
Heliyon 10 (2024) e35219

Available online 28 July 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Review article 

Ferroptosis in diabetic cardiomyopathy: Advances in cardiac 
fibroblast-cardiomyocyte interactions 

Mengmeng Wang 1, Degang Mo 1, Ning Zhang **, Haichu Yu * 

Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China   

A R T I C L E  I N F O   

Keywords: 
Diabetic cardiomyopathy 
Ferroptosis 
Cardiac fibroblasts 
Cardiomyocytes 
Therapeutic targets 

A B S T R A C T   

Diabetic cardiomyopathy (DCM) is a common complication of diabetes, and its pathogenesis 
remains elusive. Ferroptosis, a process dependent on iron-mediated cell death, plays a crucial role 
in DCM via disrupted iron metabolism, lipid peroxidation, and weakened antioxidant defenses. 
Hyperglycemia, oxidative stress, and inflammation may exacerbate ferroptosis in diabetes. This 
review emphasizes the interaction between cardiac fibroblasts and cardiomyocytes in DCM, 
influencing ferroptosis occurrence. By exploring ferroptosis modulation for potential therapeutic 
targets, this article offers a fresh perspective on DCM treatment. The study systematically covers 
the interplay, mechanisms, and targeted drugs linked to ferroptosis in DCM development.   

1. Introduction 

The increasing global prevalence of diabetes has become a serious health challenge worldwide. According to the statistics from the 
International Diabetes Federation, as of 2019, the global diabetic population reached 463 million, and it is projected to increase to 700 
million by 2045. This puts immense pressure on individual health and healthcare systems [1]. Among the complications of diabetes, 
diabetic cardiomyopathy has gained significant attention. Since its initial proposal by Rubler et al., in 1972, approximately one-fifth of 
diabetic patients develop diabetic cardiomyopathy (DCM), with an even higher proportion in those with a long-term disease [2,3]. This 
illness not only lowers quality of life and compromises cardiac function, but it also greatly raises the risk of cardiovascular events like 
myocardial infarction, heart failure, and sudden cardiac death [4–7]. 

In the intricate system of the heart, different types of cells closely work together to maintain normal physiological functions. These 
cells include cardiomyocytes and cardiac fibroblasts. Although there are fewer cardiomyocytes compared to non-cardiomyocytes, 
cardiac fibroblasts are a major component of non-muscle cells in all species [8–10]. About 30 % of cardiomyocytes and 70 % of 
non-cardiomyocytes are involved in heart function impairment [11]. Among these cells, cardiac fibroblasts have a crucial role in 
maintaining the structural stability of the heart tissue, repairing damage, and regulating the inflammatory response and fibrosis 
processes. The interaction between cardiac fibroblasts and cardiomyocytes is particularly important in the pathological mechanism of 
DCM. Studies have shown that under diabetic conditions, activated fibroblasts transform into myofibroblasts, which worsens cardiac 
fibrosis and sustained inflammation [12–14]. Furthermore, through the release of growth factors and cytokines, fibroblasts have a 
direct impact on the metabolism, electrical activity, and signal transduction of cardiomyocytes. This in turn has an impact on the 
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heart’s remodeling process and general function [15–18]. 
The notion of ferroptosis, which was first presented in 2012, offers a fresh viewpoint on the pathogenic mechanisms underlying 

DCM. It is a form of cell death driven by iron-dependent lipid peroxidation processes [19,20]. Unlike apoptosis, ferroptosis does not 
involve nuclear DNA fragmentation or caspase activation [21,22]. Compared to necrosis, ferroptosis does not cause inflammatory 
reactions or immediate release of cellular contents [23]. In cardiovascular diseases, especially DCM, ferroptosis has become a focal 
point of research [24]. Iron metabolism can be disrupted and oxidative stress can be increased by elevated blood sugar and insulin 
resistance, which can lead to ferroptosis [25–27]. Exploring the interaction between cardiac fibroblasts and cardiomyocytes and 
ferroptosis not only enhances our understanding of the pathological mechanisms of DCM, but also provides a new research direction 
for innovative therapeutic strategies. This review aims to systematically summarize current research on this topic and explore pros-
pects for future research directions and clinical applications. 

2. Interaction between cardiac fibroblasts and cardiomyocytes in diabetic cardiomyopathy 

2.1. Origin of cardiomyocytes and fibroblasts 

Cardiac fibroblasts are produced throughout embryonic development from cells originating from the outside myocardium, called 
epicardial-derived cells [28,29]. Furthermore, mesangioblasts, which are multipotent precursor cells, have the ability to transform into 
cardiac fibroblasts or vascular tissues like endothelial cells by going through the epithelial-mesenchymal transition process [6,30]. 
Several studies have shown that various cell types, including epithelial cells, endothelial cells, hematopoietic fibroblast progenitor 
cells, macrophages, and pericytes, can also undergo epithelial-mesenchymal or endothelial-mesenchymal cell transitions to become 
cardiac fibroblasts [31–38]. The contribution of these diverse sources collectively leads to the diversity and dynamics of cardiac fi-
broblasts [13]. 

