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MicroRNAs (miRNAs) play a critical role in human diseases.
Determining the association betweenmiRNAs and disease con-
tributes to elucidating the pathogenesis of liver diseases and
seeking the effective treatment method. Despite great recent
advances in the field of the associations between miRNAs and
diseases, implementing association verification and recogni-
tion efficiently at scale presents serious challenges to biological
experimental approaches. Thus, computational methods for
predicting miRNA-disease association have become a research
hotspot. In this paper, we present a new computational
method, named distance-based sequence similarity for
miRNA-disease association prediction (DBMDA), that directly
learns a mapping from miRNA sequence to a Euclidean space.
The notable feature of our approach consists of inferring global
similarity from region distances that can be figured by chaos
game representation algorithm based on the miRNA se-
quences. In the 5-fold cross-validation experiment, the area
under the curve (AUC) obtained by DBMDA in predicting po-
tential miRNA-disease associations reached 0.9129. To assess
the effectiveness of DBMDA more effectively, we compared it
with different classifiers and former prediction models. Be-
sides, we constructed two case studies for prostate neoplasms
and colon neoplasms. Results show that 39 and 39 out of the
top 40 predicted miRNAs were confirmed by other databases,
respectively. BDMDA has made new attempts in sequence sim-
ilarity and achieved excellent results, while at the same time
providing a new perspective for predicting the relationship be-
tween diseases and miRNAs. The source code and datasets
explored in this work are available online from the University
of Chinese Academy of Sciences (http://220.171.34.3:81/).
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INTRODUCTION
MicroRNA (miRNA) is a short group of noncoding RNA (ncRNA)
constructed from about 22 nt that can combine designated messenger
RNA by base pairing and control the translation and stability.1 Since
the first miRNA was discovered by Victor Ambros in 1993, a large
number of found miRNAs accumulated at a high level during the
past 20 years from a far-ranging variety of species.2,3 The study found
that miRNA plays an important influence on biological processes,
such as cell development, proliferation, and apoptosis,4 and the regu-
602 Molecular Therapy: Nucleic Acids Vol. 19 March 2020 ª 2019 The
This is an open access article under the CC BY-NC-ND license (http
lation functions of miRNA are related to some particular gene expres-
sions in the post-transcriptional stage.5 Based on the above findings,
more and more miRNAs have been validated in connection with the
development of complex diseases in humans.6 For instance, miR-137
controlled the mitotic progression of lung cancer cells by targeting
Cdc42 and Cdk6.7 In von Brandenstein et al.’s8 study, miR-15a is a
potential biological marker for differentiating benign and malignant
renal tumors in biopsy and urine samples. The progression of head
and neck carcinomas could also be boosted by miR-211 through
combining transforming growth factor-b receptor 2 (TGF-bR2).9

However, the biological experimental conditions for verifying the
association between miRNA and disease are harsh and have time-
consuming and laborious disadvantages. Therefore, the computa-
tional algorithms for forecasting the potential miRNA-disease
associations have become a hot topic, and more studies attach impor-
tance to it. Correspondingly, computational methods can more
effectively assist biological experiments to validate disease-associated
miRNAs by predicting results.10

Over the years, an increasing number of studies constructed compu-
tational models for predicting miRNA-disease association.11–17 There
are two main types of computational models based on similarity and
based on machine learning. To be specific, methods based on similar-
ity figure the correlation intension through the miRNA and disease
network. For example, Chen et al.18 proposed Random Walk with
Restart for MiRNA-Disease Association prediction (RWRMDA) is
a method for calculating global network similarity by combining
matrices of miRNA functional similarity. Li et al.19 presented a
computational method to predict potential associations by calculating
Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The ROCs of DBMDA and AUCs Based on 5-Fold Cross-Validation
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functional consistency score (FCS) of target genes and disease-related
genes. The main progress of heterogeneous graph inference for
miRNA-disease association prediction (HGIMDA) was to calculate
the optimal solution set through an iterative process, given by Chen
et al.20 On the other hand, the methods based on machine learning
predict the potential miRNA-disease association by using the known
miRNA-disease association training model.21 For example, Xu et al.22

used a support vector machine (SVM) classifier to identify positive
and negative associations in a miRNA-target-dysregulated network.
Chen and Yan23 proposed a method for predicting new disease-
related RNA without negative correlation named Regularized
Least-squares for MiRNA-Disease Association according to semi-su-
pervised learning. Restricted Boltzmann machine for multiple types
of miRNA-disease association prediction (RBMMMDA) is a method
developed by Chen et al.,24 whose main improvement is the acquisi-
tion of several types of new associations.

