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Culture has played a pivotal role in human evolution. Yet, the ability of social
scientists to study culture is limited by the currently available measurement
instruments. Scholars of culture must regularly choose between scalable but
sparse survey-based methods or restricted but rich ethnographic methods.
Here, we demonstrate that massive online social networks can advance
the study of human culture by providing quantitative, scalable and high-
resolution measurement of behaviourally revealed cultural values and prefer-
ences. We employ data across nearly 60 000 topic dimensions drawn from two
billion Facebook users across 225 countries and territories. We first validate
that cultural distances calculated from this measurement instrument corre-
spond to traditional survey-based and objective measures of cross-national
cultural differences. We then demonstrate that this expandedmeasure enables
rich insight into the cultural landscape globally at previously impossible resol-
ution. We analyse the importance of national borders in shaping culture
and compare subnational divisiveness with gender divisiveness across
countries. Our measure enables detailed investigation into the geopolitical
stability of countries, social cleavages within small- and large-scale human
groups, the integration of migrant populations and the disaffection of certain
population groups from the political process, among myriad other potential
future applications.
1. Introduction
Culture has played a pivotal role in human evolution [1–4]. As a result, the studyof
human culture is one of the core endeavours of the social sciences. Tens of thou-
sands of scientists around the world study culture [5], with disciplines ranging
from anthropology [6,7] to sociology [8], from political science [9–11] to economics
[12–14], and from psychology [15–19] to philosophy [20]. Their work has enabled
the understanding of many human social, economic and political phenomena
[12,21–28], and serves as a bedrock of knowledge in the social sciences.

We focus on a comprehensive and holistic concept of culture. Following a
commonly used definition in the field of cultural evolution, we say that
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‘[c]ulture in its broadest sense is that which is socially rather
than genetically transmitted. [· · ·] In its totality, it is that
which distinguishes one human group from another’ [29].
This is similar to a concept of culture defined as ‘that complex
whole which includes knowledge, beliefs, arts, morals, law,
customs, and any other capabilities and habits acquired by
[a human] as a member of society’ [30]. Our definition is
inclusive, making no explicit value judgments about which
traits might be more or less significant.

The traditional quantitative approach to the study of
culture has been shaped by the historical availability of data
[31], often limiting the ability to measure culture comprehen-
sively. For most of the history of the study of culture,
collecting empirical data on humans has been costly, time con-
suming and in many instances impossible [32]. As a result,
scholars often inductively distill the broad theoretical defi-
nitions of culture using a top-down approach [31], in the
sense that the scholars themselves design the surveys that
measure the set of cultural constructs they are interested in.
Cultural dimensions that result from this process tend to be
a select few salient and measurable features of human
groups such as artistic and culinary practices [33], language
[34,35] and literature [36], political ideologies [37] and insti-
tutions [23], and religions and religious practices [38].

Traditionally, producing a more comprehensive descrip-
tion of a group’s culture required ethnographers to observe
individuals in the field [39]. Their approach is more
bottom-up, in the sense that ethnographers spend long
periods of time observing populations, with the aim of
describing their culture holistically. More recently, the infor-
mation age has enabled the emergence of what we might
call computational ethnography [32,40]. Humans today
spend an ever-increasing amount of time on devices that
continuously track and record users’ interests, beliefs,
preferences, behaviours, locations and interactions. By unob-
trusively observing billions of users, social media firms play
the role of ethnographers, but on a massive scale.

This changing information environment enables supple-
menting and expanding the scientific approach to the
measurement of culture. Here, we propose new methods
for the bottom-up measurement of culture globally. We first
explore the strengths and weaknesses of traditional quantitat-
ive approaches to the measurement of culture and show their
relation to our method. We then measure culture from the
bottom up and examine our measure’s performance against
traditional quantitative measures. Finally, we investigate
cultural questions previously impossible to examine without
the combined resolution and scope that our method enables.
Ultimately, high-resolution granular data are essential for our
understanding of many cultural phenomena, ranging from
wars and the formation of identity to the integration of
immigrants and the fragmentation of societies.
2. Measuring culture from the bottom up
2.1. Traditional quantitative approach to study culture
Traditional quantitative approaches to the study of culture
benefit from numerous strengths. For example, these studies
of culture are often relatively low in dimension and therefore
readily measurable via quantitative surveys. This parsimony
has enabled excellent studies of certain cultural features in
highly data-constrained settings [41,42]. Traditional approaches
also provide substantial face validity: they focus onmany of the
concepts typically associated with culture. These traditional
approaches, as a result, likely encapsulatemany important con-
stituent cultural constructs. A final benefit of the parsimony of
traditional approaches is that scholars from a wide variety of
fields can measure and study different aspects of culture.

