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A B S T R A C T

The present study evaluated the changes in salivary proteome in parvoviral enteritis (PVE) in dogs through a
high-throughput quantitative proteomic analysis. Saliva samples from healthy dogs and dogs with severe par-
vovirosis that survived or perished due to the disease were analysed and compared by Tandem Mass Tags (TMT)
analysis. Proteomic analysis quantified 1516 peptides, and 287 (corresponding to 190 proteins) showed sig-
nificantly different abundances between studied groups. Ten proteins were observed to change significantly
between dogs that survived or perished due to PVE.

Bioinformatics’ analysis revealed that saliva reflects the involvement of different pathways in PVE such as
catalytic activity and binding, and indicates antimicrobial humoral response as a pathway with a major role in
the development of the disease. These results indicate that saliva proteins reflect physiopathological changes
that occur in PVE and could be a potential source of biomarkers for this disease.

1. Introduction

Parvoviruses are small icosahedral viruses that infect many animal
species including humans worldwide. Canine parvovirus type-2 is the
causal agent of canine parvoviral enteritis (PVE), a severe disease that
causes nearby 100% morbidity and up to 10–90% mortality in un-
vaccinated adults and puppies, respectively [1]. The clinical presenta-
tion of PVE ranges from mild to severe, based on clinical signs and
physical examination [2,3]. The most common clinical signs in puppies
include acute severe vomiting and bloody diarrhoea, fever, dehydration
and lethargy [4]. Complications such as cardiac damage, which may
result in death or permanent myocardial damage [5], and systemic
inflammatory response syndrome (SIRS) prior to sepsis have been de-
scribed [6].

In dogs, saliva has proven to be an useful biofluid for the diagnostic
of several conditions such as leishmaniosis [7] and helicobacter

infection [8], as well as for evaluation of stress [9]. The use of non-
invasive specimens such as saliva provides several advantages com-
pared to invasive methods, being safer for the personal and the patient,
easier to collect, pain-free and causes reduced sampling stress [10].
Saliva can have potential advantages versus others non-invasive sam-
ples such as faeces, which usually need a laborious pre-treatment prior
to its analysis. In particular, in the case of PVE, it has been described a
poor sensitivity of faeces when used in rapid antigen ELISA test [11].
For this, it is envisioned that saliva can play an increasingly important
role in the early diagnosis and monitoring of diseases [12].

However, to the author’s best knowledge, there are no reported
studies about changes in saliva composition in PVE. The knowledge of
the changes that occur in saliva in dogs with parvovirus could help to
detect possible biomarkers in this fluid for PVE disease.

Proteomics sciences focus on the study of the proteome content of
cells, organs and organisms [13]. Proteomic techniques have become
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widely used with the aim of discovering disease-related biomarkers in
diverse biological fluids that could be used in routine practice for early
diagnosis, prognosis or treatment monitoring [14,15]. Over the last
several years, novel technologies such as the use of isobaric tags have
greatly increase the sensitivity of the proteomic analysis [16–18].
Tandem Mass Tags (TMT) allow for relative simultaneous quantifica-
tion of differentially labelled peptides [19] since each sample is marked
and distinguished by differences on their reporter ion masses [20,21].
However, there is still a scarcity of reports using TMT technology in
saliva samples, and no reports have been found describing the use of
TMT to detected possible biomarkers of diagnosis and prognosis in PVE.

The objective of the present study is to evaluate possible changes in
saliva proteins associated to canine parvovirus infection. This would
help to clarify if saliva components can reflect the physiopathological
changes associated to the disease and to evaluate the possibility of
identifying potential biomarkers of PVE in saliva samples. For this,
saliva samples were collected from healthy dogs (control group) and
from dogs with PVE that survived or died because the infection. Saliva
samples were analysed by quantitative high-throughput TMT-based
proteomic approach enabling the identification of significantly varying
proteins among different groups. Subsequently, the differentially ex-
pressed proteins were used as a starting point for creating protein in-
teraction networks.

