVs are not located within the host genes, their LTRs
are still capable of controlling the transcriptional activities
of nearby host genes. No known host genes were mapped
near the integration sites of the last eight putative MuERVs
within the search range.
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Table 3: Integration age and recombination event of putative MuERVs.

Virus LTR Mutation Integration age  Direct repeat Recombination Virus LTR Mutation Integration age  Direct repeat Recombination
(bp) rate (%) (MYr*) (bp) rate (%) (MYr*)

L-1-1.4 487 0 . CCTT no K-3-5.13 547 0 . GTAC no
L-1-1.8 487 0 . ATAT no K-3-6.4 741 0.1349 1.037 CAGG no
L-1-2.8a 573 ND ND GGTC/GTCT yes K-3-6.5 741 0 . ATAC no
L-1-2.8b 574 0 . GTAT no K-3-6.6 741 ND ND ACAA/ACAC yes
L-1-2.9 574 ND ND GGAA/GGGG yes K-3-6.7 741 0 . CCTG no
L-1-2.14 574 0.1742 1.34 GTAT no K-3-6.8 741 ND ND GGAA/GGTG yes
L-1-2.19 574 0 . CTTG no K-3-6.12 741 0 . AGAC no
L-3-2.4 547 0 . AACA no K-4-11.1a 698 0 . CAAG no
L-3-9.5 533 0 . CTGG no K-4-11.1b 697 0 . GTTG no
U-1-5.5a 697 0 . CCAC no K-4-11.2 697 0 . GTGT no
U-1-5.5b 697 0 . CACC no K-4-11.4a 697 0.1434 1.103 CACC no
U-1-5.15 697 0 . AAACAAACAAAC no K-4-11.4b 698 0.1432 1.101 AAAC no
U-1-5.16 697 0 . CTGG no K-4-11.7a 697 0.2869 2.206 ATGA no
U-1-5.X 697 0 . ATAC no K-4-11.7b 697 0 . ATTT no
U-1-7.1 748 0.2673 2.056 ACAC no K-4-11.7¢ 697 0 . CATG no
U-3-4.8 697 0 . AGGT no K-4-11.7d 698 0 . CTAA no
K-3-3.2 741 0 . ATTG no K-4-11.10a 697 0 . GTGC no
K-3-3.3a 742 0 . ACTT no K-4-11.10b 697 0 . GATG no
K-3-3.3b 742 0 . ATGT no K-4-11.11a 697 0 . ATAG no
K-3-3.4 741 ND ND CCAA/CCTG yes K-4-11.11b 697 0 . GGAG no
K-3-3.5a 741 0 . GATG no K-4-11.12 697 0 . CTGT no
K-3-3.5b 741 ND ND ATAT/TTAT yes K-4-11.13 697 0 . GTGG no
K-3-3.5¢ 741 0 . ATAG no K-4-11.19 697 0 . CTTC no
K-3-3.10a 741 ND ND ACAG/TTAG yes K-4-11.X 697 ND ND TGAA/GAGT yes
K-3-3.10b 743 ND ND CTGC/TTGC yes U-4-8.1 697 0 . TTTG no
K-3-3.11a 741 0 . ACAC no U-4-8.5 697 0 . AGGG no
K-3-3.11b 743 ND ND AGGG/TTGG yes U-4-8.11 697 0 . GTTC no
K-3-3.11c 741 0 . ACAC no U-4-8.18 697 0 . CCTG no
K-3-3.11d 741 ND ND AAAC/GAAA yes U-4-11.1 525 0 . AACC no
K-3-3.13 741 0 . CTAC no
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Dots indicate insufficient data to calculate integration ages. Absence of direct repeats at both ends of each MuERYV indicates a recombination event. Integration ages were calculated based on a formula (0.13% mutation rate
between two flanking LTRs = | MYr). ND (not determined); * Million years

Table 4: Location and orientation of putative MuERVs integrated into host genes.