Yet while the traditional approach to culture has a
number of benefits, it also has various weaknesses. First, a
critical question when attempting to construct a broad
measure of human culture from the top down is: where do
we draw the line in terms of what to measure? Surely religion
should be considered part of culture. But is group-level sup-
port for a football team part of culture? What about
preferences for video games [43] or television shows? What
about group-level appreciation of cat videos or the colour
of socks that we choose to wear? A scholar may determine
religion—but not preference for a television show—to be
the more theoretically important constituent of culture to
measure based on the argument that television preferences
are not central to the human experience. However, another
scholar with a differing opinion could argue that, given the
amount of time humans in the developed world spend
watching television [44], the choice of a particular show
reflects an important implicit value of the humans who
watch it. If a line about what to measure must be drawn
from the top down, scholars will very likely reasonably dis-
agree on where, precisely, it should fall. However, the very
attempt to narrow cultural constructs from the top down
highlights the second weakness of this measurement strategy.
The justification for excluding any particular construct is
necessarily endogenous to the particular culture (and cultural
bias) of the scientist(s) doing the theorizing. Crucially, where
to draw this line is a direct function of the cultural preferences
of each scholar’s particular human group. This endogeneity
problem arises for every supervised attempt to include or
exclude a concept from the measurement of culture.

Third, the parsimonious nature of top-down approaches
presents its own limitations. Implicitly, traditional quantitative
approaches to the study of culture tend to focus on features
that provide insight into differences among human groups
[45–51]. Yet, human groups may be similar in many more
dimensions than they are dissimilar. Top-down definitions
tend to occlude these dimensions of similarity with an implicit
focus on those features—the arts, language, politics, religion
and distinct traditions—that differentiate human groups.

Finally, traditional quantitative measures of culture com-
monly rely on self-reported answers to survey questions
[52] or subjective evaluations of the particular scientists
conducting the study [53]. These pose measurement chal-
lenges. Questions such as: ‘Is religion important to you?’ or
‘Do you think adultery is immoral?’ pose substantial risks
of social desirability bias [54] and direct observation of sub-
jects induces risk of Hawthorne and experimenter demand
effects [55], among other related methodological concerns.

2.2. Social media data allow measuring culture from
the bottom up

Inspiredbyethnographicmethods [56],wemeasure culture from
thebottomup, enablinga rich,unobtrusive, quantitativedescrip-
tion of global cultural factors.We can conceive of the culture of a
human group at a point in time as a complex, high-dimensional
hypersurface (the black surface in figure 1a). This surface is not
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narrowed from the top down. Conceptually, it includes art and
Angry Birds appreciation, ethics and email enjoyment, for-
malities and football fans, language and loungewear likes,
religion and running routines, politics and potluck preferences,
and social structures and sockwear, among every other feature
of human life.

Our approach enables measuring culture from the bottom
up (the blue surface in figure 1a), providing a complement to
traditional top–down approaches (the red surface in figure
1b). Importantly, it prioritizes no features over others and
enables the data to reveal important dimensions among
observed human groups. This allows our method to be gen-
eral, flexible and unsupervised. And it does not selectively
exclude constructs, reducing the biases in the measurement
of culture encountered by top-down methods.

But how does one go about measuring the high-
dimensional hypersurface of culture? Private firms have—
perhaps unintentionally—led the way. Effectively and
precisely targeting products and services to individuals
requires gathering massive amounts of information about
those individuals’ beliefs, behaviours and preferences
[57–59]. For online companies like Google and Facebook,
the gathering, storing and selling of this information has itself
become a multi-billion dollar enterprise. As a result, the plat-
forms have become adroit at measuring myriad features of
human lives via activities that occur during the large amount
of timemodern humans spend both online and offline in proxi-
mity to connected devices [60]. There is a burgeoning literature
in the social sciences that relies on social media data [61–65].