In this study, we build a distance-based sequence similarity for
miRNA-disease association prediction (DBMDA) based on chaos
game representation (CGR). DBMDA combines the information of
miRNA sequence, miRNA function, confirmed association, and dis-
ease semantic. The motivation for this approach is to map miRNA
sequences to Euclidean space, where the regional distance directly
corresponds to a measure of miRNA sequence similarity. In detail,
we first obtained miRNA and disease similarity matrices based on
miRNA sequence information and disease semantic information. Sec-
ond, the similarity matrices obtained in the previous step are com-
bined with the Gaussian profile kernel similarity matrices of miRNA
and disease to get the integrated similarity matrices. Third, each
nucleotide directly learns the mapping from miRNA sequences to
Euclidean space through CGR techniques. To be specific, the CGR
plane is divided into 8 � 8 grids, and the average coordinates of
each grid are calculated. Also, the regional distance between miRNAs
is used to quantify the similarity of miRNA functions to construct a
miRNA sequence similarity matrix and integrate the similar informa-
tion obtained in the second step into a comprehensive feature. Finally,
the integrated feature vector is placed in the rotation forest (RoF) clas-
sifier to predict the potential association. The following experiments
have been designed to evaluate the reliability of the method. We use
the 5-fold cross-validation to assess the performance of DBMDA in
the Human microRNA Disease Database (HMDD) v.3.0 dataset.
The AUC of 5-fold cross-validation was 0.9129 ± 0.0113 in result.
Moreover, two case studies on prostate neoplasms and colon neo-
plasms have been applied. As a result, 39 (prostate tumors) and 39
(colon tumors) of the top 40 predicted miRNAs, respectively, were
verified by other datasets. It shows that DBMDA is an efficient pre-
dicting potential miRNA-disease associations method.
RESULTS
Performance Evaluation

Evaluation Criteria

We follow the widely used evaluation measure by means of classifica-
tion accuracy (Accu.), sensitivity (Sen.), precision (Prec.), and
F1 score to assess the performance of DBMDA as defined, respec-
tively, by:

Accu: =
TP +TN

TP +TN + FP + FN
(1)

Sen: =
TP

TP + FN
(2)

Prec: =
TP

TP + FP
(3)

F1 =
Prec:� Sen:
Prec:+ Sen:

; (4)

where TP, FP, TN, and FN represent the true positive, false positive,
true negative, and false negative, respectively. In addition, the
receiver operating characteristic (ROC) curve and the area under
the curve (AUC) can be used to show the performance of the model
generally.

Prediction of miRNA-Disease Association

We have used the 5-fold cross-validation to assess the performance
of DBMDA based on confirmed associations in HMDD v.3.0.25 Li
et al.25 selected 17,412 papers and extracted 32,281 known
miRNA-disease associations constructed by 1,102 miRNAs and
850 diseases. Because some information of miRNA cannot be judged
by the public database miRBase, we have removed it. After
screening, the associations confirmed by miRbase have been chosen
as positive samples.26 Meanwhile, negative samples are constructed
by possible miRNA-disease association pairs from all possible
miRNA-disease pairs.