BMC Genomics 2007, 8:440

Virus Chr* Gene Description Genomic location Insertion/Exons Orientation

virus (bp) gene (bp) virus/gene
U-1-7.1 | Ctse Cathepsin E 1334701 13-133479149 133465860-133503051 Intron 1-2/10 exons +/+
K-3-3.3a 3 Rsrcl Arginine/serine-rich coiled-coil | 67184007-67191723 67073648-67446326 Intron 4-5/10 exons +/+
L-3-2.4 4 Cede2l Coiled-coil domain containig 21 133431467-133436778 133403174-133459161 Intron 3—4/14 exons +/-
K-3-6.5 4 Galntl | Polypeptide N-acetylgactosaminyltransferasel | 24740764-24749735 24732958-24775983 Intron 1-2/12 exons ++
L-1-1.8 8 Chd9 Chromodomain helicase DNA binding protein 9 93776396-93782063 93718942-93944613 Intron 2-3/40 exons +/+
K-3-3.11b I Abr Active BCR-related gene 76365003-76374032 76232929-76438420 Intron 1-2/23 exons +/-
K-3-3.11d I Pled3 Phospholipase C, delta 3 102899753-102908794 102886394-102917748 Intron 1-2/16 exons +-
K-4-11.11a I Pkdlll Polycystic kidney disease | like | 8820301-8829280 8726711-8873269 Intron 16—17/50 exons +/-
L-1-2.19 19 Gprk5 G protein-coupled receptor kinase 5 60979970-60988696 60945139-61147005 Intron 1-2/16 exons -+

* chromosome.
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Discussion

Burn-elicited stress signals are directly linked to patho-
logic changes in distant organs contributing to systemic
inflammatory responses syndrome and often multiple
organ failure [29,30]. The results from our previous stud-
ies demonstrated that the expression of certain MuERVs
was differentially altered in various tissues of mice after
burn, suggesting that MuERVs may play a role in post-
burn pathologic changes. Involvement of ERVs in inflam-
matory disease processes was exemplified by the direct
role of syncytin, an envelope protein of HERV-W, in the
development of multiple sclerosis, an autoimmune dis-
ease [16]. In addition, ERVs are implicated in an array of
other diseases such as breast cancer, schizophrenia, rheu-
matoid arthritis, IDDM, myeloid leukemia, and T cell
lymphoma [9,17-19,31-34]. However, a substantial
amount of further studies are essential to gain clear
insights into the ERVs' role in a number of disease proc-
esses, including systemic response after burn injury.

In this study, we confirmed that burn-elicited stress sig-
nals alter the expression of certain MuERVs in a U3 pro-
moter- and tissue- specific manner. During the course of
this study, 31 unique MuERV U3 sequences were identi-
fied from distant organs (liver, ling, and kidney) of burn
and no burn mice. Size-based comparison analysis of the
differentially expressed U3 fragments (RT-PCR products)
and 31 U3 clones allowed us to determine whether the U3
clones are derived from the burn-induced U3 fragments.
Each U3 promoter sequence had a unique transcription
potential. It is likely that burn-elicited stress signals alter
the intracellular transcription environment by activation
or inactivation of certain transcription factors in a cell
type- and tissue-specific manner, thereby, leading to dif-
ferential genome-wide regulation of specific MuERVs. The
MuERVs that were induced after a burn may have a patho-
physiologic role in the systemic response different from
repressed MUuERVs. It was of interest to note that the U3
expression profiles in all three tissues of no burn mice
(subjected to anesthesia and resuscitation only) at 3 hours
were significantly different from the profiles at 24 hours.
In addition, the U3 profiles of no burn mice at both time
points did not match corresponding control tissues har-
vested without any treatment. These findings suggest that
the initial treatments (anesthesia and resuscitation) dur-
ing the burn procedure contributed to changes in the U3
expression profiles in a tissue-specific manner. Further-
more, the genomic U3 profile was distantly related to the
U3 expression profiles from both burn and no burn mice,
including mice without any treatment. It suggests that not
all MuERVs on the mouse genome were actively tran-
scribed and/or responded to stress signals in the tissues
examined in this study. It will be worthwhile to perform a
comprehensive examination of the MuERV expression
profile in various cell types as well as tissue types.