Cardiomyocytes are derived from mesodermal tissues during embryonic development. They originate from precursor cells of the 
heart, which form the primitive heart structure including the endocardium, myocardium, and the intervening cardiac jelly in the early 
stages of embryonic development. As development progresses, these precursor cells differentiate into mature cardiomyocytes, even-
tually forming mature cardiac muscle tissue with complex functionality [39–41]. Three transcription factors—Gata4, myocyte-specific 
enhancer factor 2C (Mef2C), and T-box 5 (Tbx5)—have been shown in recent studies to play a critical role in the conversion of fi-
broblasts into viable cardiomyocytes. These transcription factors are key players in cell differentiation and cardiac development, 
allowing fibroblasts to acquire cardiomyocyte characteristics and perform cardiomyocyte functions through the regulation of gene 
expression [42]. To gain a comprehensive understanding of cardiomyocyte and fibroblast origin and formation processes, it is essential 
to explore both physiological and pathological processes in the heart (Fig. 1). 

2.2. Activation and transformation mechanisms of cardiac fibroblasts 

Cardiac fibroblasts play a crucial role in maintaining the structure of cardiac tissue, aiding in injury repair, and regulating the 
synthesis and degradation of the extracellular matrix (ECM). Normally, these fibroblasts remain in a quiescent state, characterized by a 
small cell volume and minimal cell protrusions [43,44]. Nonetheless, in individuals with diabetes, cardiac fibroblasts undergo a series 
of activation and transformation processes [45], driven by several molecular mechanisms: 1) Oxidative Stress: Elevated glucose levels 

Fig. 1. Activation and transformation processes of myocardial fibroblasts and interaction of myocardial fibroblasts with cardiomyocytes in diabetic 
cardiomyopathy. 
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and insulin resistance result in increased oxidative stress, leading to the production of reactive oxygen species (ROS). This activation 
triggers the transformation of fibroblasts into myofibroblasts [14,46,47]. 2) Cytokines and Growth Factors: Inflammatory reactions 
release cytokines such as transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF), which directly or indirectly 
stimulate the proliferation and activation of fibroblasts [48,49]. 3) Changes in Mechanical Stress: Dysfunction in myocardial function 
in individuals with DCM can cause alterations in mechanical stress, further stimulating the activation and transformation of fibroblasts 
[50–52]. The exact mechanisms of mechanical signal transduction between cardiomyocytes and fibroblasts are not yet fully under-
stood. 4) Epigenetic Regulation: Epigenetic changes, including DNA methylation and histone modifications, may also contribute to the 
activation and transformation of fibroblasts [53,54]. All of these processes work together to control how cardiac fibroblasts operate 
when diabetic (Fig. 1). 

2.3. The role of cardiac fibroblasts in myocardial fibrosis and inflammatory responses 

Cardiac fibroblasts are essential to the processes of myocardial fibrosis and inflammatory responses in DCM. First, activated fi-
broblasts synthesize and secrete ECM components such as collagen and fibronectin, leading to excessive deposition of myocardial 
tissue and triggering myocardial fibrosis [51,55]. Additionally, fibroblasts regulate the degradation and remodeling of ECM through 
the secretion of enzymes like matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) [56–59]. Second, 
activated fibroblasts secrete various cytokines and chemokines, such as Tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), 
monocyte chemoattractant protein-1 (MCP-1), to attract and activate macrophages and lymphocytes, exacerbating the inflammatory 
response [60–63]. Furthermore, by expressing adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) and vascular 
cell adhesion molecule 1 (VCAM-1), fibroblasts enhance the interaction between immune cells and Cardiomyocytes [64,65]. 

2.4. Direct and indirect communication pathways between cardiac fibroblasts and cardiomyocytes 

The communication between cardiac fibroblasts and cardiomyocytes involves both direct physical contact and indirect signal 
transduction, forming a complex interactive network [66–68]. Direct communication includes gap junctions and adhesion 
molecule-mediated mechanical force transmission. Gap junctions allow for the rapid transfer of small molecules (such as calcium ions, 
connexin 43 (Cx43), etc.) between cells, influencing the electrophysiological activity and contractile function of cardiomyocytes [18, 
69–73]. By mediating mechanical force and signal transduction between cells, adhesion molecules regulate the morphology and 
function of cardiomyocytes [74]. Indirect communication occurs through the secretion of growth factors and cytokines by cardiac 
fibroblasts, which regulate the biological behavior of cardiomyocytes [75]. For example, natriuretic peptide receptor C (NPRC) 
deficiency can induce cardiomyocyte hypertrophy and fibrosis through the activation of protein kinase A (PKA)/protein kinase G 
(PKG) and TGF-β Smad signaling pathways [76–78]; PDGF stimulates fibroblast proliferation and migration [79]; cytokines such as 
IL-6 and MCP-1 promote inflammation and the recruitment of immune cells [63,80]. Conversely, soluble mediators released by 
cardiomyocytes also affect fibroblast proliferation. For instance, cardiomyocyte-derived angiotensin II increases fibroblast release of 
TGF-β [81–83]. An important part of the contact between cardiomyocytes and fibroblasts is played by membrane nanotubes, a unique 
long-distance structural and functional link [16,84–86]. Vascular endothelial growth factor-B (VEGF-B) indirectly influences their 
interaction in heart diseases by regulating angiogenesis, metabolism, and inflammatory responses [87,88]. Although these commu-
nication pathways have been identified as crucial in cardiac physiological and pathological processes, many details and unknowns 
remain regarding the exact nature and mechanisms of soluble mediator interactions. For a better comprehension of the pathogenic 
mechanisms of DCM and the investigation of novel therapeutic approaches, these findings are crucial (Fig. 1). 

