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The rational development of new diagnostic or prognostic tum
markers and the identification of novel cellular targets for a
cancer chemotherapy relies on a more definitive understan
of tumour biology. Classical approaches using cellular phar
cology, and more recently molecular pharmacology, have le
the discovery of a number of growth factors and their recepto
well as other proteins which has resulted in novel therapies 
inhibitors of epidermal growth factor receptor tyrosine kinase) 
prognostic markers (e.g. oestrogen receptor levels in b
cancer) (Levitzki et al, 1995; Dowsett et al, 1997). Using class
metaphase cytogenetic techniques, many chromosomal ab
tions have been identified in human cancer cell lines and prim
culture of haematological malignancies. This chromosomal in
mation has facilitated identification of a number of impo
tant genes associated with tumorigenesis (e.g. loss
chromosomal material on 13q led to identification of tum
suppressor gene RB1; Vogel, 1979). However, the use
metaphase cytogenetic analysis has been limited in solid tum
mainly due to the difficulties in growing primary cultures in whi
to generate tumour metaphase chromosomes. However,
changed with the development of comparative genomic hybrid
tion (CGH) and its ability to globally assess the genome of s
tumours for areas of loss and/or gain without the need for ti
culture (Kallioniemi et al, 1992; Forozan et al, 1997; Ried e
1997). CGH involves a competitive in situ hybridization 
fluorescently labelled tumour DNA and healthy control DNA
normal metaphase chromosomes (Figure 1). Computer-ass
fluorescence microscopy is then used to assess the intens
fluorochrome across each human chromosome. The differenc
tumour and control fluorescence intensity along each chromos
on the reference metaphase spread are a reflection of the
number changes of corresponding sequences in the tumour 
If chromosomes or chromosomal subregions are present in 
tical copy number within both the tumour and the normal DNA
equal contribution from each fluorochrome is seen. Howeve
change in the fluorescent signal is seen if certain chromos
subregions are gained or lost in the tumour DNA (Figure 1). 
intensity of this signal is proportional to the amount of gain 
loss seen for each region in the tumour DNA (Kallioniemi et
some
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1992; Forozan et al, 1997). Regions with a high leve
heterochromatin and centromeric regions are not informative
CGH. CGH data for the p regions of acrocentric chromoso
(e.g. 13p, 14p and 15p) must be interpreted with cautio
repetitive sequences in these regions can affect the efficien
competitive hybridization. With current technology, CGH ha
theoretical limit of detection for gain and loss of genetic mate
of 5–10 Mb. However, gain of DNA in regions as small as 50
have been described in situations where high level amplifica
has occurred (Ried et al, 1997).

Initial studies with CGH were restricted to DNA prepared fr
fresh or snap-frozen tumour material. More recently, techn
advances have allowed the extraction of DNA from forma
fixed paraffin-embedded sections through the use of degen
oligonucleotide primed polymerase chain reaction (DOP-P
(Isola et al, 1994; Kuukasjarvi et al, 1997). The DOP-P
technique allows genome-wide amplification of tumour D
from nanogram quantities to the micrograms needed for C
and has enabled retrospective analysis of genomic loss and
to be performed using DNA from archival material.

Although CGH analysis has been performed in a wide varie
adult and paediatric tumours, these results have not been 
sively interpreted in the context of the CGH findings from ot
tumour types. In this review, the results of CGH analysis
27 tumour types are evaluated to identify regions of loss or 
which are common to all malignancies as well as those w
are specific for a given tumour type or tumour subtype
addition, the degree of overall genomic instability for spec
tumour types has been assessed.