http://www.biomedcentral.com/1471-2164/8/440

Several transcription regulatory elements were identified
more frequently in U3 sequences isolated from burn mice.
These include binding sites for HMGA1/2, C/EBPp, PAX6,
SZF1, and Thingl/E47 heterodimer. These genes are
known to participate in various normal as well as patho-
logic processes, such as SZF1's role in hematopoiesis and
the involvement of C/EBPf in the regulation of proin-
flammatory genes [35-37]. In addition, recent reports
demonstrated that HMGA1 functions as a mediator of the
development of sepsis, as evidenced by its increased
serum levels in patients with septic shock [38]. Phyloge-
netic analysis revealed that four of the U3 sequences (K-4-
5 U3, K-4-10 U3, L-4-3 U3, and U-4-1 U3) whose tran-
scriptional activities are presumed to be induced in burn
mice were clustered into a unique branch (Figure 3) and
all have the HMGA1/2 binding element. We can speculate
that the elevated systemic levels of HMGA1 protein during
burn-elicited septic development may enhance transcrip-
tional activities of certain MuERV U3 promoters, such as
K-4-5 U3, K-4-10 U3, L-4-3 U3, and U-4-1 U3, through
the HMGA1/1 binding element. It will be necessary to
determine whether the transcription regulatory elements,
predominantly present on the U3 promoters from burn
mice, interact with corresponding proteins which in turn
result in altered transcriptional activities. In addition, two
hormone-related binding elements for steroidogenic fac-
tor 1 and estrogen-related receptor 1, were identified in
both burn and no burn groups. It is possible that these ele-
ments may play a role in MuERV responses to changes in
hormone levels due to various types of stress signals [39-
41]. Since there is an increase in systemic glucocorticoid
levels after burn, we tried to find a glucocorticoid response
element on the U3 promoters isolated from burn mice,
but we were not able to.

Almost all ERVs are considered to be defective in their
genomic organization, and as a result, they are not capa-
ble of encoding intact retroviral polypeptides and are rep-
lication-incompetent. In this study, in silico mapping/
cloning experiments using the 31 U3 sequences as a probe
revealed 59 putative MuERVs. Among them, 16 putative
MUuERVs retained coding potentials for all three retroviral
polypeptides and at least 12 of them were classified as pol-
ytropic or modified polytropic in regard to their tropism.
These findings indicate that a substantial fraction of the
MuERV population on the mouse genome is capable of
encoding functional proteins and can infect host cells
when they are activated for replication. Another group of
putative MuERVs, defective in their genome structures,
had intact coding potentials for gag, pol, and/or env
polypeptides and it is likely that changes in the expression
of these individual proteins affect the host cells' normal
physiology, such as overexpression of syncytin in the
brain of multiple sclerosis patients. It might be necessary
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to further characterize the biological roles of MuERVSs pre-
sumed to be derived from U3 probes induced after burn.

