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ABSTRACT

Chromatin interaction analysis by paired-end tag se-
quencing (ChIA-PET) is a method for the genome-
wide de novo discovery of chromatin interactions.
Existing computational methods typically fail to de-
tect weak or dynamic interactions because they use
a peak-calling step that ignores paired-end linkage
information. We have developed a novel computa-
tional method called Chromatin Interaction Discov-
ery (CID) to overcome this limitation with an unbiased
clustering approach for interaction discovery. CID
outperforms existing chromatin interaction detection
methods with improved sensitivity, replicate consis-
tency, and concordance with other chromatin interac-
tion datasets. In addition, CID also outperforms other
methods in discovering chromatin interactions from
HiChIP data. We expect that the CID method will be
valuable in characterizing 3D chromatin interactions
and in understanding the functional consequences
of disease-associated distal genetic variations.

INTRODUCTION

Physical three-dimensional (3D) chromatin interactions be-
tween regulatory genomic elements play an important role
in regulating gene expression (1,2). For example, the cre-
ation of chromatin interactions between the promoters and
locus control regions of the �-globin gene is sufficient to
trigger transcriptional activation, indicating that chromatin
looping causally underlies gene regulation (3).

Chromatin interaction analysis by paired-end tag se-
quencing (ChIA-PET) is a technology for the genome-wide
de novo detection of chromatin interactions mediated by a
specific protein factor (4). In ChIA-PET, crosslinked chro-
matin is sonicated and then immunoprecipitated by anti-
bodies that bind to a protein of interest, followed by proxim-
ity ligation, and sequencing (4). The paired-end tags (PETs)

are then mapped to the genome to identify the two genomic
locations that interact with each other. Therefore, similar to
Hi-C data (5), the ChIA-PET interactions are represented
by a pair of genomic locations that interact with each other.
By focusing on the chromatin interactions associated with
a specific protein, ChIA-PET is capable of generating high-
resolution (∼100 bp) genome-wide chromatin interaction
maps of functional elements (6). The ChIA-PET method
has been used to detect structures defined by architectural
proteins, including CTCF (6,7) and cohesin (8,9), detect
enhancer–promoter interactions associated with RNAPII
(10–12), and detect interactions involving other transcrip-
tion factors (4,13). In addition, multiple studies have ap-
plied the ChIA-PET method to link distal genetic vari-
ants to their target genes and to study the structural and
functional consequences of non-coding genetic variations
(6,14).

To gain biological insight from ChIA-PET data, com-
putational analysis pipelines and statistical models have
been developed (15–19). Typically, analysis pipelines start
with data pre-processing that includes linker filtering and
linker removal. The resulting PETs are then mapped to the
genome and duplicated PETs are removed. To detect chro-
matin interactions, a peak-calling step (16,17,19) is usually
used to define peak regions enriched with reads as interac-
tion anchors, and then groups of PETs linking two peak re-
gions are considered as candidate interactions. Finally, the
number of PETs supporting a candidate interaction is used
to compute the statistical significance of the interaction.

Existing chromatin interaction methods based on peak-
calling (16,17,19) lose information at the peak-calling step
by ignoring the paired-end linkage information that is in-
dicative of chromatin interactions. For example, for an
RNAPII ChIA-PET dataset that aims to detect promoter-
enhancer interactions, the RNAPII signal enrichment at
certain weak or dynamic enhancers may not be strong
enough to be detected as a peak by the peak-calling algo-
rithm. Thus, interactions involving weak enhancers typi-
cally will not be detected, even though there may be a suffi-
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cient number of PETs linking these enhancers to other ge-
nomic elements in the raw data. In addition, for interactions
with detected anchors, the PET count quantification may be
inaccurate because some nearby PETs may fall outside of
the peak region boundaries. Thus, peak-calling-based ap-
proaches limit the detection of candidate interactions and
can inaccurately quantify the PET count support.

We developed a novel computational method called chro-
matin interaction discovery (CID) that uses an unbiased
clustering approach to detect chromatin interactions to ad-
dress the shortcomings of peak-calling-based methods. We
show that CID can be applied to both ChIA-PET and
HiChIP data and that CID outperforms existing peak-
calling-based methods in terms of sensitivity, replicate con-
sistency, and concordance with other chromatin interaction
datasets.