Figure 1 lists the performance of the 5-fold cross-validation obtained
by DBMDA. We can see from the table that DBMDA has gained an
average prediction AUC of 0.9129 ± 0.0113. The AUC of the five
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Table 1. The Comparison Results of DBMDA Based on 5-Fold Cross-

Validation

Testing
Set Accuracy Sensitivity Precision F1-Score

1 83.14% 81.55% 84.23% 82.87%

2 86.21% 86.83% 85.77% 86.30%

3 85.57% 86.42% 84.99% 85.70%

4 86.22% 87.07% 85.63% 86.34%

5 85.66% 86.83% 84.85% 85.83%

Average 85.36% ± 1.27% 85.74% ± 2.35% 85.09% ± 0.62% 85.40% ± 1.44%
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experiments is 0.8904 (fold 1), 0.9177 (fold 2), 0.9174 (fold 3), 0.9206
(fold 4), and 0.9188 (fold 5), respectively. The yielded averages of ac-
curacy, sensitivity, precision, and F1-score come to be 85.36%,
85.74%, 85.09%, and 85.40% as in Table 1.

Comparison with Different Classifier Models

In the 5-fold cross-validation, our proposed method achieved good
results in the HMDD v.3.0 dataset using the RoF classifier. The RoF
as part of the proposed method was compared with SVM, random
forest (RF), and decision tree (DT) in this experiment to illustrate
why it was chosen. The accuracies of the four experiments are
85.00% (RoF), 83.73% (SVM), 82.06% (RF), and 80.33% (Decision
Tree). Their AUCs are 91.15% (RoF), 89.01% (SVM), 90.77% (RF),
and 80.29% (Decision Tree), which are shown in Figure 2. The accu-
racy, sensitivity, precision, and F1-score have been shown in Table 2.
From the experimental results, the performance of the rotating forest
classifier in terms of sensitivity is not the highest among the four clas-
sifiers However, the best results were obtained in other evaluation
criteria, especially the AUC that represents the overall performance
of the model. In general, rotating forests is the best classifier for the
features we build.
Figure 2. The ROCs of Four Different Classifiers, which Are RoF, SVM,

Random Forest, and Decision Tree
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Comparison with Related Methods

Many studies in the past have explored the field of the associations
between miRNAs and diseases. To evaluate performance, we
compared it with eight state-of-the-art methods. Because the database
versions used are not the same, we compare only the AUC values re-
ported in the article. Compared with the AUC of RLSMDA, PBSI,
MBSI, NetCBI, MaxFlow, miRGOFS, HGIMDA, MDHGI, and
LMTRDA, DBMDA performs better, as shown in Table 3.20,23,27–31

There are manifold reasons why DBMDA is more outstanding than
traditional miRNA similarity. First, the sequence information of
miRNAs contains attribute features and is an excellent source of
knowledge reflecting essential information. Second, the miRNA sim-
ilarity obtained based on limited knowledge resources may have er-
rors caused by information loss. Third, our approach inferring global
similarity from regional distances also helps improve performance.

Case Studies

Here DBMDA will be applied to two kinds of human diseases,
including prostate neoplasms and colon neoplasms. It further evalu-
ates the effectiveness of DBMDA based on the associations identified
in the HMDD v.3.0 database. The test samples are miRNA-disease as-
sociations consisting of two diseases and all possible miRNAs. We
confirmed prediction results with top 40 ranks in dbDEMC v.2.032

and dbDEMC v.2.0.33

In the United States, prostate cancer has caused more than 20,000
deaths and has become one of the hidden dangers of men’s health
today. Age is a major cause of prostate cancer, and older people
may have a higher rate. However, an increasing number of younger
men were diagnosed with prostate neoplasms. Prostate neoplasms
may pass to other areas of the human body, such as surrounding tis-
sue like regional lymph nodes. Therefore, we took prostate neoplasms
as an example to evaluate the performance of DBMDA. The results
are shown in Table 4. Thirty-nine of the top 40 predicted miRNAs
were identified by the two datasets mentioned above.

In the United States, colon neoplasms have the third highest
morbidity and third highest fatality rate, which is defined as a type
of common malignant cancer. A study showed that more than
135,000 individuals would be diagnosed with colon neoplasms and
rectum neoplasms. Therefore, we chose colon neoplasms as a case
study to evaluate the performance of DBMDA. As a result, 39 of
the top 40 potential miRNAs that associate with colon neoplasms
were confirmed by experimental findings recorded in dbDEMC
v.2.0 and miR2Disease as shown in Table 5.