REVIEW OF THE LITERATURE

The Institute for Scientific Information (ISI) database from Ma
1992 to August 1998 identified 100 papers which described C
findings in 2210 solid tumours of 27 cancer types (Append
This included common tumours (colon, breast, lung), gen
specific tumours (ovarian, cervix, testicular, prostate), paedi
tumours (neuroblastoma, rhabdomyosarcoma) and less com
tumours (brain, renal, uveal melanoma). For each paper
patterns of loss and gain in the p and q arms of each chromo
were recorded separately. Such an approach may not alwa
sufficient, as variation in subregions of the same chromos
arm could be masked in some cases. However, a nar
definition for regions of gain and/or loss was not possible du
differences in the way CGH results have been presented i
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Figure 1 A typical CGH experiment. Fluorescently labelled tumour DNA and reference DNA are competitively hybridized to donor human chromosomes.
Using fluorescent microscopy the level of signal from the fluorescent DNA is assessed for each chromosome. For each chromosome a profile of the level of
fluorescence is generated on CGH interpreting software. In most cases at least 10 chromosomes are assessed and an average of the fluorescence is
generated. This allows regions of loss and gain that are consistently changed to be detected for a particular tumour sample
literature. Studies of CGH in patients with leukaemia, lympho
or studies with incomplete details of results for individual chro
somes were not included in this review. Cell line data were
included due to the difficulty in differentiating between init
chromosomal aberrations and those ‘acquired’ during cell cul
The frequency of overall loss or gain for each chromosome
was determined by pooling the data from all tumours, from a g
tumour type and from specific tumour subtypes.
© Cancer Research Campaign 1999
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PATTERNS OF CHROMOSOMAL LOSS AND GAIN

Solid tumours

The frequency of loss or gain for each chromosome arm 
determined for all the solid tumours by pooling the data foun
the literature for 2210 tumours (Table 1). Gain of chromoso
material was found more frequently than loss among the 
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 1 Loss and gain for each chromosomal arm when available CGH data from 2210 tumours (including 27 different solid tumour
types) were pooled

Chromosomal region Total tumour Gain (%) Chromosomal region Total tumour Loss (%)
n = 2210 n = 2210

8q + gains 616 27.7 13q – losses 363 16.3
1q + gains 558 25.1 9p – losses 357 16.1
7q + gains 513 23.1 8p – losses 333 15
7p + gains 477 21.5 10q – losses 304 13.7
17q + gains 412 18.5 3p – losses 297 13.4
3q + gains 365 16.4 4q – losses 297 13.4
20q + gains 344 15.5 6q – losses 296 13.3
5p + gains 292 13.2 17p – losses 260 11.7
12q + gains 290 13.1 18q – losses 245 11
12p + gains 277 12.5 1p – losses 226 10.2
11q + gains 252 11.3 11q – losses 218 9.8
6p + gains 246 11.1 5q – losses 206 9.1
20p + gains 223 10 10p – losses 202 9.1
19q + gains 223 10 16q – losses 196 8.8
2p + gains 214 9.6 4p – losses 188 8.5
13q + gains 205 9.2 22q – losses 184 8.3
19p + gains 203 9.1 14q – losses 183 8.2
1p + gains 201 9 9q – losses 170 7.7
14q + gains 201 9 11p – losses 167 7.5
2q + gains 198 8.9 15q – losses 161 7.2
17p + gains 179 8.1 2q – losses 153 6.8
16p + gains 176 7.9 Xp – losses 152 6.8
8p + gains 175 7.9 Xq – losses 126 5.7
15q + gains 174 7.8 21q – losses 122 5.5
5q + gains 168 7.6 Y – losses 122 5.5
6q + gains 164 7.4 18p – losses 119 5.4
9q + gains 156 7 19p – losses 112 5
18p + gains 153 6.9 17q – losses 105 4.7
16q + gains 140 6.3 3q – losses 102 4.6
18q + gains 136 6.1 12q – losses 98 4.4
22q + gains 133 6 19q – losses 96 4.3
10p + gains 131 5.9 1q – losses 89 4
Xq + gains 129 5.8 6p – losses 84 3.8
4q + gains 118 5.3 16p – losses 83 3.7
10q + gains 117 5.3 5p – losses 83 3.7
9p + gains 116 5.2 2p – losses 82 3.7
Xp + gains 115 4.7 8q – losses 64 2.9
3p + gains 104 4.7 7q – losses 56 2.5
21q + gains 101 4.5 20q – losses 53 2.4
11p + gains 97 4.4 20p – losses 53 2.4
4p + gains 95 4.3 12p – losses 52 2.3
Y + gains 55 2.5 7p – losses 50 2.3
14p + gains 24 1.1 22p – losses 36 1.6
21p + gains 22 1 15p – losses 21 0.9
13p + gains 17 0.8 14p – losses 10 0.5
15p + gains 9 0.4 13p – losses 9 0.4
22p + gains 6 0.3 21p – losses 3 0.1