MATERIALS AND METHODS

Segmentation of PETs

First, CID groups all the single-end reads that are within
5000 bp of each other into non-overlapping regions. The
maximum DNA fragment size in the ChIA-PET protocol
is estimated to be ∼5000 bp (16). Therefore, two groups
of reads that are >5000 bp apart are expected to belong
to independent interaction anchor regions. Next, for each
region, we group PETs whose left reads map to the region
into groups where the right reads of the PETs map to in-
dependent anchor regions that are at least 5000 bp from
each other. We then further split the PET groups if the left
reads of the PETs in a group can be split into independent
anchor regions. This process iterates until the PET groups
cannot be further split. The result of this segmentation step
is that millions of PETs are split into small non-overlapping
groups that typically contain <10 000 PETs.

ChIA-PET and HiChIP datasets

ChIA-PET datasets (17 datasets associated with protein
factors such as POL2RA, CTCF and RAD21) from various
cell types (9,11,14) (Supplementary Table S1) were down-
loaded from the ENCODE Project portal (https://www.
encodeproject.org/). FASTQ files of both biological repli-
cates were pre-processed and aligned to the hg19 genome
using the Mango pipeline (19). The fastq and pre-processed
SMC1A HiChIP data from GM12878 cells (20) were down-
loaded from NCBI GEO portal (GSE80820). BEDPE files
from ChIA-PET and HiChIP datasets are used as inputs to
CID.

Mango and ChIA-PET2 pipelines

Mango (version 1.2.1) (19) was downloaded from https://
github.com/dphansti/mango. Additionally, we installed the
dependencies R (version 3.4.4), bedtools (version 2.26.0),
macs2 (version 2.1.1.20160309), and bowtie-align (version
1.2). Mango was executed with the default parameters and
the flags verboseoutput and reportallpairs were set. For data
sets that were generated with the ChIA-PET Tn5 tagmenta-
tion protocol, additional parameters recommended by the

author were used: –keepempty TRUE –maxlength 1000 –
shortreads FALSE.

The BEDPE files generated by Mango after step 3 were
also used by the ChIA-PET2 and CID pipelines in order to
examine the differences in the subsequent peak calling and
interaction calling steps.

ChIA-PET2 (version 0.9.2) (17) was obtained from https:
//github.com/GuipengLi/ChIA-PET2. The default setting
for all parameters were used, except that the starting step
was set to 4 to start the analysis from Mango-derived
BEDPE files.

hichipper pipeline

The HiChIP raw fastq files were initially processed with
HiC-Pro (21) (https://github.com/nservant/HiC-Pro) using
default settings except specifying MboI instead of HindIII
digestion. Subsequently, hichipper (22) (https://github.com/
aryeelab/hichipper) was used to analyze the HiC-Pro out-
put, specifying EACH,ALL as the peaks option and pro-
viding the MboI BED file for restriction fragments.

Replicate consistency analysis

For each dataset, we counted the number of interactions
that are present in both replicates. Jaccard coefficients are
then calculated by dividing the intersection of interactions
in replicates 1 and 2 by the union of interactions in both
replicates. Interactions in replicates 1 and 2 were considered
identical, if both interaction anchors overlapped between
replicates or the gap between them was <1000 bp.

In situations where the ranking of interactions mattered
(e.g. fraction of replicated interactions in the top n interac-
tions), interactions were sorted in ascending order of their
false discovery rate (FDR) and posterior probability (if
there were tied FDR values).

Functional annotation of interaction calls

The GENCODE 19 gene annotation (23) was used to gen-
erate the promoter annotations. Each transcription start
site (TSS) is expanded to 2.5 kb up/downstream to de-
fine a promoter. We used ChIP-seq peak calls of H3K27ac
histone modification, which associates with active en-
hancers, as the enhancer annotations. The set of broad
peak calls of H3K27ac ChIP-seq data from K562 cells
was downloaded from ENCODE project website (acces-
sion ENCFF931VAQ). For the interaction calls from all
the methods, a call is considered annotated as an enhancer-
promoter interaction if one anchor region of the interaction
overlaps with a promoter annotation and the other anchor
overlaps an enhancer annotation.