3. Role of ferroptosis in diabetic cardiomyopathy 

3.1. Molecular mechanisms and biomarkers of ferroptosis 

Ferroptosis is a unique form of cell death that occurs due to the iron-dependent process of lipid peroxidation. There are three main 
components to this molecular mechanism: 1) Imbalance in Iron Metabolism: Iron ions play a crucial role in various cellular processes, 
such as oxygen transport, DNA synthesis, and energy metabolism. In ferroptosis, disruptions in iron ion metabolism lead to their 
abnormal accumulation, particularly within the mitochondria and endoplasmic reticulum [89–93]. 2) Lipid Peroxidation: The 
interaction between iron ions and hydrogen peroxide initiates the production of hydroxyl radicals, which triggers lipid peroxidation. 
Among all cellular components, phospholipids are particularly vulnerable to oxidative damage. The byproducts of lipid peroxidation, 
such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), have detrimental effects on the structure and function of cell 
membranes, ultimately resulting in cell death [91,94–96]. 3) Inhibition of Antioxidant Defense Systems: Ferroptosis involves the 
suppression of critical enzymes in the antioxidant defense system, including glutathione peroxidase 4 (GPX4). This inhibition impairs 
the effective clearance of excess lipid peroxidation products by cells, thereby exacerbating oxidative damage [20,25,97–100]. 

3.2. The role of ferroptosis in cardiomyocyte injury and death 

In the context of DCM, ferroptosis plays a significant role in the processes of cardiomyocyte injury and death, negatively affecting 
both myocardial function and structure. The specific ways in which this occurs are as follows: 1) Impaired Cardiomyocyte Function: 
Ferroptosis causes damage to the membranes of cardiomyocytes, leading to lipid peroxidation. This disruption interferes with their 
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electrophysiological activity and contractile function, ultimately resulting in myocardial dysfunction and heart failure [101–103]. 2) 
Cardiomyocyte Death: Ferroptosis, as a distinct form of cell death, directly contributes to the death and apoptosis of cardiomyocytes, 
further worsening the extent and severity of myocardial injury [104–106]. 3) Interaction with Other Cell Death Modalities: Ferroptosis 
interacts with and influences complex relationships with other forms of cell death, such as apoptosis and autophagy [107–109]. For 
example, ferroptosis can either trigger or enhance other forms of cell death, while other cell death modalities, like copper-dependent 
autophagy degradation, can induce ferroptosis [110,111]. 

3.3. Factors and signaling pathways promoting ferroptosis in the diabetic state 

The elevated rate of ferroptosis in the diabetic condition may be caused by a number of causes. These factors include: 1) Hyper-
glycemia: Elevated blood glucose levels can induce endoplasmic reticulum stress and unfolded protein response (UPR), activating 
signaling pathways like IRE1 and c-Jun N-terminal kinase (JNK). This activation inhibits the expression and activity of GPX4, which 
promotes the occurrence of ferroptosis [20,25,97,98,109]. 2) Oxidative Stress: Diabetes leads to increased oxidative stress, which in 
turn inhibits the function of the antioxidant defense system. This promotes lipid peroxidation and the process of ferroptosis [25,26, 
112,113]. 3) Inflammatory Response: The inflammatory response in diabetes results in the production of cytokines and chemokines, 
which activate fibroblasts and immune cells. This leads to increased production of ROS and inflammatory factors, thereby promoting 
ferroptosis [114–117]. Through pathways such as nuclear factor-κB (NF-κB) and NOD-like receptor family, pyrin domain containing 3 
(NLRP3) inflammasome, inflammation and oxidative stress can also upregulate the expression of Acyl-CoA synthetase long-chain 
family member 4 (ACSL4). This increases the generation of lipid peroxidation products and ROS, ultimately promoting ferroptosis 
[26,118–121]. 