2. Materials and methods

2.1. Animals

A total of 11 client-owned dogs that were presented to the
Veterinary Teaching Hospital, Small Animal Clinics, Bursa Uludag
University, Bursa, Turkey, of different breeds were involved in this
study (Table 1). Parvovirosis infection was diagnosed by compatible
clinical (acute bloody diarrhoea, vomiting, anorexia, dehydration etc.)
and haematological signs (leukopenia, neutropenia and lymphopenia)
in combination with the positive test results of the commercially
available faecal diagnostic test (Antigen Rapid PVE kit, Animal Ge-
netics, Inc., Suwon, Korea). Selected clinical (body temperature and
heart and respiratory rates) and haematological (leukogram, eritrogram
and thrombogram) findings were used to assess the general health
status of the animal. Dogs were excluded if they were co-infected with
other viral (canine distemper or coronavirus), parasite (coccidiosis,
giardiasis, ascaridiosis etc.), or vector borne diseases by use of faecal
screening test, fecal microscopic examinations, or speed test for ehrli-
chiosis, anaplasmosis, lyme, and dirofilariasis (Anigen Rapid CaniV-4,
Bionote, Korea), respectively.

The dogs were divided into three groups according to their clinical
condition and development of the disease. A group with 5 healthy dogs
was considered as control group. Virus is shed for a few days before the
onset of clinical signs. Therefore, even if all dogs in control group were

considered healthy based on the clinical, haematological and serum
biochemistry findings (comprehensive profile, VetScan, Abaxis), faecal
screening test for CPV-Ag were applied. Dogs with negative test result
were enrolled to study. All dogs in test group were treated as described
previously [22]. Briefly, fluid replacement therapy (dextrose 5% with a
balanced crystalloid solution - lactated ringer, and hydroxyethyl
starch), anti-emetics (metoclopramid 0.2-0.4 mg/kg, BID, sub-
cutaneously, and ranitidin 2–4mg/kg, BID, intramusculary), parenteral
antibiotics (ampicillin 30mg/kg, BID+ amikasin 5–10mg/kg, BID+
metronidazol 25mg/kg, BID), immune stimulator (imunex), probiotics
and vitamins (E and C) were used. Dogs with clinical diagnosis of severe
parvovirosis were divided into two groups according to the progress of
the disease: 3 dogs that survived (survival group) (age 3.67 ± 0.94
months, 1 male and 2 female) and 3 that died because of the disease
(non-surviving group) (age 6.67 ± 1.25 months, 2 males and 1 fe-
male). Therefore, dogs were classified according to the severity of their
clinical and haematological signs (Table 1). There was a similarity of
presented clinical signs and its duration (2–4 days) in dogs within test
group. Despite the treatment, three dogs died within 5 days (one on day
3, one on day 4 and other on day 5).

All the procedures were approved by the Local Ethical Committee of
the University of Uludag.

2.2. Saliva sampling

At least 0.5ml of unstimulated saliva specimens were collected from
each patient by placing small cotton swabs around the mouth. When the
cotton swabs were thoroughly moist, they were placed in collection
devices (Salivette saliva collection tube / V-Bottom, Sarstedt,
Aktiengesellschaft & Co, Nümbrecht, Germany), centrifuged (3000 x g
for 10min, 4 °C), and the supernatant was stored at −80 °C until ana-
lysis [23]. Due to dehydration and subsequent dry mouth, for some
animals the sampling protocol was performed twice in order to obtain
at least 0.5ml of unstimulated saliva.