Hi-C loop overlap analysis

Hi-C loop calls for GM12878 and K562 cells (24) were
downloaded from NCBI GEO portal (GSE63525, com-
bined primary and replicate samples). The HICCUPS loop
calls from SMC1A HiChIP data were downloaded from
Mumbach et al. (20). The overlap between Hi-C loops and
ChIA-PET and HiChIP interaction calls were computed us-
ing pairToPair in bedtools with parameters ‘-slop 1000 -type
both -is’.

https://www.encodeproject.org/
https://github.com/dphansti/mango
https://github.com/GuipengLi/ChIA-PET2
https://github.com/nservant/HiC-Pro
https://github.com/aryeelab/hichipper
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5C interaction overlap analysis

5C interaction calls for K562 cells were downloaded from
the original study (25). The overlap between 5C interactions
(tested and positive) and ChIA-PET interaction calls were
computed using pairToPair in bedtools with parameters ‘-
slop 1000 -type both -is’.

Software availability

The CID software was implemented in Java. Information on
CID is at (http://giffordlab.mit.edu/cid/). The source code
and license is at (https://github.com/gifford-lab/GEM3).

RESULTS

Chromatin interaction discovery (CID)

CID discovers chromatin interactions using a density-based
clustering method (26) to cluster proximal PETs into in-
teractions. CID continuously resolves anchors and thus
is more flexible than peak-calling-based methods that can
only discover interactions between statically identified peak
regions. Once CID identifies candidate interactions, it then
applies the MICC statistical model (15) to compute the sta-
tistical significance of the interactions.

CID first filters out PETs that are shorter than 5000 bp
because they are likely to be self-ligation PETs. CID then
efficiently clusters ChIA-PET data by segmenting the to-
tal set of PETs into independent groups of proximally lo-
cated PETs (see MATERIALS AND METHODS). ClD
then clusters each group of PETs.

A PET i is represented as a two-dimensional vector
[Ci,LCi,R], where Ci,L and Ci,R are the genomic coordinates
of the center of the left and right reads of PET i, respectively,
Ci,L < Ci,R. The distance between two PETs is quantified as
the Chebyshev distance (27) calculated from the read coor-
dinates of the PETs:

Distance
(
PETi , PETj

) = max
(∣∣Ci,L − Cj,L

∣
∣ ,

∣
∣Ci,R − Cj,R

∣
∣)

We employ a density-based clustering method (26) that
finds cluster centers that are characterized by a higher den-
sity than their neighbors and by a relatively large distance
from points with higher densities. For ChIA-PET data (Fig-
ure 1A), the density of a PET is defined as the number of
neighboring PETs within a certain cutoff distance to the
PET. The densities of all PETs can be visualized by plotting
each PET as a point (Ci,L, Ci,R) on a 2D space (Figure 1B).
A high-density group of points on the plot suggests poten-
tial chromatin interactions between two genomic regions.
After computing the density values, a delta value of a PET
is defined as its distance to the nearest PET that has a higher
density. For the PET with the highest density, delta is de-
fined as the largest distance between any pair of PETs (26).
By requiring cluster centers have high delta values, the clus-
tering method prevents too many points in a high-density
region from being called as cluster centers (26). The clus-
ter centers are then the PETs with both high density and
high delta values, as visualized in a clustering decision graph
(Figure 1C). Following the clustering method (26), PETs are
ranked by the product of their density and delta values and
a PET is assigned to the same cluster as its nearest neighbor

of higher density (Figure 1D). After cluster assignment, sin-
gleton clusters are interpreted as noise and are not consid-
ered as candidate interactions. Because some PET clusters
may be close to each other, a post-processing step merges
nearby PET clusters. The PET clusters that contain at least
two PETs are then proposed as candidate interactions (Fig-
ure 1E).

CID then applies the MICC statistical model (15) to
compute the statistical significance of the candidate inter-
actions. MICC applies a Bayesian mixture model to sys-
tematically separate true interactions from random ligation
and random collision noise and computes false discovery
rates (FDRs) for the candidate interactions (15). The cutoff
criteria for significant interactions are (i) FDR ≤0.05 and
(ii) PET count >3. In principle, CID can use the MICC,
Mango, or ChiaSig (18) models to compute statistical sig-
nificance of the discovered interactions. We chose the MICC
model because it has been shown to be more sensitive than
the Mango model (15).