DISCUSSION
Sequence-based miRNA similarity can aid in predicting miRNA-
disease associations, extract biological property information, and
enhance the analytical quality of high-throughput sequencing
data. However, most existing methods do not involve sequence in-
formation, and according to current information sources (miRNA-
disease association), the relationship between miRNAs is not
directly reflected. Therefore, this paper proposed a predictive model



Table 3. The Comparison with Related Models

Methods AUC Scores

RLSMDAa 86.17%

PBSIb 54.02%

MBSIb 74.83%

NetCBIb 80.66%

MaxFlowc 86.93%

miRGOFSd 87.70%

HGIMDAe 87.81%

MDHGIf 87.94%

LMTRDAg 90.54%

DBMDA 91.29%

aThe results of the method are reported in Chen and Yan.23
bThe results of the method are reported in Chen and Zhang.27
cThe results of the method are reported in Yu et al.28
dThe results of the method are reported in Yang et al.30
eThe results of the method are reported in Chen et al.20
fThe results of the method are reported in Chen et al.31
gThe results of the method are reported in Wang et al.44

Table 2. Performance Comparison among Four Different Classifiers, which

are Rotation Forest, SVM, Random Forest, and Decision Tree

Method Accuracy Sensitivity Precision F1-Score

SVM 83.73% 83.56% 83.33% 83.45%

RF 82.06% 76.49% 85.43% 80.72%

DT 80.33% 78.12% 81.10% 79.58%

RoF 85.00% 85.60% 84.11% 84.85%
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for inferring miRNA similarity based on sequence information,
called DBMDA. The improvement of the method was to directly
learn the mapping from miRNA sequence to Euclidean space. In
Euclidean space, the regional distance directly corresponds to the
measure of miRNA sequence similarity. Excellent experimental re-
sults indicate that DBMDA had performed well in predicting dis-
ease-associated miRNAs with the support of new algorithms and
sequence information. In addition, sequence information has suffi-
cient coverage for human miRNAs, and DBMDA is universal in
functional analysis.
Conclusions

Sequence-based miRNA similarity can aid in predicting miRNA-dis-
ease associations, extract biological property information, and
enhance the analytical quality of high-throughput sequencing data.
However, most existing methods do not involve sequence informa-
tion, and according to current information sources (miRNA-disease
association), the relationship between miRNAs is not directly re-
flected. Therefore, this paper proposed a predictive model for infer-
ring miRNA similarity based on sequence information, called
DBMDA. The improvement of the method was to directly learn the
mapping from miRNA sequence to Euclidean space. In Euclidean
space, the regional distance directly corresponds to the measure of
miRNA sequence similarity. Excellent experimental results indicate
that DBMDA had performed well in predicting disease-associated
miRNAs with the support of new algorithms and sequence informa-
tion. In addition, sequence information has sufficient coverage for hu-
man miRNAs, and DBMDA is universal in functional analysis.
MATERIALS AND METHODS
Human miRNA-Disease Associations

We downloaded the confirmed associations data from theHMDDda-
taset in this experiment.25 The last update of HMDD v.3.0 was
October 9, 2018, which includes 32,281 experimentally known asso-
ciations about 850 diseases and 1,102 miRNAs from 17,412 papers.
Based on it, an adjacency matrix X˛RnM�nD is built to reshape the as-
sociations, where nD and nM are the number of the diseases and
miRNAs in HMDD v.3.0. Xij is equal to 1 if miRNA mi had been
confirmed to associate with a disease dj, otherwise equal to 0.34
miRNA Functional Similarity

Wang et al.35 proposed a method for quantifying miRNA func-
tional similarity between miRNAs based on the hypothesis that
functionally similar miRNAs are more likely to affect the same dis-
ease and pathologically similar diseases are more likely to be
affected by the same miRNA. The miRNA function information is
uploaded to http://www.cuilab.cn/files/images/cuilab/misim.zip. A
495 rows � 495 columns matrix, MFðma; mbÞ, can be defined to
represent the miRNA functional similarity, and the element is the
similarity score between the miRNA ma and the miRNA mb.
Disease Semantic Similarity Model