Numerous important molecular targets and signaling pathways are involved in the regulation of ferroptosis. These pathways 
include: 1) GPX4 Signaling Pathway: GPX4 is an important enzyme in the antioxidant defense system. Reduced GPX4 activity is a 
defining characteristic of ferroptosis. Research has shown that Hydroxy safflower yellow A can inhibit ferroptosis and reduce 
myocardial ischemia/reperfusion injury by activating the Hypoxia induicible factor-1 alpha (HIF-1α)/Solute carrier family 7 member 
11 (SLC7A11)/GPX4 signaling pathway [122]. Therefore, enhancing GPX4 activity or inhibiting its inhibitors may be a strategy to 
suppress ferroptosis [20,25,97–100,111,123]. 2) TGF-β Signaling Pathway: TGF-β is a cytokine that plays a crucial role in fibrosis and 
inflammatory responses. Excessive activation of TGF-β can promote fibroblast proliferation and ECM deposition. Additionally, it can 
promote ferroptosis by inhibiting GPX4 activity [97,98,124–127]. 3) Nuclear factor erythroid 2-related factor 2 (Nrf2) Signaling 
Pathway: Nrf2 is a key transcription factor in cellular antioxidant defense. Ferroptosis and lipid peroxidation can be inhibited by 
upregulating antioxidant enzyme production and activity through activation of the Nrf2 signaling pathway. Therefore, activating the 
Nrf2 signaling pathway may be a strategy to inhibit ferroptosis [24,128–134]. 

4. The impact of the interaction between cardiac fibroblasts and cardiomyocytes on ferroptosis 

4.1. Regulation of myocardial cell iron metabolism and oxidative stress by factors secreted from cardiac fibroblasts 

In cardiomyocytes, cardiac fibroblasts are essential for controlling oxidative stress and iron metabolism. They do this via secreting 
different enzymes, cytokines, and growth factors. In the context of ferroptosis, the following key factors released by fibroblasts have 

Fig. 2. Interplay between cardiac fibroblasts and cardiomyocytes in modulating ferroptosis pathways.  
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important implications: 1) TGF-β: TGF-β, a key fibrotic factor, induces hepcidin expression in cardiomyocytes. This, in turn, inhibits 
iron absorption and release in intestinal and liver cells, leading to reduced serum iron levels and the accumulation of iron ions in 
cardiac tissues. This process increases the risk of ferroptosis [77,135–141]. 2) PDGF: Inducing oxidative stress in cardiomyocytes, 
PDGF promotes fibroblast activation and proliferation. It affects iron metabolism and promotes ferroptosis by activating members of 
the Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOXs) family, which increases the generation of ROS [26, 
142–146]. 3) CTGF (Connective Tissue Growth Factor): CTGF, another significant fibrotic factor, promotes ferroptosis by upregulating 
hepcidin expression and inhibiting the antioxidant defense system [142,147–149]. These factors, released by fibroblasts, modulate the 
expression of important genes and enzymes such as hepcidin and GPX4. Consequently, they impact cardiomyocytes’ oxidative stress 
status and iron balance, which in turn influences the development of ferroptosis [20,25,26,100,123] (Fig. 2). 

4.2. Regulation of gene expression associated with ferroptosis by factors secreted from cardiac fibroblasts 

Through distinct signaling pathways and transcription factors, cardiac fibroblasts release a variety of growth factors and cytokines 
that impact the expression of genes linked to ferroptosis. Studies have shown that TGF-β, through both small mother against decap-
entaplegic (Smad) and non-Smad signaling pathways, increases the expression of genes such as ACSL4 and NADPH oxidase 4 (Nox4). 
This leads to a higher production of lipid peroxidation products and ROS, which in turn promotes ferroptosis [103,129,150,151]. 
Furthermore, TGF-β increases the vulnerability of cardiomyocytes to oxidative stress and cell death by suppressing the antioxidant 
defense system of Nrf2/Heme oxygenase-1 (HO-1) and upregulating the expression of genes associated with apoptosis, such as p53 [26, 
128,129,152–154]. On the other hand, some anti-fibrotic and anti-inflammatory factors, such as decorin, periostin, and resistin-like 
molecule β (RELMβ), reduce inflammation and fibrotic processes by downregulating signaling pathways like TGF-β and NF-κB. At the 
same time, they increase the expression of antioxidant genes like Nrf2 and HO-1, preventing ferroptosis from occurring [100,129,131, 
155,156] (Fig. 2). 