2.3. Proteomic study of saliva samples and LC–MS/MS analysis

From each sample, 35 μg of acetone-precipitated proteins were
subjected to reduction, alkylation, digestion and labelled using 6-plex
Tandem Mass Tag reagents according to manufacturer instructions
(Thermo Scientific) with some modification, as described previously
[24]. In short, 35 μg of sample and internal standards were reduced
with 200mM DTT (Sigma-Aldrich), alkylated with 375mM iodoaceta-
mide (Sigma- Aldrich) and precipitated with ice-cold acetone (VWR,
Pennsylvania, USA) overnight. Samples were then centrifuged and
acetone was decanted. Pellets were resuspended with 50 μl of 100mM
TEAB buffer and digested with trypsin (Promega) overnight at 37 °C
(2.5 μg of trypsin per 100 μg of protein). TMT label reagents were
equilibrated to room temperature, resuspended in anhydrous

Table 1
Main exploratory and haematological findings in healthy and dogs with PVE.

ID Breed Gender / age (months) T
°C

P /min R /min WBC / N / L
X 103/μL

Hct % Total protein gr/dL Group

1 Mixed M / 2 39.2 120 22 11.5 / 8.7 / 2.1 27.6 ND Healthy
2 Mixed M / 2 39.3 110 24 10.7 / 6.8 / 3.2 36.1 ND Healthy
3 Mixed F / 2 38.9 112 18 12.9 / 7.8 / 4.2 32.8 5.3 Healthy
4 Mixed M / 5 38.7 124 16 13.5 /10.2/ 2.0 40.6 451 Healthy
5 Mixed M / 10 38.5 114 16 15.0/ 12.8/ 1.5 48.8 6.9 Healthy
6 Rottweiler F / 5 39.8 128 44 2.1 / 0.6 / 1.4 31.8 4 Survival
7 Cocker M / 3 38.3 200 44 2.5 / 1.0 / 1.3 39.1 4.7 Survival
8 Mixed F / 3 37.5 148 20 1.6 / 0.6 / 0.8 29.7 4.1 Survival
9 Anatolian sheepdog M / 5 39.8 120 44 0.3 / 0.1 / 0.1 34.2 3.7 Not-survival
10 Rottweiler M / 7 40.7 108 28 1.2 / 0.3 / 0.8 43.2 5.6 Not-survival
11 Cocker F / 8 37.0 108 32 0.3 / 0.0 / 0.2 37.5 3.3 Not-survival

M: male, F: female, ND: not determined, P: pulsation, R: respiration, Hct: Hematocrite, WBC: white blood cell count, N: Neutrophil count, L: Lymphocyte count.
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acetonitrile LC–MS grade (Thermo Scientific) and added to each
sample. Labelling reaction was incubated for 1 h at room temperature
and then quenched by adding 5% hydroxylamine (Thermo Scientific)
for 15min. Samples were then combined at equal amounts and 6 μg of
each mixed sample set was placed in a well of a microplate, vacuum-
dried and stored at - 20 °C before further LC–MS/MS analysis. The
LC−MS/MS analysis was performed on Dionex Ultimate 3000 RSLS
nano flow system (Dionex, Camberley, UK) and Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific) as described elsewhere [25].

2.4. Statistical analysis

In order to compare the abundances of peptides detected in pro-
teomic analysis between 2 groups in 3 comparisons (Control versus
Survival, Control versus Non-surviving and Survival versus Non-sur-
viving), data were normalized by logarithmic transformation and
Student’s t-test was used (one-tailed, unpaired) were performed. In all
cases, values of P < 0.05 were considered to be significant. Fold
changes (FC) have been calculated as follow FC= log2 (Group 1 /
Group 2). Statistics were performed with RStudio (v1.0.143) (R Studio
Team. RStudio [26] “RStudio Team. RStudio: Integrated Development
Environment for R [Internet]. Boston, MA: RStudio, Inc.; 2015. Avail-
able from: http://www.rstudio.com/,” 2015).