We built a directed acyclic graph (DAG) to define the relationship
among diseases based on the method proposed by Wang et al.,35

which is according to the Medical Subject Headings (MeSH)
descriptors.36 The MeSH descriptors can be downloaded from the
U.S. National Library of Medicine database (https://www.nlm.nih.
gov/). The disease di can be defined as DAGdi =D; Ndi; Edi, where
Ndi is a node set including the information of disease di and its
ancestor diseases, and Edi is an edge set including the information
of the corresponding edges. Based on the DAG, the contribution
values of disease o in DAGdi to the semantic value of disease di
was calculated as:
�
DdiðoÞ= 1 if o= di
DdiðoÞ=max

�
v � Ddi

�
o
0���o0

˛children of o
�

if osdi
;

(5)

where the semantic contribution decay factor is v, which is set
to 0.5 according to previous studies.29 Furthermore, if disease
o is not disease di, it will decrease the contribution of disease o.
If disease o is disease di, the contribution of disease di is
defined as 1. Besides, we described the semantic value DVðdÞ as
follows:
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Table 4. Prediction of the Top 40 Predicted miRNAs Associated with Prostate Neoplasms Based on Known Associations in dbDEMC v.2.0 and

miR2Database

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-192 confirmed unconfirmed hsa-mir-181a-2 confirmed unconfirmed

hsa-let-7i confirmed unconfirmed hsa-mir-196a confirmed unconfirmed

hsa-mir-140 confirmed unconfirmed hsa-mir-208a confirmed unconfirmed

hsa-mir-199b confirmed confirmed hsa-mir-337 confirmed unconfirmed

hsa-mir-144 confirmed unconfirmed hsa-mir-1246 confirmed unconfirmed

hsa-mir-372 confirmed unconfirmed hsa-mir-30 confirmed unconfirmed

hsa-let-7e confirmed confirmed hsa-mir-184 confirmed confirmed

hsa-let-7f confirmed confirmed hsa-mir-509 unconfirmed unconfirmed

hsa-mir-10b confirmed confirmed hsa-mir-9-3 confirmed unconfirmed

hsa-mir-129 confirmed unconfirmed hsa-let-7f-2 confirmed unconfirmed

hsa-mir-9-1 confirmed unconfirmed hsa-mir-202 confirmed confirmed

hsa-mir-206 confirmed unconfirmed hsa-mir-33a confirmed unconfirmed

hsa-mir-125a confirmed confirmed hsa-mir-451a confirmed unconfirmed

hsa-mir-30b confirmed confirmed hsa-let-7f-1 confirmed unconfirmed

hsa-mir-362 confirmed unconfirmed hsa-mir-186 confirmed unconfirmed

hsa-mir-133 confirmed unconfirmed hsa-mir-302b confirmed unconfirmed

hsa-mir-139 confirmed unconfirmed hsa-mir-328 confirmed unconfirmed

hsa-mir-137 confirmed unconfirmed hsa-mir-383 confirmed unconfirmed

hsa-mir-181b-2 confirmed unconfirmed hsa-mir-431 confirmed unconfirmed

hsa-mir-338 confirmed unconfirmed hsa-mir-103a-2 confirmed unconfirmed

Molecular Therapy: Nucleic Acids
DVðdiÞ =
X
t˛Ndi

DdiðoÞ: (6)

If disease di and dj have more shared segments of their DAGs, they
will have a larger similarity score. The semantic similarity score could
be defined as follows:

Sim
�
di; dj

�
=

P
t˛Ndi

XNdj

�
DdiðoÞ+DdjðoÞ

�

DVðdiÞ+DV
�
dj
� : (7)

The Sim is defined as the 850 rows and 850 columns semantic simi-
larity matrix, and the element Simðdi; djÞ is the semantic similarity of
di and dj based on disease semantic similarity model 1.