4.3. Cardiomyocyte regulation of fibroblast activity and its dysregulation in diabetic cardiomyopathy 

Cardiomyocytes, through a sophisticated network of paracrine signals, actively regulate fibroblast function and phenotype. Among 
these signals, TGF-β and CTGF emerge as key mediators, orchestrating fibroblast proliferation and transdifferentiation into myofi-
broblasts, a process pivotal to extracellular matrix remodeling and subsequent myocardial stiffness [77,97,98,135,140,147–149]. 
Importantly, in the setting of diabetic cardiomyopathy, ferroptosis-induced cardiomyocyte death introduces a new dimension to this 
dialogue. The release of iron and ROS from dying cardiomyocytes fosters a pro-fibrotic microenvironment, potentiating fibroblast 
activation and contributing to the vicious cycle of tissue fibrosis [103,129,150,151]. Furthermore, the metabolic perturbations 
intrinsic to diabetes mellitus, such as hyperglycemia, disrupt normal cardiomyocyte metabolism and secretory profiles. This metabolic 
dysfunction is increasingly recognized as a driving force behind altered cytokine and growth factor secretion, which may skew the 
fibroblast response towards a predominantly pro-fibrotic state, exacerbating disease progression [48,49,124–127]. 

4.4. Communication between cardiac fibroblasts and cardiomyocytes shapes the microenvironment of ferroptosis 

The communication between cardiac fibroblasts and cardiomyocytes has a significant impact on the genes and signaling pathways 
associated with ferroptosis. This communication occurs through both direct and indirect pathways. Direct communication is facilitated 
by gap junctions and adhesion molecules, allowing the transfer of small molecules like calcium ions. This transfer affects the elec-
trophysiological activities and contractile functions of cardiomyocytes [70,157–160]. In a high-glucose environment, cardiomyocytes 
release inflammatory factors that activate cardiac fibroblasts. This activation leads to oxidative stress and lipid peroxidation, which 
worsens cardiac damage [161]. Additionally, fibroblasts indirectly influence cardiomyocytes by secreting growth factors and cyto-
kines, such as TGF-β/Smad, NF-κB, and Nrf2. These substances regulate the expression and activity of genes related to ferroptosis, 
including iron metabolism, antioxidant defense systems, and ferroptotic executor genes [128–130,150] (Fig. 2). 

Therefore, these pathways and microenvironmental factors play a crucial role in the interaction between cardiac fibroblasts and 
cardiomyocytes during the process of ferroptosis. They provide important clues and targets for the development of novel therapeutic 
strategies. 

5. Temporal characteristics of ferroptosis in type 1 diabetes (T1D) and type 2 diabetes (T2D) hearts and its differential 
role in the development of DCM and clinical implications 

5.1. Presence and stage-specific distribution of ferroptosis in T1D and T2D hearts 

Ferroptosis, a regulated form of cell death occurring under conditions of iron overload and oxidative stress, has emerged as a focal 
point in diabetes research, particularly in the context of T1D and T2D diabetes where meticulous examination is imperative. It is 
crucial to pinpoint the pivotal timepoints in the disease course where ferroptosis becomes significant, specifically when diabetic hearts 
exhibit enhanced susceptibility to ischemia-reperfusion injury compared to non-diabetic individuals. This distinction is crucial for 
clarifying the fundamental mechanisms that initiate ferroptosis, potentially revealing unique pathways for ferroptosis activation in 
T1D and T2D. Studies have documented differential expression patterns of ferroptosis across varying stages of T1D (early, middle, 
late), suggesting a stage-dependent characteristic [162,163]. In T2D, while ferroptosis is typically associated with later stages, 
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emerging evidence hints at its presence in earlier phases, underscoring the unique temporal profile of T2D [130,164,165]. 

5.2. Distinct mechanisms of ferroptosis across different stages of diabetes progression 

T1D accounts for approximately 2 % of all diabetes cases, characterized by absolute insulin deficiency due to β-cell destruction, 
whereas T2D arises from progressive insulin secretory defects against a backdrop of insulin resistance [166,167]. The distinct 
mechanisms of ferroptosis in T1D and T2D underscore their divergent disease progressions. Research has highlighted that in the early 
stages of diabetes, animal models exhibit an augmented resistance to ischemic injury [168]. Specifically, during the early phase of T1D, 
approximately one week post-onset, the heart manifests a pronounced reinforcement of antioxidant systems, evidenced by elevated 
glutathione levels, reduced free iron content in the ischemia-reperfusion injury zone, and concomitant increases in ferritin, indicating a 
robust antioxidant barrier in early T1D hearts that combats oxidative stress and mitigates ischemic harm [163]. However, as the 
condition progresses, ferroptosis gradually escalates, becoming a pivotal mechanism of heightened sensitivity to ischemic injury in 
T1D hearts by the fifth week of disease development [163]. The therapeutic benefits of NAC, particularly its capacity to inhibit fer-
roptosis in later stages, further emphasize the necessity and significance of targeting ferroptosis as an intervention strategy. 