Facebook places particular importance in classifying the
interests of its users [66]. As a result, the company has inad-
vertently built the largest platform for the measurement of
culture in existence (figure 1b). Fortunately for scholars, Face-
book makes this information accessible to prospective
marketers via a marketing application programming interface
(API). Using information drawn from users’ self-reported
interests, clicking behaviours on Facebook, likes on Facebook,
software downloads, GPS location and behaviour on other
sites that employ Facebook ads (figure 1b), this API provides
the ability to create and analyse social groups of interest
along hundreds of thousands of interest dimensions and
down to very fine spatial and temporal resolution (the zip
code-by-day level in the USA). Electronic supplementary
material, appendix table B4, illustrates examples of cultural
categories along with corresponding Facebook interests
both for traditional and non-traditional cultural elements.
By making its platform open to those interested in marketing
to its users, Facebook has enabled scholars to interrogate its
measures of global human interests and construct freely
available measures of culture.

We use data gleaned from scraping the Facebook Market-
ing API to construct a high-dimensional measure of culture.
We gathered nearly 60 000 diverse interests by sequentially
interrogating Facebook’s platform and then constructed—
for each administrative unit in our analysis—a vector of the
share of individuals in that unit who held each interest.
Importantly, each interest on the platform is indexed by a
unique identifier, allowing for consistency across languages
globally. We use these data to investigate culture at the
country, subnational and local levels. Because the data we
use are aggregated at the level of population groups, they
cannot be used to identify any specific individual and
hence do not present privacy concerns. Electronic
supplementary material, appendix A, provides an in-depth
discussion of Facebook’s algorithm and issues related to
representativeness, biases, fake accounts and privacy.
3. Facebook-based distances between countries
Employing data on these interest shares drawn from over two
billion individual users around theworld, we first validate our
measure of culture derived from Facebook interests against
quantitative measures of country cultural differences taken
from prior literature [12,67]. If our Facebook measure captures
important components of traditional top-down measures, we
expect to observe a positive correspondence between our
bottom-up measure and traditional top-down measures
(see electronic supplementary material, appendix A, for a
description of distance and correlation measures).

Figure 2a presents the results of these comparisons.
Our bottom-up measure of inter-country cultural distance
corresponds positively and significantly to a wide variety of
measures of cultural distance between countries. We observe
small positive correlations between our measure and measures
of linguistic, geographical, religious and genetic distance
between country populations [68–77] (see electronic supplemen-
tary material, appendix A). However, between more direct
measures of traditional notions of culture—provided via the
World Values Survey (WVS) [52,78]—we observe a more
marked positive correspondence with a correlation coefficient
of approximately 0.5 (coefficient: 0.54, p-value: 0.0001). Thus
our bottom–up measure of cultural distance corresponds
positively but imperfectly to traditional measures.

Does this imperfect correspondence result from the
measurement of additional components of cultural distance
between countries? At face value, figure 2b shows that the
number of Facebook interests are several orders of magnitude
larger than the number of questions in the WVS. To further
investigate whether this also translates into capturing more
dimensions of culture, we perform principal component
analysis on Facebook interests and WVS questions, using
the common sample of 69 countries covered by both data
sources (see electronic supplementary material, appendix
A). Our goal is to reduce the dimensionality of interests
and questions and to assess how many unique principal com-
ponents are able to explain a large share (80%) of the variance
in our Facebook measure of culture and in the WVS questions
across countries.

Figure 2c plots the share of the overall variance in ques-
tions and interests that is explained by principal
components as a function of their number. Our measure of
culture derived from Facebook interests explains 80% of the
variance between countries using three times the number of
principal components as required to explain 80% of the var-
iance using the WVS. This provides suggestive evidence
that the Facebook measure covers a more diverse array of
explanatory dimensions of culture as compared to the WVS.