2.5. GO pathways

The data obtained in the proteomic study were used for the Gene
Ontology (GO) analysis. Canine genes encoding proteins differentially
expressed were converted to their human orthologs using the Ensembl
orthologs database and its BioMart tool for data mining (www.ensembl.
org). Obtained genes were used to determine the GO terms over-re-
presented in two conditions (Survival and Non-surviving), by the uti-
lization of the Cytoscape (v3.6.1) plug-in ClueGO (v2.5.0) [27,28] on
the Homo sapiens GO-biological process (22/01/2018). GO terms over-
represented for each group were submitted to analysis by REVIGO
(allowed similarity= 0.7, SimRel) to remove redundant GO terms and
groups related GO terms based on their functional description [29].
Finally, pathways interactomes were designed in Cytoscape using the
radial layout.

3. Results

3.1. High resolution quantitative proteomic analysis

High-resolution quantitative proteomic analysis allowed the iden-
tification of 1516 canine peptides from the eleven non-depleted canine
saliva samples. For the comparison Control versus Survival, 148 pep-
tides were differentially expressed, corresponding to 90 unique pro-
teins. For the comparison Control versus Non-surviving, 125 peptides
were differentially expressed, corresponding to 90 unique proteins. For
the comparison Survival versus Non-surviving, 14 peptides were dif-
ferentially expressed, corresponding to 10 unique proteins. Therefore a
total of 190 proteins were identified that differed between groups.

Of the 90 differentially expressed proteins between survival and
control groups, the proteins most down-regulated in the survival group
were cathelicidin antimicrobial peptide (CAMP), rho-GDP dissociation
inhibitor beta (ARHGDIB), apolipoprotein A-1 (APO-A1), neutrophil
elastase (ELANE), matrix metalloproteinase-9 (MMP9), EF-hand do-
main containing protein D2 (EFHD2), CD177 antigen (CD177), plastin-
2 (LCP1), retinol binding protein 4 (RBP4), and maltase-glucoamylase
intestinal (MGAM). Epididymal – specific lipocalin-9 (LCN9), BPI fold-
containing family B member 2 (BPIFB2), lymphocyte antigen 6D
(LY6D), desmoglein (-1 and -3, DSG1 and DSG3, respectively), alpha-2-
macrogloulin-like protein 1 (A2ML1), democollin-2 (DSC2), leucine-
rich-alpa-2-glycoprotein (LRG1), polymeric immunoglobulin receptor
(PIGR), and L-amino acid oxidase (IL4I1) were the proteins most up-

regulated in the survival group. Of these, CAMP and ARHGDIB were the
proteins most down-regulated (-2.29 and -2.26-fold lower expression,
respectively), while LCN9 and BPIFB2 were the most up-regulated (2.28
and 1.62-fold higher) in the survival group compared to the control
group.

When non-surviving and control groups were compared, 90 proteins
showed differences in abundance. The proteins most down-regulated
were ARHGDIB, CAMP, APOA1, hemoglobin subunit beta (HBB), RBP4,
CD177, MMP9, vitamin D binding protein (GC) and ELANE. On the
other hand, immunoglobulin heavy chain (IGH), LCN9, clusterin (CLU),
trefoil factor 1 (TFF1), LY6D, olfactomedin 4 (OLFM4), LRG1, glyox-
alase I (GLO1), BPIFB2, and DSG3 were the proteins most up-regulated.

Finally, when the two groups of dogs with parvovirosis were com-
pared, 10 proteins showed different abundances. Ezrin, allergen Dog 1,
lactoperoxidase, L-lactate dehydrogenase A, cystatin-M and macro-
phage-capping protein were higher in survival group, whereas alpha-
actinin-1, peptidyl-prolyl cis-trans isomerase A, ribosyldihy-
dronicotinamide dehydrogenase and lactoylglutathione lyase were up-
regulated in the dogs that died due to the disease.

3.2. Bioinformatics

The GO analysis performed using Cytoscape plug-in ClueGO iden-
tified 34 GO terms between survival and controls, which were filtered
for redundancies and then grouped into 12 main groups using REVIGO.
The functional groups included antimicrobial humoral response, entry
of bacterium into host cell, tissue homeostasis, heterotypic cell-cell
adhesion and endoplasmic reticulum mannose trimming (Fig. 1).