5.3. Human evidence and pathogenic roles of ferroptosis in DCM across T1D & T2D 

Currently, studies on ferroptosis in cardiovascular diseases predominantly focuses on animal models and in vitro experiments, with 
a relative dearth of clinical studies and human observational data. This gap hampers a comprehensive understanding of the precise 
pathophysiological pathways and regulatory mechanisms of ferroptosis within the intricate human physiological environment. 
Notably, diabetic patients exhibit a 2.45–2.99-fold higher risk of myocardial ischemia compared to non-diabetic individuals, high-
lighting the intimate link between diabetes and cardiovascular disorders [169]. Recent studies have illuminated the integral associ-
ation of ferroptosis with the pathogenesis of DCM [130,170–172]. In various T2D mouse models, ferroptosis has been validated as a 
central mechanism driving the development of DCM [130,170]. Of particular interest, tissues prone to ischemia in diabetic individuals, 
such as the myocardium, display an increased propensity for ferroptosis, suggesting a pivotal role for ferroptosis in diabetes-related 
cardiovascular complications [173,174]. Serum ferritin levels have emerged as a useful biomarker for early detection of T2D, and 
iron overload is acknowledged as a significant risk factor for T2D [175–178]. Clinical and forensic evidence not only confirms the 
presence of ferroptosis in diabetic hearts but also underscores its clinical relevance through indicators of iron dysregulation and 
oxidative stress markers, including elevated ferritin and 4-hydroxynonenal. Furthermore, successful quantification and confirmation 
of ferroptosis in T2D mouse models and T2D patient hearts have laid an empirical foundation for further deciphering the role of 
ferroptosis in diabetic cardiac pathology [171,179]. 

In summary, this section highlights the complex, stage-dependent roles of ferroptosis in T1D and T2D hearts, its implications for 
diabetic cardiomyopathy, and the need for advanced human-focused research. Recognizing ferroptosis’ variable impacts across disease 
stages and its links to cardiovascular risks, future studies must prioritize understanding its precise mechanisms in humans to effectively 
target this process as a therapeutic avenue, ultimately reducing diabetes-related heart complications. 

6. Exploration and strategies for novel therapeutic targets 

6.1. Intervention strategies targeting the interaction between cardiac fibroblasts and cardiomyocytes 

Intervention strategies that target the interaction between cardiac fibroblasts and cardiomyocytes show promise for treating DCM 
and inhibiting ferroptosis. Here are some potential strategies: 1) Anti-fibrotic drugs, such as pirfenidone and nintedanib, have been 
shown to reduce fibrosis progression and inflammation by inhibiting signaling pathways like TGF-β and PDGF. This inhibition leads to 

Table 1 
Drugs and compounds targeting ferroptosis in DCM: Focus on cardiac fibroblast and cardiomyocyte interactions.  

No. Category Drugs/Compounds Mechanism of Action Target/Effects References 

1 Antifibrotic Drugs Pirfenidone, 
Nintedanib 

Inhibit TGF-β and PDGF pathways, reducing 
fibrosis and inflammation 

Decrease cardiac fibroblast 
proliferation and ECM 
deposition 

[180–184] 

2 Extracellular Matrix- 
Degrading Enzymes 

Collagenases, MMPs Degrade ECM components Alleviate fibrosis and 
improve heart function 

[56, 
185–187] 

3 Immunomodulators Interferon-γ, IL-10 Regulate functions of immune cells and cardiac 
fibroblasts, reducing inflammation and fibrosis 

Modulate immune response 
and reduce fibrotic changes 

[188–190] 

4 Iron Chelators Deferiprone, 
Deferoxamine 

Bind and remove free iron ions Reduce risk of ferroptosis 
and manage iron overload 

[130, 
193–195] 

5 Antioxidants Vitamin C, Vitamin E, 
NAC 

Neutralize ROS and lipid peroxidation products Enhance antioxidant 
defense and inhibit 
ferroptosis initiation 

[113,196, 
197] 

6 Nrf2 Activators Bardoxolone methyl, 
Dimethyl fumarate 

Upregulate antioxidant genes and suppress 
inflammatory gene expression, boosting cellular 
defense against oxidative stress 

Enhance antioxidant 
capacity and mitigate 
ferroptosis 

[130,131, 
200–202]  
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decreased proliferation of cardiac fibroblasts and synthesis of ECM components [180–184]. 2) Extracellular matrix-degrading en-
zymes, including collagenases and MMPs, offer a way to break down ECM components, alleviating fibrosis and improving heart 
function. However, caution is necessary as excessive ECM degradation may disrupt tissue structure and increase the risk of bleeding 
[56,185–187]. 3) Immune modulators, such as interferon-γ and IL-10, can regulate the functions of immune cells and cardiac fibro-
blasts, reducing inflammation and fibrosis [188–190]. Additionally, novel immunotherapeutic techniques like immune checkpoint 
inhibitors and Chimeric antigen receptor T (CAR-T) cell therapy may provide new possibilities for treating DCM [191,192]. These 
tactics may indirectly affect cardiomyocytes’ oxidative stress status and iron metabolism by regulating the activity and function of 
cardiac fibroblasts, which may in turn affect the development of ferroptosis [26] (Table 1). 