Total gains 9320/2210 4.2 per tumour Total losses 6988/2210 3.1 per tumour
tumours (mean 4.2 gain per tumour vs 3.1 loss per tumour). A
able pattern of chromosomal gain was observed, with the hig
frequency of gain found in 8q (27.7%) and 1q (25.1%) (Table
This contrasts with chromosome 22p (0.3%) and 15p (0.
where gain of chromosomal material was rarely observed (T
1). The most common regions of chromosomal loss were foun
13q (16.3% of all tumours), 9p (16.1%) and 8p (15.0%) (Table
Loss of chromosomal material was rarely seen on chromos
21p (0.1%), 13p (0.4%) and 14p (0.5%). From Figure 2 it ca
seen that levels of loss and gain are not uniform across all chr
somal regions. Certain chromosomal regions, such as 8q
often gained (27.7%) but rarely lost (2.9%). Similarly, loss
British Journal of Cancer (1999) 80(5/6), 862–873
ri-
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chromosome 4q was more common (13.4%) than gain (5
This pattern was not seen for all chromosomes, with los
13q (16.3%) only 1.8 times more common than gain (9.2
Patterns of nearly equal frequency of loss and gain were
observed for chromosomes 14q (9% gain vs 8.2% loss)
15q (7.8% gain vs 7.2% loss). However, this does not take
account the specific region of a chromosomal arm to which
genetic loss or gene amplification in solid tumours is map
It also does not account for tumour-specific patterns of chro
somal gain and loss (Table 2), where the same chromosomal 
rarely lost and gained to an equal extent for a particular tu
type.
© Cancer Research Campaign 1999
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Figure 2 The overall number of gains and losses detected in 2210 solid tumours from 27 different tumour types
Specific tumour types

The frequency of chromosomal loss and gain varied betwee
individual tumour types, ranging from multiple regions per tum
(average gains: head and neck 12.2 per tumour, testicular 8
tumour; loss: liver 7.5 per tumour, prostate 4.5 per tumou
relatively rare events (average gains: neuroblastoma 0.5
tumour, Wilms’ 1.6 per tumour; loss: sarcoma 0.8 per tum
Wilms’ 1.3 per tumour (Table 3). The specific chromoso
regions of loss and gain differ substantially between spe
tumour types. For example, gain in chromosome 12p occurr
96.3% of testicular cancers and 0% of renal cancers (Tab
New information on chromosomal loss or gain (Table 1) ca
further specified amongst the various tumour types. For exam
gain in chromosome 8q occurred in 27.7% of all tumours ev
ated. However, on closer examination, frequency of 8q gain
high in tumours of the testis (40.7%), ovary (42.8%) 
endometrium (45.5%), but was rarely found in renal tumo
(1.3%) and neuroblastoma (3.0%). There is no chromosoma
which demonstrated a consistent pattern of gain for all tum
types. Similar findings were demonstrated for chromosomal 
For instance, 9p was lost in 16.1% of all tumours, but varied 
a high frequency event (cutaneous melanoma 58.2%, pan
50.1%, brain 36.3%) to low (colon 7.5%, gastric cancer 
depending on the tumour type (Table 2).