CID is more sensitive at discovering ChIA-PET interactions
than peak-calling-based methods

We compared CID with two peak-calling-based ChIA-
PET analysis methods, ChIA-PET2 (17) and Mango (19),
and found that CID is more sensitive than these methods
at chromatin interaction discovery. We tested these three
methods on a widely used dataset, POL2RA ChIA-PET
from K562 cells (11). We first studied the chromatin interac-
tions called by three methods in the 400 kb genomic region
downstream of the CEBPB gene. The pre-determined peak
regions called by ChIA-PET2 and Mango limit the interac-
tions that can be discovered. In contrast, CID uses an un-
biased approach and discovers a substantial number of in-
teractions that are missed by ChIA-PET2 and Mango (Fig-
ure 2A). The missed interactions are between the CEBPB
promoter and non-promoter regions that have weak enrich-
ment of reads and are not called as peaks by ChIA-PET2
or Mango. In addition, peak-calling-based methods only
count the PETs that are within the peak regions and miss
nearby PETs that just fall out of the peak region bound-
aries. In contrast, CID’s clustering approach includes all the
neighboring PETs. Indeed, the PET count in the CID called
interactions are higher than the same interactions called
by the other methods (Figure 2A). The accurate quantifi-
cation of PET counts for interactions is important for the
subsequent test of their statistical significance. Many of the
candidate interactions called by ChIA-PET2 and Mango
contain too few PETs to reach statistical significance, yet
the interactions called by CID across the same anchor re-
gions are statistically significant because their PET counts
are higher (Figure 2A). We further compared the significant
interactions in the CEBPB locus between two biological
replicates and found that CID called 11 replicable interac-
tions that contain at least 9 PETs. In contrast, there are only
one replicable ChIA-PET2 interaction and zero replicable
Mango interactions in this region (Supplementary Figure
S1). Across the whole genome, CID discovers more inter-
actions than ChIA-PET2 and Mango (Figure 2B, Supple-
mentary Figure S2).

http://giffordlab.mit.edu/cid/
https://github.com/gifford-lab/GEM3
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Figure 1. CID uses density-based clustering to discover chromatin interactions. (A) ChIA-PET interactions can be discovered as groups of dense arcs
connecting two genomic regions. Each arc is a PET. (B) The PETs plotted on a two-dimensional map using the genomic coordinates of the two reads. Each
point is a PET. The colors represent the density values, defined as the number of PETs in the neighborhood. The red dashed square represents the size
of the neighborhood. (C) The clustering decision graph. Each point is a PET. The points with high density and high delta values are selected as cluster
centers. For simplicity, only large clusters are labelled. (D) The read pairs are assigned to the nearest cluster centers. The clusters are labeled as in (C). (E)
The clusters are visualized as arcs. The clusters are labeled as in (C) and (D).

Next, we investigated whether the interactions discovered
by CID are functionally relevant. For the K562 POL2RA
ChIA-PET data, we overlapped the interaction calls by
all three methods with the annotations of enhancers (E,
H3K27ac ChIP-seq peaks in K562 cells) and promoters (P,
2.5kb up/downstream of annotated TSS in GENCODE
19). An interaction is annotated as a candidate enhancer-
promoter interaction if one of its anchor regions overlaps
with at least one promoter or enhancer annotation and the

other anchor region overlaps with at least one annotation
of the opposite type (E-P or P-E). More than 80% of CID
calls are annotated as candidate enhancer-promoter inter-
actions, at the similar percentage of overlaps of calls from
ChIA-PET2 and Mango (Supplementary Figure S3). Fur-
thermore, high-ranking CID calls overlap with annotations
at a higher percentage than calls from the other methods.
These results suggest that CID calls reveal chromatin inter-
actions with relevant biological function.



PAGE 5 OF 8 Nucleic Acids Research, 2019, Vol. 47, No. 6 e35

Figure 2. CID is more sensitive and consistent at discovering ChIA-PET interactions than peak-calling-based methods. (A) Comparison of interactions
called by CID, ChIA-PET2, and Mango in the CEBPB locus using POLR2A ChIA-PET data from K562 cells. The ChIA-PET2 and Mango interaction
calls are based on peak calls (shown as blue rectangles) from the same ChIA-PET data by treating PETs as single-end reads (shown as the ChIA-PET ChIP
track). The PET counts of the interactions are represented as the numeric values above the arcs. For CID, only significant interactions with >8 PETs are
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CID is more consistent at discovering ChIA-PET interactions
than peak-calling-based methods