6.2. Potential drugs and therapies for inhibiting ferroptosis 

Current research suggests that specific drugs and therapies demonstrate potential for inhibiting ferroptosis. These include: 1) Iron 
Chelators: Iron chelating agents, such as deferiprone and deferoxamine, can bind to and eliminate free iron ions in the body. This 
action reduces the risk of ferroptosis. However, cautious use of these drugs is essential since excessive chelation of iron ions may lead to 
anemia and other side effects [130,193–195]. 2) Antioxidants: Lipid peroxidation products and reactive oxygen species (ROS) are 
immediately neutralized by antioxidants such as vitamin C, vitamin E, and N-acetylcysteine (NAC). By doing this, they prevent fer-
roptosis from occurring and increase the capability of the antioxidant defense system [113,196,197]. However, it should be 
emphasized that long-term or high-dose antioxidant use may have negative effects, such as promoting tumor growth and inhibiting 
normal cell communication [198,199]. 3) Nrf2 Activators: Nrf2 is a critical antioxidant transcription factor. Upon activation, it boosts 
cellular antioxidant defenses by upregulating antioxidant genes and suppressing inflammatory gene expression [128]. Some Nrf2 
activators, including bardoxolone methyl and dimethyl fumarate, have entered clinical trial phases and shown certain efficacy and 
safety profiles [130,131,200–202]. In this context, the mechanisms of action for these drugs and therapies primarily involve regulating 
iron metabolism, clearing ROS, or enhancing the antioxidant defense system to prevent the onset of ferroptosis (Table 1). 

6.3. Targeting ferroptosis-related genes and pathways using gene editing and cell therapy 

The development of targeted therapeutics targeting ferroptosis-related genes and pathways has led to the emergence of novel 
techniques in gene editing and cell therapy. Here are some potential methods: 1) Clustered regularly interspaced short palindromic 
repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) Gene Editing: This efficient gene editing tool can precisely disable or repair 
specific genes, including those associated with ferroptosis. For example, disabling genes such as ACSL4 or GPX4 can inhibit ferroptosis, 
while restoring genes like inositol-requiring enzyme type 1 (IRE1) or JNK can restore their normal function [100,123,145,203–208]. 2) 
Cell Therapy: This includes stem cell therapy and CAR-T cell therapy, where modified cells are transplanted into the patient to replace 
or modulate damaged cardiomyocytes and cardiac fibroblasts [209–211]. Transplanting genetically engineered mesenchymal stem 
cells or induced pluripotent stem cells and developing them into cardiac fibroblasts and cardiomyocytes, for example, can decrease 
fibrosis and improve heart function [212–218]. In summary, gene editing and cell therapy provide new targets and strategies for the 
interaction between cardiac fibroblasts and cardiomyocytes and the treatment of ferroptosis [219]. Further in-depth research and 
optimization are required to ensure the safety, efficacy, and personalized treatment plans of these methods, in order to achieve 
improved therapeutic outcomes and quality of life. Furthermore, customized treatment programs must to take into account each 
patient’s unique characteristics and disease progression. 

7. Limitations of the review 

Our narrative review aspires to deliver a thorough examination of ferroptosis within diabetic cardiomyopathy, emphasizing cardiac 
fibroblast and cardiomyocyte interactions. Despite meticulous efforts, certain constraints are recognized: Firstly, Our search focused 
on English literature, possibly neglecting valuable non-English contributions and narrowing geographic and cultural perspectives. 
Broader linguistic inclusivity is advisable for future reviews. Secondly, The swift pace of research advancements means our analysis 
may not capture the absolute latest developments, due to the inherent delay between study conduct and publication. Ongoing updates 
are critical. Thirdly, Varied study designs and quality among included articles could affect result synthesis. Differences in assessing 
ferroptosis complicate interpretations. Lastly, As a narrative review, our work leans on author discretion, risking bias, in contrast to the 
more standardized, quantitative methods of systematic reviews or meta-analyses. These limitations highlight the necessity for ongoing 
exploration and updates in this rapidly advancing domain. Addressing them in future studies will deepen our comprehension and foster 
tailored interventions for managing this multifaceted condition. 

8. Conclusion 

This article explores the relationship between cardiac fibroblasts and cardiomyocytes in triggering ferroptosis in DCM. Cardiac 
fibroblasts release specific factors that influence intracellular iron metabolism and oxidative stress in cardiomyocytes, exacerbating 
myocardial fibrosis, ischemic damage, and promoting ferroptosis. The communication network between these two cell types is crucial 
in regulating the expression of genes related to ferroptosis and signaling pathways. In summary, understanding the interplay between 
cardiac fibroblasts and cardiomyocytes, as well as the role of ferroptosis in DCM, offers new research perspectives and treatment 
strategies. A comprehensive understanding of the molecular mechanisms and pathophysiological significance of these processes can 
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lead to more effective and safe treatment methods, ultimately improving the quality of life and prognosis for patients with DCM. 
Progress in this area will be fueled by continued efforts and interdisciplinary collaboration. 

