

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 10 December 2014
Accepted 15 December 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; lead tartrate; gel growth; redetermination; $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

CCDC reference: 1039408 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of lead(II) tartrate: a redetermination

Matthias Weil

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Single crystals of poly $\left[\mu_{4}\right.$-tartrato- $\kappa^{6} O^{1}, O^{3}: O^{1^{\prime}}: O^{2}, O^{4}: O^{4^{\prime}}$-lead $],\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right]_{n}$, were grown in a gel medium. In comparison with the previous structure determination of this compound from laboratory powder X-ray diffraction data [De Ridder et al. (2002). Acta Cryst. C58, m596-m598], the redetermination on the basis of single-crystal data reveals the absolute structure, all atoms with anisotropic displacement parameters and a much higher accuracy in terms of bond lengths and angles. It could be shown that a different space group or incorporation of water as reported for similarly gel-grown lead tartrate crystals is incorrect. In the structure, each Pb^{2+} cation is bonded to eight O atoms of five tartrate anions, while each tartrate anion links four Pb^{2+} cations. The resulting three-dimensional framework is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the OH groups of one tartrate anion and the carboxylate O atoms of adjacent anions.

1. Chemical context

Crystal growth in gels (Henisch, 1970) is a convenient method to obtain single crystals of high quality from compounds with rather low solubility products. Therefore gel growth was the method of choice for single-crystal growth of the low-soluble fluorophosphate $\mathrm{BaPO}_{3} \mathrm{~F}$. This compound is interesting insofar as the polycrystalline material (prepared by fast precipitation) has orthorhombic symmetry whereas single crystals grown slowly in a gel have monoclinic symmetry. Both the orthorhombic and monoclinic $\mathrm{BaPO}_{3} \mathrm{~F}$ phases belong to the same order-disorder (OD) family and can be derived from the baryte $\left(\mathrm{BaSO}_{4}\right)$ structure type by replacing the $\mathrm{SO}_{4}{ }^{2-}$ anions with isoelectronic $\mathrm{PO}_{3} \mathrm{~F}^{2-}$ anions in two orientations (Stöger et al., 2013). The same baryte-type structure has been reported for $\mathrm{PbPO}_{3} \mathrm{~F}$ on the basis of similar lattice parameters and systematic absences of reflections (Walford, 1967). However, structural details were not determined at that time. In analogy with the barium compound, it was intended to grow crystals of lead fluorophosphate in a gel medium. In order to take into account the somewhat lower solubility of $\mathrm{PbPO}_{3} \mathrm{~F}$ in comparison with $\mathrm{BaPO}_{3} \mathrm{~F}$ (Lange, 1929), crystal-growth experiments were performed with lead salts in ammoniacal tartrate solutions to produce a soluble, poorly dissociated lead tartrate complex which lowers the concentration of Pb^{2+} to such an extent that its direct precipitation is prevented. In fact, after some days colourless single crystals appeared in the gel medium that, on the basis of unit-cell determinations, turned out to be lead tartrate, $\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right]$. The structure of this compound was originally solved and refined from laboratory X-ray powder diffraction data in space group $P 2_{1} 2_{1} 2_{1}$ (De Ridder et al., 2002). However, some years later it was reported that gel-grown lead tartrate crystallizes as a dihydrate
(Lillybai \& Rahimkutty, 2010) or in a different space group (Pna2 ${ }_{1}$; Labutina et al., 2011). Motivated by these disagreements, it was decided to re-investigate the crystal structure of gel-grown lead tartrate on the basis of single-crystal diffraction data for an unambiguous determination of the space group and the composition, and to obtain more precise results compared to the powder refinement.

2. Structural commentary

The present study confirms in principle the results of the previous powder X-ray diffraction study and reveals the determination of the absolute structure (Flack parameter 0.003 (7); Flack, 1983) and all non-H atoms refined with anisotropic displacement parameters. In comparison with the powder study, the higher precision and accuracy of the present model is, for example, reflected by the notable differences in the $\mathrm{Pb}-\mathrm{O}$ bond lengths determined in the two studies (Table 1). An important result of the present study is that neither a different space group nor a different content in terms of an incorporation of water into the structure could be found on the basis of the single-crystal data.