Specific tumour subtypes

For several tumours, CGH analysis was available for mul
histological subtypes (Table 4). This allowed assessment of
the frequency at which loss and gain occurred and the exte
which each specific chromosomal arm is involved for e
subtype.
© Cancer Research Campaign 1999
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Colon

Information on genomic alterations in colon cancer was avail
for low- and high-grade adenoma, primary carcinomas, 
metastases, and also carcinomas for which replication error r
status was known (Table 4). Ried et al (1995) found the frequ
and degree of genetic aberrations increases with progression
low-grade adenoma through high-grade adenoma to carcin
(Table 4). For example, gain in chromosome 7p was 7.1%
low-grade adenoma, 33.3% in high-grade adenoma and 
in carcinoma. Similarly, gain in chromosome 20q was not dete
in low-grade adenoma, but was at 33.3% and 75% in high-g
adenoma and carcinoma respectively. The frequency of altera
also increased with tumour progression: 3/47 chromosomal 
in low-grade adenoma, 21/47 high-grade adenoma, 32/47 c
nomas. A separate study by Paredes-Zaglul et al (1998) comp
primary carcinomas and liver metastases from patients 
colorectal cancer found that the frequency of alteration rema
constant at ~ 35/47 chromosomal arms between these two s
However, a change was noted in the extent to which these 
were involved. The most obvious change being the increase in
of genetic material between primary tumour and liver metasta
For example, loss at 8p was 30% in primary carcinomas comp
with 80% in metastases. Similarly, loss of 18q was found in 5
of primary cases, but 90% of liver metastases. Changes in ga
not always follow the same pattern seen for loss. An increa
genetic instability was seen for some chromosomal regions i
transition from primary to metastases (e.g. 13q was gained in
of primary tumours compared with 50% in metastases). How
this was not the case for other regions, such as 12q, which
gained in 20% of primary carcinomas, but was normal in l
metastases. A difference in genetic instability was also 
between tumours with intact mismatch repair genes compar
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 3 The number of altered chromosomal arms observed among the different tumour types

Cancer type Gains/tumour Losses/tumour Total instability
(loss + gain) per tumour

Gastric carcinoma 365\68 5.4 128\68 1.9 7.3
Gastrointestinal stromal 52\32 1.6 71\32 2.2 3.8
Head and neck 588\47 12.5 245\47 5.2 17.7
Pancreatic 231\51 4.5 188\51 3.7 8.2
Colorectal 204\80 2.6 190\80 2.4 5
Prostate 312\100 3.1 447\100 4.5 7.6
Testicular 337\41 8.2 171\41 4.2 12.4
Breast 752\187 4 549\187 2.9 6.9
Ovarian 1136\203 5.6 499\203 2.5 8.1
Endometrial 186\33 5.6 50\33 1.5 7.1
Cervical 163\30 5.4 124\30 4.1 9.5
Cutaneous melanoma 203\67 3 227\67 3.4 6.4
Merkel cell carcinoma 23\3 8 13\3 4.3 12.3
Uveal melanoma 23\11 2.1 27\11 2.5 4.6
Renal 346\151 2.3 530\151 3.5 5.8
Bladder 222\96 2.3 278\96 2.9 5.2
Wilms’ 89\54 1.6 71\54 1.3 2.9
Connective tissue sarcoma 530\193 2.7 154\193 0.8 3.5
Rhabdomyosarcoma 158\24 6.6 61\24 2.5 9.1
Lung 845\142 6 599\142 4.2 10.2
Liver 201\43 4.7 322\43 7.5 12.2
Neuroblastoma 56\118 0.5 439\118 3.7 4.2
Brain 1152\325 3.5 1076\325 3.3 6.8
Gastro-oesophageal 100\15 6.7 50\15 3.3 10
Parathyroid 38\53 7.2 121\53 2.3 9.5
Pituitary 92\23 4 22\53 4.2 8.2
Neuroendocrine* 162\20 8.1 57\20 2.9 11

*Sporadic neuroendocrine tumours of the digestive system.
those with deficient repair ability (Table 4). As expected, 
tumours lacking repair function had a higher frequency of in
bility. For example, gain of 7p and 7q was seen in 33% of tum
with non-functioning repair genes, while these aberrations 
absent in tumours with intact DNA repair phenotype. Althoug
relationship between genomic instability and both tumour prog
sion and repair deficiency had been previously suggested, 
has provided strong data to support this hypothesis in tu
specimens.