One of the key findings from this study was that the
majority of putative MuERVs are integrated into introns or
near the host genes, suggesting that burn-mediated regu-
lation of some of these MuERVs may be linked to the
expression of neighboring host genes. The U-1-7.1 puta-
tive MUERV was integrated between exon 1 and exon 2 of
the cathepsin E gene, which is essential for immune
defense against microbial pathogens via its protease activ-
ity [42]. Interestingly, the U-1-7 U3 probe was derived
from the lung and cathepsin E was differentially expressed
in the lung compared to other tissues, such as kidney [43].
In addition, the L-1-1.8 putative MuERV derived from the
L-1-1 U3 probe (isolated from the liver of no burn mice)
was integrated between exon 2 and 3 of chromosome
domain-helicase-DNA-binding protein 9 (CHD9), a chro-
mosome remodelling factor [44,45]. Our recent study
provided evidence suggesting a potential chromosomal
remodelling in the liver after burn [46]. It will be of inter-
est to investigate whether the U3 promoter and enhancer
sequences of the L-1-1.8 putative MuERV affect the expres-
sion of CHD9 in the liver after burn. Furthermore, the U-
4-11.1 putative MuERV, which was derived from the U-4-
11 U3 probe (isolated from the lung of burn mice), was
integrated near a cluster of immunoglobulin gamma
(IgG) Fc receptor genes. Among these 1gG Fc receptors,
Fcgr3a has been described as a susceptibility factor for
autoimmune diseases such as systemic lupus erythemato-
sus and rheumatoid arthritis [47-49]. An investigation
into the role of the U-4-11.1 putative MuERV in the tran-
scriptional control of IgG Fc receptor genes after burn,
especially the Fcgr3a gene, will allow us to better under-
stand interactions between this MuERV locus and nearby
IgG Fc receptors.

Conclusion

In this study, we demonstrated that burn-elicited stress
signals were responsible for a differential genome-wide
alteration in MuERV expression in a tissue- and U3 pro-
moter-specific manner. Biological properties of the 59
putative MuERVs, which were isolated using the U3
sequences as a probe, were examined in silico and their
potential roles in post-burn pathologic changes were dis-
cussed. Further characterization of the full-length as well
as defective MUERVs identified in this study is warranted
to gain insights into their biological roles, including their
interaction/relationship with neighboring genes, in both
normal physiology and disease states of the host.

Methods

Animal experiments

Female C57BL/6] mice (Jackson Laboratories, Bar Harbor,
ME) were housed according to the guidelines of the
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National Institutes of Health. The Animal Use and Care
Administrative Advisory Committee of the University of
California, Davis, approved the experimental protocol.
The burn protocol employed in this study has been
described previously [20]. Briefly, under general anesthe-
sia, an approximately 18 % total body surface area (TBSA)
full-thickness flame burn injury was generated on the
shaved back of mice accompanied by immediate resusci-
tation. Control mice were shaved, anesthetized, and resus-
citated, but not burned. Three mice from each group were
sacrificed by CO, inhalation for tissue (liver, lung, and
kidney) collection at 3 hours and 24 hours after burn. In
addition, no treatment control mice (three) were sacri-
ficed by cervical dislocation for tissue collection.

RT-PCR analysis of MUuERYV expression

Total RNA isolation and cDNA synthesis were performed
based on protocols described previously [20]. Briefly,
total RNA was extracted using an RNeasy kit (Qiagen Inc.,
Valencia, CA) and 100 ng of total RNA from each tissue
sample was subjected to reverse transcription using Sen-
siscript reverse transcriptase (Qiagen Inc.). A set of prim-
ers, ERV-U1 (5'-CGG GCG ACT CAG TCT ATC GG-3') and
ERV-U2 (5'-CAG TAT CAC CAA CTC AAA TC-3'), were
used to amplify the MuERV U3 region. These primers have
previously been used to amplify non-ecotropic MuERV
U3 regions [50].

Western blot analysis

Protein extracts were prepared from snap-frozen tissues
and Western blot analysis was performed as described pre-
viously [51]. Briefly, the membrane, blocked in 5% horse
serum, was incubated with goat antibody specific for
gp69/71 of Rauscher murine leukemia virus (MLV)
(ViroMed Biosafety Laboratories, Camden, NJ) followed
by anti-goat-HRP antibody (Jackson ImmunoResearch
Laboratories, West Grove, PA). The reactive signal was vis-
ualized via chemiluminescence.