While our Facebook data span a broad variety of interests,
do they also capture a broader set of specific cultural traits than
those measured by the WVS? To explore this question, we
employ a supervised machine learning algorithm that uses
all our Facebook interests to predict close to 50 specific cultural
attributes, ranging from generosity to gender bias. When com-
paring the predicted traits to the observed traits, we find an
average correlation of 0.6, indicating that the wide array of
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Facebook data are also able to capture specific cultural traits
(see electronic supplementary material, appendix table B3).

Next, we examinewhether clusters of countries returned via
our Facebookmeasure of culturemirrorcommonconceptionsof
cultural similarity, providing ameasure of face validity. Figure 3
presents a dendrogram of countries, based on the cosine dis-
tance between culture vectors constructed from our Facebook
data employing the Ward linkage method. The sample of
countries consists of those that overlap with the WVS, have a
population of more than 300 000, and have a Facebook pen-
etration rate of more than 5% (see electronic supplementary
material, appendixA).As can be seen, the unsupervised cluster-
ing of countries within our sample provides substantial validity
to ourmeasure. Countries that typically are culturally or histori-
cally associated with one another—the USA and Canada, India
and Bangladesh, Germany and Austria—are placed directly
next to one another in the clusters. Our approach also reveals
novel features in the data that go beyond obvious geographical
clustering. For example, Puerto Rico is closer to the Latin Amer-
ican cluster than it is to the USA, despite being a US territory.
Furthermore, linguistically similar but geographically disparate
countries—such as the US and Australia, and Brazil and Portu-
gal—cluster together. It is important to mention that clustering
algorithms have some difficulty in dealing with ‘outliers’. This
explains the maybe surprising location of Japan in figure 3.
However, when we extend the dendrogram to include all 225
countries, Japan is no longer special, appearing alongside
China (see electronic supplementary material, appendix figure
B16). Electronic supplementary material, appendix B, provides
extensive robustness checks, exploring different ways of
measuring distances and analysing different samples of
countries and interests.
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4. Facebook-based distances between
subnational regions

Figures 2 and 3 provide evidence for the validity of our
method. However, cultural variation is not relegated solely
to nation-level groupings. Cultural differences at the subna-
tional level are essential to understand nation-building
efforts as well as geopolitical and secessionist threats
around the globe. Unfortunately, traditional quantitative
measures are highly costly to construct and thus provide
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little representative insight into subnational cultures. Con-
ducting representative surveys at high resolution globally
would be cost-prohibitive (in the limit, the costs would
approach those of the Facebook platform itself ). Might our
Facebook measure be able to provide improved, scalable
insight into novel subnational cultural variations?

To investigate this question, we gather vectors of Facebook
interests for subnational regions in the USA and Europe and
compute cosine distances between each region within the
country and all the other regions within the same country
(see electronic supplementary material, appendix A). One
question is whether subnational regions are less distant from
other regions within their own country than from closeby
countries. Figure 4 investigates this for the regions of Spain
(red), France (blue), Germany (yellow) and Italy (green). For
example, panel (a) depicts the distribution of the cultural dis-
tances between Spanish regions, and between these regions
and other European countries. The subnational regions
within Spain are much less distant from one other than from
neighbouring European countries. For example, Catalonia is
culturally markedly closer to any other Spanish region than
to either Italy or France. This same pattern holds for regions
in the other countries (figure 4b–d ).

Before concluding that national borders demarcate sharp
cultural boundaries, we also compare cultural distances
between sub-national regions in different countries. While
sub-national regions are culturally closer to each other than
to other countries (Paris is closer to other regions of France
than to Spain), we might expect capital cities to resemble
each other (Paris might be closer to Madrid than to rural
regions of France). We observe the opposite. Almost all
sub-regions in our data are closest to sub-regions within
their own national borders. Only two sub-regions in our
European data—Flanders in Belgium and Donegal County
in Ireland—are closer to regions in a separate country than
they are to other regions in their own nation. Both exceptions
can be traced back to fairly recent changes in country borders:
the splitting of the province of Limburg between Belgium
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and the Netherlands in the 1830s and the Partition of Ireland
in the 1920s. Overall, this suggests the importance of national
boundaries in shaping cultural distances. It also suggests
that our measure captures deep cultural elements that persist
over longer periods of time.