The Pb^{2+} cation has a coordination number of eight considering a cut-off value of $3 \AA$ for the ligating oxygen atoms. The coordination polyhedron is considerably distorted (Fig. 1), with $\mathrm{Pb}-\mathrm{O}$ distances in the range 2.472 (2)-

Figure 1
Coordination environment of the Pb^{2+} cation in the title compound, with atom labelling (for symmetry codes refer to Table 1). Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Comparison of the $\mathrm{Pb}-\mathrm{O}$ bond lengths (\AA) in the current and the previous (De Ridder et al., 2002) refinements of lead tartrate.
For the previous refinement: $a=7.99482$ (3), $b=8.84525$ (4), $c=8.35318$ (4) \AA.

Bond	current refinement	previous refinement
$\mathrm{Pb}-\mathrm{O} 1^{\text {i }}$	$2.472(2)$	$2.859(12)$
$\mathrm{Pb}-\mathrm{O} 5^{\text {ii }}$	$2.482(2)$	$2.398(11)$
$\mathrm{Pb}-\mathrm{O} 6^{\text {iii }}$	$2.594(2)$	$2.575(12)$
$\mathrm{Pb}-\mathrm{O}{ }^{\text {i }}$	$2.5972(17)$	$2.637(9)$
$\mathrm{Pb}-\mathrm{O} 4^{\text {iv }}$	$2.6878(19)$	$2.649(11)$
$\mathrm{Pb}-\mathrm{O} 4^{\text {iii }}$	$2.7866(19)$	$2.847(12)$
$\mathrm{Pb}-\mathrm{O} 2^{\text {iv }}$	$2.935(2)$	$2.975(13)$
$\mathrm{Pb}-\mathrm{O} 1$	$3.004(2)$	$2.754(12)$

Symmetry codes: (i) $-x-\frac{1}{2},-y, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y, z-\frac{1}{2}$; (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv)
$x-\frac{1}{2},-y+\frac{1}{2},-z$.
Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 O \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(1)$	$2.02(4)$	$2.646(3)$	$131(5)$
$\mathrm{O} 4-\mathrm{H} 4 O \cdots 6^{\mathrm{ii}}$	$0.85(1)$	$1.79(1)$	$2.618(3)$	$169(4)$

Symmetry codes: (i) $-x+\frac{1}{2},-y, z+\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.
3.004 (2) \AA (Table 1). The resulting bond-valence sum (Brown, 2002) of 1.75 valence units, using the parameters of Krivovichev \& Brown (2001) for the $\mathrm{Pb}-\mathrm{O}$ bonds, is reasonably close to the expected value of 2.0 valence units. Bond lengths and angles within the tartrate anion are in normal ranges.

3. Packing features

In the crystal structure, the Pb^{2+} cations are arranged in hexagonally packed rows extending parallel to [100] (Fig. 2).

Figure 2
The crystal packing of the title compound in projection along [$\overline{1} 00]$. Only complete tartrate anions are shown. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown in blue (see Table 2 for details). $\mathrm{Pb}-\mathrm{O}$ bonds have been omitted for clarity. Colour code: Pb green, C grey, O red, H white.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
Absolute structure parameter
$\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right]$
355.26

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
296
7.9890 (2), 8.8411 (3), 8.3434 (2)
589.31 (3)

4
Mo $K \alpha$
28.61
$0.15 \times 0.15 \times 0.09$

Bruker APEXII CCD
Multi-scan (SADABS; Bruker,
2013)
0.099, 0.183

81742, 4512, 3836
0.046
0.971
$0.021,0.042,1.06$
4512
108
2
H atoms treated by a mixture of independent and constrained refinement
3.20, -2.26

Flack (1983), 1959 Friedel pairs
-0.003 (7)

Computer programs: APEX2 and SAINT-Plus (Bruker, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2006) and publCIF (Westrip, 2010).

Each Pb^{2+} cation is bonded to five tartrate anions (three chelating and two in a monodentate fashion, Fig. 1) while each tartrate anion links four Pb^{2+} cations, leading to a threedimensional framework. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between the hydroxy groups of one tartrate anion and the carboxylate O atoms of adjacent tartrate anions stabilize this arrangement. Since no solvent-accessible voids were observed in the crystal structure, an incorporation of water molecules as reported by Lillibay \& Rahimkutty (2010) is impossible.

4. Database survey

Tartaric acid and its salts or coordination compounds have been structurally examined in great detail. The current release of the CSD (Version 5.35 with all updates; Groom \& Allen, 2014) revealed 644 entries, including the pure acid, co-crystals, compounds with the hydrogen tartrate anion and compounds with the tartrate anion.