Cloning and sequence analysis

PCR products were purified using a QIAquick PCR Purifi-
cation kit (Qiagen Inc.) and cloned into the pGEM-T Easy
vector (Promega, Madison, WI). Plasmid DNAs for
sequencing analysis were prepared using a Qiaprep Spin
Miniprep kit (Qiagen Inc.). Sequencing was performed at
Davis Sequencing Inc. (Davis, CA) using the ABI Prism
377 DNA sequencer from PE Biosystems (Foster City,
CA).

Multiple alignment and phylogenetic tree analyses

The U3 promoter sequences and conserved 178 amino
acid residues of RT sequences were aligned using Laser-
gene (DNASTAR, Madison, WI) and/or Vector NTI (Invit-
rogen, Carlsbad, CA) [25]. Phylogenetic trees were
established using the neighbor-joining method within the
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MEGAS3 program [52,53]. In order to evaluate the statisti-
cal confidence of branching patterns, bootstrapping was
performed with 100 replications within the program.

Transcription regulatory elements on MuERYV U3
sequences

The profile of transcription regulatory elements on the U3
promoter sequences was determined using the MatInspec-
tor program from Genomatix (Munich, Germany). The
parameters were set at a core similarity of 90 %, resulting
in a 10 % or less mismatch within the core sequence and
the matrix similarity was optimized to reduce false posi-
tives [54].

In silico cloningimapping of putative MuERYVs using U3
sequences as a probe and ORF analysis

Putative MUERV sequences were identified by surveying
the entire mouse (C57BL/6]) genome database from the
NCBI using individual U3 promoter sequences as a probe.
Initially, the genomic U3 sequences with greater than 97
% homology with respective U3 probes were selected for
further cloning/mapping analyses. We then searched for
putative MuERV sequences in the genome ranging from
approximately 5 kb to 9 kb and flanked by almost identi-
cal LTRs at both 5' and 3' ends. Subsequently, these puta-
tive MUuERV sequences were subjected to ORF analyses for
gag, pol, and env polypeptides using reference retroviral
sequences encoding intact polypeptides (GenBank acces-
sion number: AF033811, J02255, DQ241301, S80082,
M17327, and AAO37285).

Analyses of tropism, primer binding sites (PBSs), and
neighboring cellular genes of putative MuERVs

Cellular tropism of 16 putative full-length MuERVs were
determined by in silico RFLP analysis using three restric-
tion enzymes, BamHI, EcoRl, and HindlIIl, using Vector
NTI (Invitrogen). The RFLP data of each putative MuERV
were compared to the reference profiles for each tropism
(ecotropic, xenotropic, polytropic, and modified poly-
tropic) [27]. A stretch of 18 bp, located immediately
downstream of the 5' U5 region, was examined to deter-
mine PBSs for all putative MUERVs identified in this study.
The conserved PBS sequences for tRNAProline(P) and tRNA-
Glutamine(Q) were used as a references [55,56]. In addition,
host genes residing near (within 110 kb upstream and 110
kb downstream) the individual integration sites of puta-
tive MuERVs were mapped based on the NCBI and
Ensemble mouse genome database [57].
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Figure S1: Multiple alignment of MuERV U3 sequences related to burn
and/or no burn. The 31 unique MuERV U3 sequences isolated from tis-
sues (liver, lung, and kidney) of burn and/or no burn mice were subjected
to multiple alignment analysis. Yellow regions have a 100 % homology,
white regions are non-similar sequences, blue regions indicate conserved
sequences, and dashes represent absence of sequences. The locations of the
direct repeat, unique region and TATA box are identified in dotted boxes.
An insertion of 190 bp is also indicated in the middle of the alignment.
Table S1: Profile of transcription regulatory elements of 31 MuERV U3
sequences. A total of 73 transcription regulatory elements were analyzed.
Numbers in the box indicate frequency of each transcription regulatory
element. Gray box indicates no occurrence of specific transcription regula-
tory elements. Table S2: Neighboring host genes within 110 kb upstream
and downstream of integration sites of individual putative MuERVs. A
total of 145 neighboring host genes were identified within the search
range.
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