Do subnational cultures as measured via our Facebook
data cluster together in a sensible manner? To examine this
question, we calculate cosine distances for US states and
perform unsupervised clustering using the Ward linkage
method (see electronic supplementary material, appendix A).
Figure 5 presents the resulting dendrogram. The clusters
return traditional regional and cultural groupings. For
example, states in the US Midwest are placed in proximity
to one another, as are the states in the US South. Mountainous
and more rural states also cluster together, with Alaska
being closest to states like North Dakota, Idaho and New
Hampshire, despite the substantial geographical distances
between them.

Figure 4 demonstrates that regions within countries can
bear substantial similarity to one another. However, not all
countries are likely to have the same amount of within-
nation cultural similarity. Do some countries have more
regional cultural variation within them than do others?
Figure 6 examines countries according to their interregional
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cultural divisiveness, or the average cultural distance between
regions within a country (see electronic supplementary
material, appendix A). Figure 6a ranks 18 selected countries
in increasing order of interregional divisiveness. Two findings
stand out in figure 6a. First, developed countries exhibit
smaller interregional divisiveness when compared with
developing countries, suggesting that they benefit from
greater cohesiveness between regions. Second, within the
group of developed countries, the three countries with the
least interregional cohesiveness are Belgium, Spain and the
USA. The first two have well-known regional issues, with
threats of secession, whereas the third is a large geographical
nation.

Figure 6b,c displays the geographical maps and networks
of regions in Germany (13 regions) and regions in India (34
regions), respectively (see electronic supplementary material,
appendix A). We detect two communities of regions in
Germany that map closely to the historical east–west divide
in the country, suggesting this cultural divide still persists to
this day. We detect three regional communities in India that
correspond roughly geographically with linguistic regions
defined by the language families spoken within the country.
5. Other applications of Facebook-based
distances

Figures 4–6 highlight the utility of our measure in assessing
subnational questions that are simply too expensive to
measure with traditional quantitative approaches. Yet differ-
ences in a society are not limited only to subnational
differences. Societies can also differ along other identity clea-
vages, such as age, gender or race. Our measure enables us to
also delve into the nature of cultural differences that vary
according to such demographic groups and into differences
that occur at even finer degrees of spatial resolution.
Figure 7a,b explore whether countries that exhibit more divi-
siveness in one dimension also do so in other dimensions. It
shows that age divisions and gender divisions have a weak
positive association (Pearson correlation coefficient: 0.234,
p: 0.146), whereas countries that suffer from greater regional
divisions have smaller differences between men and
women (Pearson correlation coefficient: −0.702, p: 0.001).
Many developing countries exhibit more cohesiveness
between genders, although they experience larger regional
divides, compared to many developed countries.

Furthermore, our data enable us to investigate cultural
similarities and differences at even higher spatial resolution.
Figure 8 depicts the dendrogram of the cultural clustering
of the most populous California counties. Geographically dis-
parate but culturally similar counties—such as coastal surfing
communities of San Luis Obispo and Santa Cruz as well as
the rural inland counties of Imperial and Butte—are located
next to one another in the dendrogram. Generalizing this
approach would allow us to identify which local areas cultu-
rally diverge from the rest of the nation in which they are
located, a phenomenon that might provide insight into
regional political disaffection.
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6. Further discussion and concluding remarks
Our method lays out a complementary approach to the study
of culture that can increasingly be measured via the appli-
cation of computational social science to the ever larger
portion of human lives that are unobtrusively and observa-
tionally measured online and offline. Doing so with our
sample of Facebook interests for countries and subnational
and local regions around the world indicates that our
bottom-up measure of culture corresponds positively to tra-
ditional quantitative measures, contains a greater number of
explanatory dimensions, enables the clustering of countries,
subnational units, and localities into sensible groupings,
and provides insight into cultural variation at unprecedented
spatial, demographic and topic-based resolution. A further
strength of our approach is its ability to answer questions
about human culture that have been—up to this point—
impossible to investigate at scale using traditional quantitat-
ive methods. For example, our method and data can enable
us to investigate questions such as, ‘Which country is the cul-
tural centre of the world?’ and ‘Which is the global ‘sister
region’ of a particular region within a country?’ (see elec-
tronic supplementary material, appendix B4 and B6).