Ovary
Several studies have been published assessing the genom
ovarian cancer cases. The available data were split into ov
cancers derived from the epithelia and those derived from 
cells. Cancers of the epithelia were then further subdivided
sporadic and hereditary cases. The hereditary cases were d
as such based on BRCA1 and BRCA2 status. It is appreciate
some papers did not assess their cases for BRCA1 and BR
and that a small percentage of the sporadic cases may have 
BRCA genes. Overall, however, this division of ovarian tumo
has yielded some useful observations. Firstly, it was found tha
frequency of genetic aberrations was greatest in the sporadic
at 41/47 chromosomal arms, compared with 33/47 in hered
cases and 30/47 in the germ cell tumours. The greatest le
concordance was at 1q and 8q where gains occurred at ap
mately 30% and 50%, respectively, in all three tumour types. 
hereditary and sporadic cases had a high degree of gain 
(40.6% in sporadic and 50% in inherited cases). This is in con
to the same region being gained in only 5.3% of germ 
© Cancer Research Campaign 1999
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tumours. However, all three tumour subtypes are likely to h
some common genetic origin based on the observation that re
such as 1q and 8q are gained to an equal extent in all ov
cancer types so far studied by CGH.

Prostate
The data on prostate cancer allowed comparison of CGH resu
patient cohorts with primary resected carcinomas or tumours
recurred after hormone therapy. It has been speculated that f
genetic damage allows a subclone of tumour cells to acquire 
tance to chemotherapy and such studies can test this hypo
Very little change in the frequency of genetic aberration betw
primary carcinoma and recurrent carcinoma was seen (39/
primary vs 42/47 in recurrent). However, differences were see
the degree of genetic aberration when specific chromos
regions were considered. For example, gain in chromosom
was seen in 25.9% primary carcinomas compared with 73.9
recurrent cases. Similarly, 19p was lost in 3.7% of prim
tumours and 34.8% in recurrent cases. Gain in the re
containing the androgen receptor gene, Xp, increased from 
in primary tumour to 28.3% in patients with recurrent dise
This is consistent with androgen receptor gene amplification
mechanism of resistance to hormone therapy. However, this
not always the case with some regions of the genome only sli
changed in the degree of the aberration between primary
recurrent. For example, 3p was lost in 1.9% of primary tum
and 4.3% in recurrent cases. Generally, the data suppor
hypothesis that increased tumour aggression is the phenotyp
more unstable genome.
British Journal of Cancer (1999) 80(5/6), 862–873
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Table 4 Patterns of loss(2) and gain in specific tumour subtypes shown as the percentage of tumours with involvement for selected
chromosomes

Tumour type Colon†

lga Hga Carcinoma Min– Min+ Primary Metastases
CR n=14 n=12 n=16 n=6 n=12 n=10 n=10

7p 7.1 33.3 50 0 33.3 10 10
7q 0 25 31.3 0 33.3 30 30
8p 0 0 0 0 0 10&–30 10&–80
12q 0 8.3 6.3 0 0 20 0
13q 0 8.3 50 –16.7 41.7 30&–10 50
18q 0 –16.7 –37.5 0 –25 –50 –90
20q 0 33.3 75 0 25 50 40
Involved arms 3\47 21\47 32\47 3\47 22\47 34\47 35\47

Tumour type Ovary
Sporadic* Inherited OGCT

CR n=148 n=20 n=19
1q 34.8&–0.7 30 31.6
2q 18.1&–1.4 50&–5 0
3q 40.6 50 5.3&–5.3
8q 52.9&–0.7 55 42.1
21q 5.8&–7.2 0 47.4
Involved arms 41\47 33\47 30\47

Tumour type Prostate
Primary Recurrent

CR n=54 n=46
3p –1.9 4.3&–4.3
7p 3.7 34.8&–2.2
7q 13&–1.9 34.8&–2.2
8p –46.5 8.7&–60.9
8q 25.9 73.9
19p 7.4&–3.7 –34.8
Xp 7.4&–1.9 28.3&–8.7
Xq 14.8 15.2&–6.5
Involved arms 39\47 42\47