In addition, CID interaction calls are more consistent
across biological replicates than those of ChIA-PET2 and
Mango. For each method, we compared the interactions
called from biological replicates and computed the accu-
mulated fraction of replicated calls with increasing num-
ber of top-ranking calls. For the K562 POL2RA ChIA-
PET dataset, the interaction calls of CID are more repli-
cable than those of ChIA-PET2 and Mango (Figure 2B).
We further compared the replicate consistency of the three
methods across a large set of replicated ChIA-PET datasets
from the ENCODE project (28), which assay interactions
mediated by factors such as POL2RA, CTCF and RAD21
(a cohesin subunit), across multiple cell types. Because the
numbers of interactions called by the three methods are dif-
ferent, for each dataset, we took the same number of top-
ranking interaction calls and computed the Jaccard coeffi-
cient between the two replicates. We found that CID has
higher Jaccard coefficients than ChIA-PET2 and Mango
across all 17 datasets we tested (Figure 2C). Across all these
ChIA-PET datasets, CID is not only more sensitive but also
more consistent in discovering chromatin interactions than
ChIA-PET2 and Mango (Supplementary Figure S2, Sup-
plementary Table S2). We also computed the interaction
length distribution and anchor width distribution of inter-
action calls from Mango, ChIA-PET2, and CID for all 17
ChIA-PET data sets (Supplementary Figures S4 and S5).
The interaction length distributions are similar among the
tested methods. In contrast, the anchor width distribution
of CID differs from other methods because CID called an-
chors are defined by clustered PETs instead of the peaks
determined based on single-end read enrichment.

Interactions called by CID are more concordant with Hi-C
and 5C data than interactions called by other methods

To compare the accuracy and biological relevance of in-
teractions detected by CID and other methods, we inter-
sected the interaction calls with the chromatin loop calls
from deeply sequenced Hi-C data (24). We first tested the
concordance between RAD21 ChIA-PET interactions calls
and the Hi-C loop calls in GM12878 cells. Because CID,
ChIA-PET2, and Mango called different numbers of signif-
icant interactions, we focused on comparing the top 5530
interactions called by the three methods. We found that
interactions called by CID overlap with more Hi-C loops
than those called by ChIA-PET2 and Mango. The number
of Hi-C loops overlapped with interactions called by CID,
ChIA-PET2, and Mango are 2708, 1622 and 1848, respec-
tively (Figure 3A). Similarly, for K562 cells, POL2RA inter-
actions called by CID overlap with more Hi-C loops than
those called by ChIA-PET2 and Mango. The number of Hi-
C loops overlapped with the top 631 interactions called by
CID, ChIA-PET2, and Mango are 88, 18 and 57, respec-

tively (Figure 3B). In addition, the number of Hi-C loops
overlapped with the top 7498 interactions called by CID
and ChIA-PET2 are 396 and 83, respectively (Supplemen-
tary Figure S6).

We also compared the significant interactions from the
three methods with 3C-Carbon Copy (5C) data mapped as
part of the ENCODE project across 1% of the genome (25).
For the K562 POL2RA ChIA-PET interactions called by
the three methods, we compared the fraction of the inter-
actions that are validated by 5C interactions in K562 cells.
Out of 39 interactions tested by 5C that overlap the 7498 sig-
nificant interactions called by ChIA-PET2, 14 were tested
positive by 5C. Out of 14 interactions tested by 5C that
overlap the 631 significant interactions called by Mango, 4
were tested positive by 5C. In comparison, 40 interactions
tested by 5C overlap with the top 7498 significant interac-
tions called by CID, 17 were tested positive by 5C. The frac-
tion of positive 5C interactions are higher for CID than for
ChIA-PET2 and Mango (Figure 3C).

Taken together, these results show that the interactions
called by CID are more concordant with Hi-C and 5C data
than interactions called by other methods, suggesting that
the interactions discovered by CID are more accurate and
biologically relevant.