When comparing non-surviving and control groups, 42 GO terms
were identified, which were grouped into 11 main functional groups
including negative regulation of cellular response to growth factor sti-
mulus, antimicrobial humoral response, transition metal ion home-
ostasis, endoplasmic reticulum mannose trimming and glutathione de-
rivate biosynthesis (Fig. 2).

Comparison of survival versus non-surviving groups did not identify
enough proteins significantly expressed to generate a reliable GO ana-
lysis using only experimental results.

Finally, GO terms most represented in this study after being filtered
by REVIGO and depicted by Cytoscape are shown in Figs. 3–6. When
the network from control and survival group was analysed, a negative
regulation of wound healing (related with the down-regulation of fi-
brinogen FGA, FGB and FGG genes) and negative regulation of cellular
response to growth factor stimulus (related to the up-regulation of the
ubiquitin complex composed by RPS27 A, UBC, UBB and UBA52 genes)
nodes demonstrated central roles in the development of the disease
since they are involved in many pathways.

The network obtained from comparison of non-surviving and con-
trol groups suggested that the over-expressed UBC gene (which ex-
presses ubiquitin C protein) appears to have a central role by affecting
or being affected by numerous pathways identified as related with non-
surviving group in parvovirosis. Interestingly, this ubiquitin C protein is
related only with GO terms over-expressed in non-surviving group. This
indicate that, in the present study, all cellular pathways which use
ubiquitin form a pertinent group, which is positively correlated with
the non-survival status. Similar to the previously mentioned network,
fibrinogen expression is down-regulated in saliva of dogs with parvo-
virosis.

When merging fold changes data and over-represented pathways in
both non-surviving and survival groups, the obtained network high-
lights that antimicrobial humoral response was shown as central term.
This node is the only one which is over-represented in both parvovirus
groups (survival and non-surviving) but with different expression when
compared to controls: it was lower-expressed in the non-surviving
group, but was not differentially expressed in survival group as com-
pared to controls. Antibacterial humoral response, negative regulation
of response to external stimulus, and killing of cells of other organisms
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are the three down-regulated nodes which are directly linked with
antimicrobial humoral response. The network also showed 14 proteins
surrounding this central node, 9 of which were down-regulated
(ELANE, kininogen 1 [KNG-1], FGA, FGB, S100 calcium binding protein

A8 [S100A8], S100 calcium binding protein A12 [S100A12], CAMP,
lysozyme [LYZ] and HRG), and 5 up-regulated (beta-2 microglobulin
[B2M], deleted in malignant brain tumours 1 [DMBT1], BPI fold-con-
taining family B member 1 [BPIFB1], BPIFB2, and CLU) when

Fig. 1. Over-represented GO terms in dogs that survived canine parvovirosis, grouped by REVIGO, based on their description. Leading GO terms (N=12) for each
group was defined as the highest significance inside the group.

Fig. 2. Over-represented GO terms in dogs that dead due to canine parvovirosis, grouped by REVIGO, based on their description. Leading GO terms (N=12) for each
group was defined as the highest significance inside the group.
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compared to controls.

4. Discussion

This paper was focused in the identification of the differentially
expressed proteins in saliva and in describing the biological roles which
may be affected due to PVE. The present study identified for the first
time 190 differentially expressed proteins in saliva from healthy dogs
and dogs with severe parvovirosis using TMT technology, 10 of which
were differentially expressed between animals that survived and perish
due to the disease. These differences in proteins indicate that saliva can
reflect several physiological pathways in canine parvovirosis.

Overall changes in protein expression in saliva from dogs with
parvovirosis obtained in this study by high-resolution quantitative
proteomic analysis suggested alterations in coagulation and in-
flammation systems, which are closely related pathways since the ac-
tivation of one mechanism may lead to the activation of the other [30].
Coagulation products such as thrombin can promote inflammatory re-
sponses, while inflammation is known to suppresses anticoagulation
mechanisms [31]. The immune system provides protection against in-
fection; however, its activation needs to be tightly regulated in order to
prevent excessive inflammation and subsequent damage to the host
[32].