5. Synthesis and crystallization

Commercially available gelatin was dissolved in hot water. The solution (50 ml) was cooled to about 300 K and 300 mg of $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{PO}_{3} \mathrm{~F}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$, prepared according to Schülke \& Kayser (1991), were dissolved in the still liquid solution that was filled in a large test tube. After initiation of gelling, a
second neutral gel layer was put on top of the first gel layer. After the neutral gel had set, an aqueous solution consisting of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(30 \mathrm{mg})$ and sodium potassium tartrate $(250 \mathrm{mg})$ was poured over the second gel layer. After three weeks, colourless single crystals of lead(II) tartrate, mostly with a block-like form, could be isolated. $\mathrm{PbPO}_{3} \mathrm{~F}$ in the form of polycrystalline material was also present in the reaction mixture as revealed by powder X-ray diffraction measurements.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Atom labelling and starting coordinates for the refinement were taken from the previous powder diffraction study (De Ridder et al., 2002). H atoms bonded to C atoms were placed in calculated positions and refined as riding atoms, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. Hydroxyl H atoms were found from difference Fourier maps and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of $0.85(1) \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The highest and lowest remaining electron densities are found 0.59 and $0.49 \AA$, respectively, from the Pb atom and are caused by truncation effects. No other electron densities attributable to additional atoms could be found, ruling out an incorporation of water molecules. Refinements in space group Pna2 2_{1} as suggested by Labutina et al. (2011) led to unreasonable models.

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal and powder X-ray diffractometers.

References

Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, England.
Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
De Ridder, D. J. A., Goubitz, K., Sonneveld, E. J., Molleman, W. \& Schenk, H. (2002). Acta Cryst. C58, m596-m598.
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Henisch, H. K. (1970). Crystal Growth in Gels. Pennsylvania State University Press.
Krivovichev, S. V. \& Brown, I. D. (2001). Z. Kristallogr. 216, 245-247.
Labutina, M. L., Marychev, M. O., Portnov, V. N., Somov, N. V. \& Chuprunov, E. V. (2011). Crystallogr. Rep. 56, 72-74.
Lange, W. (1929). Ber. Dtsch. Chem. Ges. 62B, 793-801.
Lillybai, G. \& Rahimkutty, M. H. (2010). J. Atomic Molecular Optical Phys. Article ID 265403, 1-7.
Schülke, H. \& Kayser, R. (1991). Z. Anorg. Allg. Chem. 600, 221-226.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stöger, B., Weil, M. \& Skibsted, J. (2013). Dalton Trans. 42, 1167211682.

Walford, L. K. (1967). Acta Cryst. 22, 324.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 82-84 [doi:10.1107/S2056989014027376]

Crystal structure of lead(II) tartrate: a redetermination

Matthias Weil

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly $\left[\mu_{4}\right.$-tartrato- $\kappa^{6} O^{1}, O^{3}: O^{1}: O^{2}, O^{4}: O^{4}$-lead $]$

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)\right.$]
$M_{r}=355.26$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=7.9890$ (2) \AA
$b=8.8411$ (3) \AA
$c=8.3434$ (2) \AA
$V=589.31(3) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω - and φ-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min }=0.099, T_{\text {max }}=0.183$

$$
F(000)=632
$$

$D_{\mathrm{x}}=4.004 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9854 reflections
$\theta=3.4-40.9^{\circ}$
$\mu=28.61 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.15 \times 0.15 \times 0.09 \mathrm{~mm}$