Tumour type Sarcoma
Osteosarcoma RMS-E RMS-A Liposarcoma ASPS Ewing’s

CR n=14 n=10 n=14 n=14 n=13 n=20
2p 0 50 50 0 0 5
6p 28.6 0 7.1 0 0 10
2q 7.1 60 –14.3 14.3 0 5
13q 14.3 60&–10 35.7&–7.1 7.1&–21.4 0 5
16q 0 2&–30 7.1&–7.1 7.1 –7.7 5&–5
Involved arms 19\47 38\47 35\47 38\47 14\47 28\47

In several tumour subtypes both loss and gain were observed on the same chromosomal arm. Variation in the number of chromosomal
arms involved in genetic instability was also observed between subtypes. *Contains tumours which were not evaluated for BRCA1 and
BRCA2 status. † represents data from three separate studies evaluating tumour progression, microsatellite instability and metastasis
respectively. CR = chromosomal region; Iga = low-grade adenoma; Hga = high-grade adenoma; OGCT = ovarian germ cell tumours;
MIN+ = without microsatellite instability; MIN– = with microsatellite instability; RMS-E = rhabdomyosarcoma embryonal; RMS-A =
rhabdomyosarcoma alveolar; ASPS = alveolar soft part sarcoma
Connective tissue tumours
CGH data were available for several tumour types (liposarc
alveolar soft part sarcoma, osteosarcoma, Ewing’s, rhabdomy
coma and osteochondroma). Unlike the other subtypes disc
(colon, ovary and prostate), tumours of the connective tissu
found in many different sites throughout the body. Considerin
frequency of genetic aberration, the widest range of vari
between subtypes among any tumour type in the literatu
observed in the sarcomas. At one end of the spectrum a stu
osteochondromas reports no genetic aberrations in 15 cases
benign tumour type (Larramendy et al, 1997). Such a pap
unique in the CGH literature as all other investigations report 
genomic change detectable by CGH. The alveolar soft part
British Journal of Cancer (1999) 80(5/6), 862–873
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osteosarcomas show low to moderate frequency of genetic a
tion at 14 and 19 out of 47 chromosomal arms respectively. W
the other subtypes showed moderate to high numbers of 
involved (range 28–38 of 47). Another unique observation in
CGH literature was seen in an osteosarcoma study where only
of genetic material was detected (Forus et al, 1995). Caution 
be exercised when interpreting such results as it is unlikely
this cancer is the exception where no loss of genetic mater
required for its development. More likely any loss, such as tha
of a tumour suppressor gene, is below detection by C
Rhabdomyosarcomas are further subdivided histologically 
alveolar and embryonal types. Generally, a higher degree of
and loss is seen in the embryonal rhabdomyosarcoma com
© Cancer Research Campaign 1999
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with alveolar rhabdomyosarcoma (Weber-Hall et al, 1996).
example, a sub-chromosomal region of 13q is gained in 60%
lost in 10% of embryoneal, while the same region is gaine
35.7% and lost in 7.1% of alveolar, rhabdomyosarcomas.
exception is 2p, which is lost in 50% of cases in both subty
Comparing both subtypes of rhabdomyosarcoma with o
sarcomas it is observed that a gain of 2q is not present in a
proportion in all sarcomas. In fact no change in 2q is detect
liposarcoma or alveolar soft part sarcoma and gain in Ew
sarcoma is detected in less than 10% of all cases. This patte
certain chromosomal region commonly occurring in a spe
subtype, but not in any other, continues for many chromos
regions, suggesting that sarcomas are very distinct in terms o
genetic origin, with each subtype having its own marker chro
somal aberrations. This may be due to the variation in tissue
in which these tumours arise. No single chromosomal aberr
was found to be present in a high proportion of all sarcomas.