From all the proteins that change in saliva of dogs with parvovirosis,
two that are most down-regulated and the two proteins that increased
the most in the canine patients are worthy of specific mention. The two
most down-regulated proteins in the dogs with parvovirosis that sur-
vived, cathelicidin antimicrobial peptide (CAMP) and Rho-GDP dis-
sociation inhibitor beta (ARHGDIB), have protective role against in-
fections and are involved in the inflammatory response. Cathelicidins
are a group of short cationic antimicrobial peptides with an important
role in the protection against infections [33–35]. The main source of
CAMPs are the specific granules of neutrophils, which are released upon
neutrophil activation [36,37], although they can be produced by other
cells such as epithelial cells at mucosal surfaces [38]. CAMPs are known

to regulate the activation of a wide variety of toll-like receptors, which
plays important roles in the modulation of the inflammatory response
during infections [39,40]. In addition, antimicrobial activity has been
described in CAMPs, and the loss of cathelidicin expression has been
reported to increase the susceptibility to Escherichia coli infection in
mice [33,34]. Rho-GDP dissociation inhibitor beta (ARHGDIB) is pri-
marily expressed in cells of a hematopoietic lineage and belongs to the
RhoGDI family, which are known to regulate Rho-GTPases [41].
ARHGDIB showed an ability to decrease human immunodeficiency
virus type 1 (HIV-1) replication in cell lines and can be used as a bio-
marker of HIV-1 infection [42]. ARHGDIB expression has been also
proposed as suppressor of metastasis and predictor of prognosis in
human patients with bladder cancer, in which ARHGDIB positive tu-
mours are related with longer disease-free and disease-specific survival
rates [43].

On the other hand, the two most up-regulated proteins in dogs with
parvovirosis that survived, were lipocalin-9 (LCN9) and BPI fold-con-
taining family B member 2 (BPiFB2). Lipocalins are a family of proteins
that usually carry lipids or other hydrophobic or amphiphilic com-
pounds accommodated in a cavity within their conformation, including
steroids, hormones and metabolites such as vitamins and cofactors
[44]. Furthermore, lipocalins have been reported to be modulators of
cell growth and metabolism, and regulators of the immune response
[45,46]. Although little is known about LCN9, a related protein, neu-
trophil gelatinase-associated lipocalin, NGAL, has been associated with
bacterial infection in humans [47–49]. BPiFB2 belongs to a family of
proteins considered as a key component of the innate immune response
against Gram-negative bacteria [50], but the physiological functions of
the BPIFB family still remain largely unknown [51]. Despite this, a
previous study on BPIFB2 has reported the involvement of BPIFB pro-
teins regulating enterovirus infection, with BPIFB6 assisting the en-
terovirus replication by controlling secretory pathway trafficking and
Golgi complex morphology [51].

In addition to these 4 proteins, 86 other proteins were significantly
differentially expressed in saliva of parvovirus infected dogs compared

Fig. 3. Over-represented GO terms generated by the comparison of dogs that survived and dogs that died due to parvovirosis, grouped by REVIGO, based on their
description. Leading GO term (N=9) for each group was defined as the highest significance inside the group.
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Fig. 4. In silico inferred interactome network of identified GO terms over-represented in canine parvovirosis (survival versus control groups). Differentially expressed
proteins interacting with at least 1 term were added. Radial layout was applied and the GO group leader terms are in dark blue text. Nodes colours represent the
group of GO terms (determined by ReviGO) and border are represented in green and red for over-expressed and lower-expressed proteins, respectively, when
compared to control group.
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to healthy dogs. By analysing the over-represented cellular pathways
defined by those proteins by gene ontology analyses, it could be ob-
served that they are involved in other physiopathological pathways
such as catalytic activity, binding, transporter activity, antioxidant ac-
tivity, structural molecule activity, receptor activity and translation
regulator activity. Since more than 85% of the genes differentially ex-
pressed belong to the proteins related with catalytic activity and
binding, the discussion will focus on these and related proteins.