81742 measured reflections
4512 independent reflections
3836 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=43.7^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-17 \rightarrow 17$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.042$
$S=1.06$
4512 reflections
108 parameters
2 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0155 P)^{2}+1.1508 P\right]$ where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.007$
$\Delta \rho_{\text {max }}=3.20$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-2.26$ e \AA^{-3}
Absolute structure: Flack (1983), 1959 Friedel pairs
Absolute structure parameter: -0.003 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Pb 1	$-0.342448(9)$	$0.001349(17)$	$-0.054104(9)$	$0.01396(2)$
O1	$-0.0806(2)$	$0.1027(2)$	$0.1809(3)$	$0.0159(3)$
O2	$0.1001(3)$	$0.1758(3)$	$-0.0066(2)$	$0.0180(4)$
O 3	$0.1564(2)$	$-0.0126(3)$	$0.3659(2)$	$0.0147(3)$
O4	$0.2220(2)$	$0.3195(2)$	$0.3069(2)$	$0.0123(3)$
O5	$0.5788(3)$	$0.0785(3)$	$0.3132(3)$	$0.0215(4)$
O6	$0.4746(3)$	$0.2388(3)$	$0.4968(3)$	$0.0244(5)$
C1	$0.0635(3)$	$0.1138(3)$	$0.1249(3)$	$0.0103(3)$
C2	$0.2130(3)$	$0.0566(3)$	$0.2235(3)$	$0.0100(3)$
H 2	0.2764	-0.0171	0.1601	0.012^{*}
C3	$0.3222(3)$	$0.1966(3)$	$0.2538(3)$	$0.0101(3)$
H3	0.3686	0.2263	0.1497	0.012^{*}
C4	$0.4706(3)$	$0.1686(3)$	$0.3642(3)$	$0.0128(4)$
H3O	$0.224(4)$	$-0.019(6)$	$0.443(4)$	$0.029(12)^{*}$
H4O	$0.144(4)$	$0.288(5)$	$0.367(4)$	$0.015(10)^{*}$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	$0.01063(3)$	$0.01446(3)$	$0.01679(3)$	$0.00067(7)$	$-0.00006(2)$	$0.00120(7)$
O1	$0.0081(6)$	$0.0230(9)$	$0.0167(8)$	$0.0000(6)$	$-0.0005(6)$	$0.0032(7)$
O2	$0.0155(8)$	$0.0274(10)$	$0.0111(7)$	$0.0026(8)$	$-0.0009(6)$	$0.0057(7)$
O3	$0.0116(5)$	$0.0192(9)$	$0.0134(6)$	$0.0001(8)$	$0.0009(5)$	$0.0072(7)$
O4	$0.0092(6)$	$0.0113(7)$	$0.0165(8)$	$0.0011(5)$	$0.0001(6)$	$0.0004(6)$
O5	$0.0100(7)$	$0.0277(11)$	$0.0267(11)$	$0.0073(7)$	$-0.0009(7)$	$-0.0005(8)$
O6	$0.0252(10)$	$0.0242(10)$	$0.0237(10)$	$0.0083(9)$	$-0.0156(9)$	$-0.0090(8)$
C 1	$0.0081(8)$	$0.0120(8)$	$0.0108(8)$	$-0.0009(6)$	$-0.0017(6)$	$-0.0006(6)$
C 2	$0.0081(7)$	$0.0121(8)$	$0.0098(8)$	$0.0003(7)$	$0.0004(6)$	$0.0011(6)$
C 3	$0.0067(8)$	$0.0129(8)$	$0.0107(8)$	$0.0005(6)$	$-0.0001(6)$	$0.0011(6)$
C 4	$0.0075(7)$	$0.0137(9)$	$0.0172(10)$	$-0.0003(7)$	$-0.0017(7)$	$0.0003(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Pb} 1-\mathrm{O}^{\mathrm{i}}$	$2.472(2)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	$0.843(10)$
$\mathrm{Pb} 1-5^{\mathrm{ii}}$	$2.482(2)$	$\mathrm{O} 4-\mathrm{C} 3$	$1.420(3)$
$\mathrm{Pb} 1-\mathrm{O}^{\mathrm{iii}}$	$2.594(2)$	$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O}$	$0.845(10)$