CID outperforms other methods in detecting chromatin inter-
actions from HiChIP data

CID can also be applied to HiChIP (20) data for discov-
ering chromatin interactions. HiChIP is a recently intro-
duced method that is similar to ChIA-PET. It is an attrac-
tive alternative to ChIA-PET because it requires substan-
tially fewer cells and a simpler protocol (20). We applied
CID to a cohesin-associated HiChIP dataset (20) and found
that the interactions discovered by CID are similar to a
cohesin-associated ChIA-PET dataset (14) in terms of repli-
cate consistency (Supplementary Figure S7). We then com-
pared the results with those from hichipper (22), a peak-
calling-based method for analyzing HiChIP data. We found
that the interaction calls of CID are more consistent across
two replicates than those of hichipper (Figure 4A). In addi-
tion, we overlapped CID, hichipper, and HICCUPS calls
(20) from the same SMC1A HiChIP data with the Hi-C
loops from GM12878 cells (24). Because HICCUPS only
called 10255 significant interactions from the HiChIP data,
we focused on comparing the top 10255 interactions called
by the three methods. We found that interactions called by
CID overlap with slightly more Hi-C loops than those called
by HICCUPS, and significantly more than those called by
hichpper. The number of Hi-C loops overlapped with inter-
actions called by CID, HICCUPS, and hichipper are 3331,
3137 and 1507, respectively (Figure 4B). We note that HIC-
CUPS is the same software that called the loops from Hi-C
data (24). These results show that CID can also be used to
detect chromatin interactions from HiChIP data.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
shown. Dashed-line arcs represents insignificant candidate interactions. (B) Interaction calls of CID are more consistent across replicates than those of
ChIA-PET2 and Mango. Accumulative fractions of replicated interaction calls are computed using top ranking interactions at increasing ranks. For CID,
only top 10 000 calls are shown. (C) Interaction calls of CID are more replicable than those of ChIA-PET2 and Mango across a large set of ChIA-PET
data. For each dataset, same number of top-ranking calls in replicates are used to compute Jaccard coefficient for all three methods.
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Figure 3. Interactions called by CID are more concordant with Hi-C and 5C data than interactions called by ChIA-PET2 and Mango. (A) Number of
Hi-C loops in GM12878 cells that overlapped with top 5530 interactions called by three methods from RAD21 ChIA-PET data in GM12878 cells. (B)
Number of Hi-C loops in K562 cells that overlapped with top 613 interactions called by three methods from POLR2A ChIA-PET data in K562 cells. (C)
Fraction of interactions called by three methods from POLR2A ChIA-PET data in K562 cells that are validated by 5C interactions in K562 cells. The
values above the bars show the number of 5C interactions tested positive and the number of 5C interactions tested, respectively.

Figure 4. CID outperforms other methods in detecting chromatin interac-
tions from HiChIP data. (A) Interaction calls of CID are more consistent
across replicates than those of hichipper. Accumulative fractions of repli-
cated interaction calls are computed using top ranking interactions at in-
creasing ranks. Top 100 000 calls are shown. (B) Number of Hi-C loops
in GM12878 cells that overlapped with top 10 255 interactions called by
CID, HICCUPS, and hichipper from SMC1A HiChIP data in GM12878
cells.

DISCUSSION

We have demonstrated that CID is more sensitive in dis-
covering chromatin interactions from ChIA-PET data than
existing peak-calling-based methods. In addition, the inter-
actions discovered by CID are more consistent across bio-
logical replicates and more concordant with other types of
chromatin interaction data than those discovered by exist-
ing methods. We anticipate the improved accuracy and re-
liability of CID will be important for elucidating the mech-
anisms of 3D genome folding and long-range gene regula-
tion.

We have also shown that CID can be used to detect chro-
matin interactions from HiChIP data. A recent study (22)
showed that correction of the cut site bias of the restriction
enzyme improves the detection of interaction anchors. Fu-
ture development of CID with HiChIP-specific modeling of
the cut site bias may further improve the detection of inter-
actions from HiChIP data.

Cell-type-specific gene expression is often regulated by
distal enhancers, and these enhancers are often enriched
with disease-associated variants (29,30). However, linking
disease-associated non-coding variants to their affected
genes in disease relevant tissues has been challenging due
to the scarcity of long-range interaction data. With large

scale on-going efforts such as the ENCODE project (28)
and the 4D Nucleosome project (31), high resolution chro-
matin interaction mapping from a wider range of tissues
and cells will become available in the near future. We expect
that the CID method will be valuable in characterizing 3D
chromatin interactions and in understanding the functional
consequences of disease-associated distal genetic variations
(32).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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