In regard to the proteins related to catalytic activity, some were
down-regulated, including, apolipoprotein A-1 (APO-A1), neutrophil
esterase (ELANE), complement C3 (C3) and histidine-rich glycoprotein
(HRG). APO-A1 is the major protein component of high density lipo-
proteins in human and other mammals [52] and the decreased levels
APO-A1 observed in the present study are in concordance with other
responses described in different canine diseases such as leishmaniosis
[53] or canine idiopathic dilated cardiomyopathy [25], suggesting that
APO-A1 could be a feasible biomarker in dogs. Lower expression of
neutrophil esterase was observed in both groups of dogs with PVE when
compared to control group. Neutrophil esterase is a serine proteinase
with important antimicrobial effects that are released by neutrophils
and enhances inflammatory responses. Genetic mutations in its gene
(ELANE) has been identified in forms of hereditary neutropenia in
humans and dogs [54]. There is a case reported of a mutation in ELANE
gene as the cause of chronic parvovirosis in a woman [55]. The acti-
vation of complement C3 supports local inflammatory responses against
pathogens and initiates the humoral immune response, playing a cen-
tral role in the activation of the complement system [56]. Increased C3

expression has also been reported in dogs with canine babesiosis [57].
In our study, different hypotheses could explain the down-regulation of
complement C3 in saliva of dog with PVE such as a reduction due to
cleavage of the protein in order to activate complement cascade, or as a
consequence of an immunodeficiency [58]. Histidine-rich glycoprotein
is a relatively abundant plasma protein with a wide range of targets and
functions, such as regulating clotting and fibrinolysis, and angiogenesis
[59,60]. HRG roles in anti-inflammatory effects and pathogen control
have been proposed since, after experimental Streptococcus pyogenes
infection, HRG-deficient mice showed higher bacterial burden and pro-
inflammatory cytokines than wild-type mice [61].

Thirty-four of the proteins differentially expressed in saliva between
controls and dogs with parvovirosis have binding activity, including
many of the proteins described above such as APO-A1, A2M, C3 and
LCN9. Other important proteins differentially expressed in saliva be-
tween healthy and dogs with parvovirus with binding activity are
desmoglein-1 and -3 (DSG1 and DSG3, with 1.39 and 1.43- fold higher
in dogs with parvovirus, respectively), and clusterins (CLU, 0.71-fold
higher). Desmogleins are a family of calcium-binding transmembrane
glycoproteins which play an important role in the desmosomes trans-
membrane component [62]. In humans, salivary levels of DSG1 and
DSG3 are correlated with serum anti DSG titres, proposing salivary DSG
as suitable markers of diagnosis of Pemphigus vulgaris [63]. Clusterins
are secretory glycoproteins that are involved in multiple physiopatho-
logical processes, including lipid metabolism, tissue remodelling, re-
production, transport and cell apoptosis [64]. These proteins have been
classically considered as markers of cell death [65]; however, protective

Fig. 5. In silico inferred interactome network of identified GO terms over-represented in canine parvovirosis (dead versus control groups). Differentially expressed
proteins interacting with at least 1 term were added. Radial layout was applied and the GO group leader terms are in dark blue text. Nodes colours represent the
group of GO terms (determined by ReviGO) and border are represented in green and red for over-expressed and lower-expressed proteins, respectively, when
compared to control group.
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roles such as anti-apoptotic or prevention of complement attacking
complex functions of clusterins have been suggested [66,67].