$\mathrm{Pb} 1-\mathrm{O}^{3}$	2.5972 (17)	O5-C4	1.250 (3)
$\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {iv }}$	2.6878 (19)	O6-C4	1.270 (3)
$\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {iii }}$	2.7866 (19)	$\mathrm{C} 1-\mathrm{C} 2$	1.536 (3)
$\mathrm{Pb} 1-\mathrm{O}^{\text {iv }}$	2.935 (2)	C2-C3	1.535 (3)
$\mathrm{Pb} 1-\mathrm{O} 1$	3.004 (2)	$\mathrm{C} 2-\mathrm{H} 2$	0.9800
$\mathrm{O} 1-\mathrm{C} 1$	1.246 (3)	C3-C4	1.522 (3)
O2-C1	1.261 (3)	C3-H3	0.9800
$\mathrm{O} 3-\mathrm{C} 2$	1.411 (3)		
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 5^{\mathrm{ii}}$	72.93 (7)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Pb} 1^{\text {v }}$	126.48 (16)
$\mathrm{O} 1^{\text {i }}-\mathrm{Pb} 1-\mathrm{O}^{\text {iii }}$	74.36 (7)	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{Pb} 1^{\text {v }}$	120.65 (14)
$\mathrm{O} 5^{\text {ii- }} \mathrm{Pb} 1-\mathrm{O}^{\text {iii }}$	99.96 (9)	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	118 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 3^{\mathrm{i}}$	62.88 (6)	$\mathrm{Pb1}{ }^{\text {v }}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{O}$	115 (3)
$\mathrm{O} 5^{\text {ii }}-\mathrm{Pbl}-\mathrm{O}^{\text {i }}$	135.70 (7)	$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Pb} 1^{\text {vi }}$	108.28 (13)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 3^{\text {i }}$	71.85 (8)	C3-O4-H4O	111 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 4^{\text {iv }}$	64.23 (6)	$\mathrm{Pb1} 1^{\text {vi}}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{O}$	121 (3)
$\mathrm{O} 5^{\text {ii- }} \mathrm{Pbl}-\mathrm{O} 4{ }^{\text {iv }}$	69.82 (7)	$\mathrm{C} 4-\mathrm{O} 5-\mathrm{Pb} 1^{\text {vii }}$	128.07 (19)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {iv }}$	138.58 (7)	$\mathrm{C} 4-\mathrm{O} 6-\mathrm{Pb} 1^{\text {viii }}$	125.98 (18)
$\mathrm{O} 3^{\text {i }}-\mathrm{Pb} 1-\mathrm{O} 4^{\text {iv }}$	87.75 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	125.1 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 4^{\text {iii }}$	122.21 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.4 (2)
$\mathrm{O} 5^{\text {ii- }} \mathrm{Pbl}-\mathrm{O} 4{ }^{\text {iii }}$	82.70 (7)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	115.4 (2)
O6 ${ }^{\text {iii }}$ - $\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {iii }}$	59.20 (6)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	113.16 (19)
$\mathrm{O} 3-\mathrm{Pb} 1-\mathrm{O} 4^{\text {iii }}$	123.07 (6)	O3-C2-C1	110.14 (19)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 4{ }^{\text {iii }}$	148.738 (15)	C3-C2-C1	105.30 (18)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 2^{\text {iv }}$	118.51 (7)	$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2$	109.4
$\mathrm{O} 5^{\text {ii- }} \mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {iv }}$	119.10 (7)	C3-C2-H2	109.4
$\mathrm{O} 6^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {iv }}$	140.78 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	109.4
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Pb} 1-\mathrm{O} 2^{\text {iv }}$	81.74 (7)	O4-C3-C4	111.99 (19)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 2{ }^{\text {iv }}$	65.93 (6)	$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	110.38 (18)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 2^{\text {iv }}$	119.18 (6)	C4-C3-C2	114.25 (19)
O1- ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{O} 1$	150.22 (4)	O4-C3-H3	106.6
$\mathrm{O} 5 \mathrm{ii}-\mathrm{Pb} 1-\mathrm{O} 1$	77.58 (7)	C4-C3-H3	106.6
O6 $6^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 1$	115.47 (6)	C2-C3-H3	106.6
O3 ${ }^{\text {i }}$ - $\mathrm{Pb} 1-\mathrm{O} 1$	145.98 (6)	O5-C4-O6	126.2 (3)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 1$	101.71 (6)	O5-C4-C3	115.9 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Pb} 1-\mathrm{O} 1$	56.54 (5)	O6-C4-C3	117.9 (2)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Pb} 1-\mathrm{O} 1$	72.91 (6)		

[^0]Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H}^{\cdots} A$
$\mathrm{O} 3 — \mathrm{H} 3 O \cdots \mathrm{O}^{\text {vii }}$	$0.84(1)$	$2.02(4)$	$2.646(3)$	$131(5)$
$\mathrm{O} 4 — \mathrm{H} 4 O \cdots \mathrm{O}^{\text {ix }}$	$0.85(1)$	$1.79(1)$	$2.618(3)$	$169(4)$

[^1]
[^0]: Symmetry codes: (i) $-x-1 / 2,-y, z-1 / 2$; (ii) $-x+1 / 2,-y, z-1 / 2$; (iii) $-x, y-1 / 2,-z+1 / 2$; (iv) $x-1 / 2,-y+1 / 2,-z$; (v) $-x-1 / 2,-y, z+1 / 2$; (vi) $x+1 / 2,-y+1 / 2$, $-z$; (vii) $-x+1 / 2,-y, z+1 / 2$; (viii) $-x, y+1 / 2,-z+1 / 2$.

[^1]: Symmetry codes: (vii) $-x+1 / 2,-y, z+1 / 2$; (ix) $x-1 / 2,-y+1 / 2,-z+1$.