PATTERNS OF GENOMIC IMBALANCE OR
INSTABILITY IN SOLID TUMOURS

The degree of genomic imbalance detectable by CGH d
significantly between the various solid tumours (Table 
Chromosomal gain varied from 0.5 to 12.5 chromosome arm
tumour with a median of 4.5, while loss varied from 0.8 to 
chromosomal arms per tumour with a median of 3.3. Total in
bility (chromosomal loss + chromosomal gain per numbe
tumours) was highest in head and neck tumours (17.7 lesion
tumour) and testicular (12.4 lesions per tumour) and lowe
Wilms’ (2.9 lesions per tumour) and sarcoma (3.5 lesions
tumour) tumours. These frequencies represent an overall val
each specific tumour type, as information on the chromos
alterations found within an individual tumour was not availabl
most literature reports of CGH in human solid tumours. Differe
in the degree of loss or gain was also observed between the v
solid tumours (Table 3). For example, chromosomal gain 
observed more frequently than loss in the sarcomas and en
trial tumours, while loss was more frequently observed for r
and liver tumours. It is unknown whether these patterns repr
coincidental changes from generalized genomic instability
suggest that some cancers are more likely to be influenced b
loss of tumour suppressor genes (genomic loss), while othe
more frequently influenced by oncogene over expression (gen
gain). In addition, several studies have identified an associ
between the acquisition of genetic aberrations and patient su
(Iwabuchi et al, 1995; Tanner et al, 1995). However, there
discrepancies in this association found in Table 3, and any co
tions between biological markers and patient survival need 
interpreted cautiously in the context of modern therapy.

COMPARISON WITH SOLID TUMOUR
KARYOTYPE ANALYSIS

Classical karyotyping of metaphase chromosomes has 
successfully performed for some solid tumours. A recent re
reported the frequencies and distribution of chromosomal im
ances detected in 3185 solid tumours from 11 tumour types 
chromosomal banding (Merkel et al, 1997). Overall, deletions 
more common than gains in this analysis. Our review has foun
opposite, with gains more commonly detected by CGH than lo
© Cancer Research Campaign 1999
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This difference may reflect the difficulties with using tumour ka
otyping to identify the chromosomal changes that have occurr
tumours with highly complex rearrangements and will be in
enced to some extent by amplified segments being hidden a
unidentified marker chromosomes. CGH should be more sens
for the detection of the presence of gains than losses and the
the discrepancies with the above study are likely to reflect tech
limitations of the two methods. By restricting analysis to comm
alterations (i.e. the gain or loss was detected in at least 15% 
tumours studied for that particular tumour type), the classical k
otyping studies described fewer regions of gain and loss than 
for every tumour type evaluated. CGH appeared to identify
same alterations described using the karyotyping approach 
the exception of balanced translocations which are not detec
by CGH), but also observed additional regions of loss or gain
example, only two regions of gain were detected in ovarian c
noma by traditional cytogenetic analysis compared with 26 reg
of gain seen by CGH. However, there have been too few stud
solid tumour cytogenetics using both CGH and chromos
banding for any firm conclusions regarding concordance betw
the two techniques. Nevertheless, the accumulating bod
evidence in the literature suggests that CGH is more sensitive
other current technologies available for global assessment o
and/or gain in solid tumour genomes.

CONCLUSION

From this review, it is apparent that no specific chromoso
imbalances are found in all cancers, with the most freque
identified regions of gain or loss occurring in 27.7% and 16.3%
tumours respectively. This reflects the heterogeneity in geno
alterations identified in different tumour types. In addition, mu
variation within tumour subtypes was observed.

The development of CGH has provided the technology to id
tify many new areas of genomic alteration which were not pr
ously recognized to be altered in tumorigenesis. This has 
expanded the number of areas of the genome for which 
detailed molecular study is required to give a clearer m
complete understanding of cancer biology.

Other areas where CGH could potentially make a signific
contribution include its application in tumour diagnosis, as a p
nostic tool, or for investigations into chemoresistance. The ab
to assess the entire genome in a single experiment makes this
nique potentially useful as an adjunct to routine histopathol
Several studies have established the feasibility of using CG
detect genomic regions involved in the acquisition of resistanc
human cancer cell lines and have detected novel regions o
genome not previously recognized to be involved in drug re
tance (du Manoir et al, 1997; Wasenius et al, 1997; Leyland-J
et al, 1998; Rooney et al, 1998). This provides the impetus to a
CGH to human tumour specimens in the context of modern 
therapy to assess its role in optimizing patient treatment.
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