The high spatial (zip code-level) and temporal (daily) resol-
ution of Facebook’s available data, coupled with themore than
200 million individuals on the platform in the United States
and the more than two billion on the platform around the
world, enable the measuring of cultural differences with
remarkable precision. Computing cultural differences between
subnational regions (figures 4–6), cities, counties (figure 8), or
any different subgroups of any country (figure 7), which is
cost-prohibitive when using traditional surveys, now becomes
a straightforward endeavour. These studies can be conducted
freely via the publicly available data provided by the Facebook
Marketing API. Even so, this API is limited relative to what
is theoretically possible, given the magnitude of human
behavioural data that firms are currently collecting globally.
Whilewebelieve our conception andmeasurement of culture
provide numerous complementary benefits to traditional
measures, a number of considerations are worth noting. For
instance, the fact that our approach does not inductively
distill culture into parsimonious conceptsmeans that the constel-
lations of interests and behaviours that might diverge between
two cultures may not always lend themselves to ease of concep-
tual interpretation. This is one drawback of our methodology.

Furthermore, while our Facebook measure of culture rep-
resents a marked improvement in terms of its ability to
measure the surface of culture as compared to traditional sur-
veys with high rates of non-response and relatively few
questions [54], it is still far from perfect. Not all individuals
in every country around the world are on Facebook. Our
analysis only generalizes to differences among those who
use Facebook (however, our validity results persist even
when looking at countries with lower penetration of Facebook
use; see electronic supplementary material, appendix B2).
Additionally, while nearly 60 000 dimensions represent a dra-
matic increase over traditional top-down methods (of three
orders of magnitude; see figure 2a), they still measure only a
fraction of the full dimensionality of culture. Moreover, these
dimensions themselves suffer from a certain endogeneity of
measurement: Facebook does not have an interest listed for
every possible feature of culture. Those it chooses to classify
are endogenous to the platform itself. For example, these inter-
ests exclude certain topics—like sex and hate speech—which
are banned from the platform. A more ideal computational
system would classify all interests at an even finer scale of
demarcation.

Finally, while we believe that our measure possesses
numerous complementary benefits to traditional quantitative
and qualitative approaches to culture—unobtrusiveness,
scale, resolution, richness and breadth of constructs, and
the ability to freely peer into the lives of billions of
people—our measure emphatically cannot substitute for tra-
ditionally employed approaches to culture [80]. If we
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observe that individuals in a place spend substantial time
looking at religious websites, we cannot know to what
degree they personally hold religion as important: traditional
approaches are needed to investigate further. And while our
method is useful in providing a culturomic [81,82] barcoding
[83,84] of global culture, the classification and interpretation
of culturally important factors still necessitate in-depth and
careful study of features uncovered by our approach—as
well as of those features of culture that our measure omits.

Humans around theworld sharemany cultural similarities
but also have many differences. Until very recently, quantitat-
ively measuring vast portions of culture was impossible.
However, as we collect data on humanity it becomes increas-
ingly possible to measure the surface of human culture
inmanners that approach cultures’ full underlying dimension-
ality. Doing so—in addition to furthering traditional
quantitative and qualitative approaches to culture—will aid
in a richer understanding of global human culture.

This improved ability to measure cultural differences
between population groups at a more granular level enables a
dramatic advance in the evaluation of some of the most press-
ing questions in the social sciences, such as: do national borders
shape cultures? Are societies more likely to fracture along
gender lines, racial lines, or regional lines? Which specific
locations on the globe are more prone to civil conflict and vio-
lence? Does a lack of cultural cohesiveness contribute to
political extremism? Are certain immigrant cultures more
adept at integrating than others? Some of these questions
have been touched upon in this paper; others have not. All
have one element in common: answering them requires cultural
measurement at previously unavailable scales and resolutions.

Data accessibility. Data and code will be available at the paper’s reposi-
tory on OSF (http://doi.org/10.17605/OSF.IO/A2BTR) and in a
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