9. Outstanding questions 

Future research directions in the field of DCM are poised to address several critical questions that hold promise for advancing 
therapeutic strategies. Firstly, while key signaling pathways involved in ferroptosis have been identified in DCM, a deeper under-
standing of the precise molecular mechanisms and interactions between soluble mediators within these pathways is essential. This 
includes elucidating their functional roles in disease pathogenesis. Secondly, there is an urgent need to develop novel interventional 
strategies targeting the intricate crosstalk between cardiac fibroblasts and cardiomyocytes. Such strategies could potentially modulate 
their interactions to inhibit or reverse fibrosis, inflammation, and ferroptosis in DCM patients. Thirdly, comprehensive investigation 
into the complex signaling networks under diabetic conditions, particularly focusing on how specific growth factors like VEGF-B and 
other mediators influence the dynamic communication between cardiac cells at various stages of disease progression, can pave the way 
for more effective interventions. Fourth, innovative targeted therapies should be developed and validated for their efficacy in sup-
pressing the activation, proliferation, and transformation of cardiac fibroblasts, with concurrent evaluation of their impact on iron- 
mediated cell death and overall heart function. Fifth, identifying and validating new biomarkers that accurately reflect the state of 
ferroptosis and correlate well with DCM diagnosis and prognosis is crucial. These markers could also serve as potential therapeutic 
targets or tools for monitoring disease progression. Sixth, exploring the intricate interplay between ferroptosis and other cell death 
modalities (apoptosis, autophagy) under diabetic conditions will aid in designing multi-targeted intervention strategies that simul-
taneously tackle multiple cell death pathways. Seventh, continued exploration into the fine-tuning of critical signaling pathways such 
as GPX4, TGF-β, and Nrf2 in diabetes-related ferroptosis is vital to guide the development of more targeted anti-ferroptotic drugs. 
Eighth, employing gene editing technologies like CRISPR/Cas9 to study the effectiveness and safety of targeting genes linked to 
ferroptosis, such as ACSL4 and GPX4, could lead to new avenues for therapeutic intervention. Ninth, optimizing and expanding the 
application of stem cell therapy and CAR-T cell therapy in repairing cardiac damage, inhibiting fibrosis, and regulating ferroptosis is 
another promising area for future research. Tenth, personalizing treatment approaches based on individual patient characteristics and 

Fig. 3. Literature screening and inclusion process.  
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disease progression, including the tailored regulation of ferroptosis-related gene expression and signaling pathways, presents a 
compelling challenge and opportunity. Last but not least, bridging the gap between basic science findings and clinical practice ne-
cessitates conducting more preclinical and clinical trials investigating the safety and efficacy of novel drugs and therapies targeting the 
interaction between cardiac fibroblasts and cardiomyocytes, as well as ferroptosis pathways in DCM. 

10. Search strategy and selection criteria 

In preparing the review “Ferroptosis in Diabetic Cardiomyopathy: New Directions in Cellular Interplay,” we extensively explored 
PubMed and scrutinized key references. Our search keywords – “ferroptosis,” “diabetic cardiomyopathy,” “heart fibroblasts,” “heart 
muscle cells,” and “cell cooperation” – helped us gather the most fitting and recent research. 

Our literature selection was guided by a set of well-defined criteria, structured as follows: First, studies were included if they had 
explicit relevance to ferroptosis in the context of diabetic cardiomyopathy, ensuring a concentrated investigation into our central 
theme. Second, a key emphasis was placed on research examining heart fibroblasts or myocardial cells, with particular attention to 
their cooperative or communicative behavior, to deepen our understanding of cellular interactions. Third, to maintain recency and 
accessibility, English-language publications from the last five years were prioritized, with an exception made for historically pivotal 
works that significantly advanced comprehension in the field, even if they were published prior to this timeframe. Fourth, priority was 
given to studies presenting original empirical data or offering innovative insights; while comprehensive reviews and meta-analyses 
were utilized to orient the research landscape, they were not considered as primary data sources themselves. On the contrary, 
studies were excluded based on several grounds: divergence from the core theme of diabetic cardiomyopathy-related ferroptosis; 
concentration on non-diabetic cardiac conditions; deficiency in scientific rigor; and duplication. This structured approach ensured a 
methodical and focused selection process, enriching the quality and relevancy of our narrative review. 

Our literature search encompassed key databases, with PubMed being the primary source, initially yielding 1650 records. 
Following the elimination of duplicates and an initial screening of titles and abstracts, 482 articles progressed to full-text review. 
Applying our rigorous assessment criteria, a total of 263 articles, including 27 review articles, were subsequently excluded, primarily 
due to their irrelevance to the focused research question, methodological inadequacies, or lack of original data contribution. As a 
result, a final selection of 219 publications, comprising primarily original research and a few highly informative reviews, stood as the 
cornerstone of our narrative review, reinforcing our in-depth analysis with a solid foundation of pertinent and high-quality research 
(Fig. 3). 
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