The bioinformatics analysis of the in silico inferred proteins network
allowed the generation of more information from the experimental
results, including data on intracellular pathways. This revealed the
impact on processes such as an inhibition of humoral and cellular re-
sponses, and a positive effect in the entry of bacterium into host cell.
These results are in concordance with the pathogenicity of PVE in
which, after the ingestion, the virus replicates in the lymphoid tissue in
the dog’s throat and then spreads to the bloodstream infecting rapidly
dividing cells, resulting in depletion of lymphocytes in lymph nodes and
necrosis of the intestinal crypts [68]. These mucosal intestinal lesions
may give rise to secondary bacterial invasions from the intestines,
leading to systemic inflammatory response syndrome (SIRS), sepsis and
endotoxemia [69–72].

Bioinformatics allowed several pathways and proteins to be high-
lighted which could be useful in the diagnosis of PVE with saliva
samples. For example, the network created by comparison of survival
and control groups revealed that fibrinogen and ubiquitin complexes
could play important roles in the development of the disease. The
down-regulation of fibrinogen observed in the present study is in con-
trast with other reports that showed increased levels of fibrinogen in
dogs with parvovirosis [73], leishmaniosis [74] or babesiosis [75]; al-
though dogs with uncomplicated babesiosis showed higher levels of
fibrinogen that those with SIRS or multiple organ dysfunction syndrome
(MODS) [75]. This could be explained by the fact that, although fi-
brinogen is considered as a positive acute phase protein in dogs, in
disseminated intravascular coagulation (DIC) and hyperfibrinolysis the

concentration of fibrinogen falls due to fibrinogen cleavage to form
soluble fibrin monomers [76,77]. Progressive decrease of fibrinogen
levels was also reported in dogs during acute haemorrhage [78], as
occurs in parvovirosis. On the other hand, ubiquitins have been shown
to be involved in numerous intracellular processes such as cell cycle
control, apoptosis, DNA repair, regulation of transcription, stress re-
sponses, and targeting cellular proteins for degradation by the 26S
proteasome [79]. As described in previous reports, viruses often make
use of the ubiquitin conjugation to target for degradation of cellular
proteins that might otherwise affect the replication of the virus [80].

One of the limitations of the present study may be the sample size,
which could have limited the potential to identify proteins that are
reproducibly modulated in concentration in dogs with PVE due to the
biological inter-individual variations. Therefore this could be con-
sidered as a pilot study, and further validation studies with a larger
number of dogs should be made to confirm these findings. The changes
in protein expression and the subsequent bioinformatics analysis de-
scribed in the present study were based on the analysis of saliva and,
therefore, further studies are desirable to discern if they reflect systemic
alterations. Nevertheless, despite these limitations, our results indicate
that PVE can produce changes in saliva proteome that can reflect an
inflammatory response and changes in coagulation system and immune
response – among other biological processes.

This paper was focused on the identification of the differentially
expressed proteins in saliva and in the description of the biological roles
of the proteins affected due to the disease. Further large-scale clinical
studies with larger populations would be desirable to elucidate if the
proteins identified in this report can be of help in the earlier detection,

Fig. 6. In silico inferred interactome network of identified GO terms over-represented in canine parvovirosis (survival and dead versus control groups). Differentially
expressed proteins interacting with at least 1 term were added. Radial layout was applied. Nodes fill colour figure protein and GO terms regulation (red for negatively
and green for positively regulated proteins) and node border represent the presence of the term in dead only (black), survival only (white) or in both groups (grey).
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predicting the outcome, or giving information to the clinician to adjust
the treatment. If these studies are successful, these proteins can be used
for developing rapid diagnostic tests such as lateral flow kits in saliva
for clinical practice.

5. Conclusions

TMT-based proteomic analysis allowed the identification of 190
proteins with different abundances between healthy dogs and dogs with
PVE, most of them not previously reported in canine parvovirosis.
These proteins are involved in various physiopathological processes
such as coagulation, inflammation and defence mechanisms, and could
be considered as potentially suitable biomarkers of the disease. This
study demonstrated that saliva proteome is a suitable biofluid for both
study and diagnostic of canine parvovirosis.
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