According to the above formula, diseases in the same layer in DAGs
will have the same contribution value. However, a higher value should
be contributed by a definite disease that appears in fewer DAGs.
Hence the contribution of disease o in DAGðdÞ to the semantic value
of disease d is described based on the method built by Xuan et al.29 as
follows:

D
0
di
ðoÞ = � log

�
number of DAGs including t

number of disease

	
; (8)
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where o is a disease of all the diseases in our method. Also, the seman-
tic similarity between disease di and dj is described as sim

0
, which is

based on the shared ancestor nodes and all the ancestor nodes. To
be specific, the disease semantic similarity can be computed as
follows:

Sim
0�
di; dj

�
=

P
o˛EdiXEdj



D

0
di
ðoÞ+D

0
dj
ðoÞ

�

DVðdiÞ+DV
�
dj
� ; (9)

whereDVðdiÞ andDVðdjÞ are the semantic score of di and dj, and can
be computed the same as for Equation 2.

GIP Similarity for Diseases and miRNA

The HMDD v.3.0 dataset provides plenty of correlation
information.37 Based on the hypothesis that the pathologically
similar disease may be affected by the same miRNA and vice
versa, we calculate the disease and miRNA similarity by
Gaussian interaction profile kernel (GIP) similarity. The binary
vector VðdiÞ is the i-th row vector of adjacency matrix X.
The disease GIP similarity GDðdi; djÞ between di and dj was
computed by:

GD
�
di; dj

�
= exp

�� gd � kVðdiÞ � V
�
dj
� k 2 �

; (10)



Table 5. Prediction of the Top 40 Predicted miRNAs Associated with Colon Neoplasms Based on Known Associations in dbDEMC v.2.0 and miR2Database

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-26a confirmed confirmed hsa-mir-497 confirmed confirmed

hsa-mir-182 confirmed confirmed hsa-mir-92a-2 confirmed unconfirmed

hsa-mir-342 confirmed confirmed hsa-mir-124 confirmed confirmed

hsa-mir-483 confirmed unconfirmed hsa-mir-129 confirmed confirmed

hsa-mir-139 confirmed unconfirmed hsa-mir-133a-1 confirmed confirmed

hsa-mir-372 confirmed unconfirmed hsa-mir-181b-1 confirmed confirmed

hsa-mir-181b-2 confirmed confirmed hsa-mir-26a-1 confirmed confirmed

hsa-mir-181a-2 confirmed confirmed hsa-mir-373 confirmed unconfirmed

hsa-mir-124-1 confirmed confirmed hsa-mir-423 confirmed unconfirmed

hsa-mir-193a confirmed unconfirmed hsa-mir-499 unconfirmed unconfirmed

hsa-mir-193b confirmed unconfirmed hsa-mir-128 confirmed confirmed

hsa-mir-26b confirmed unconfirmed hsa-mir-16 confirmed unconfirmed

hsa-mir-34b confirmed unconfirmed hsa-mir-212 confirmed unconfirmed

hsa-mir-1 confirmed confirmed hsa-mir-340 confirmed unconfirmed

hsa-mir-133a-2 confirmed confirmed hsa-mir-98 confirmed unconfirmed

hsa-mir-199b confirmed unconfirmed hsa-mir-100 confirmed unconfirmed

hsa-mir-27b confirmed confirmed hsa-mir-124-3 confirmed confirmed

hsa-mir-29c confirmed unconfirmed hsa-mir-133 confirmed confirmed

hsa-mir-451a confirmed unconfirmed hsa-mir-183 confirmed confirmed

hsa-mir-144 confirmed unconfirmed hsa-mir-370 confirmed unconfirmed
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where adjustment coefficient gd was used to adjust the kernel band-
width, which was computed via normalizing original parameter gd

0 as
follows:

gd =
1

g
0
d



1
nd

Pnd
i= 1kIPðdiÞ k 2

�: (11)

Similarly, GIP similarity for miRNA GMðmi;mjÞ between miRNAmi

and miRNA mj can be calculated as follows:
DS
�
di; dj

�
=

8><
>:

Sim
�
di; dj

�
+ Sim

0�
di; dj

�
2

if di; dj in Sim1andSim2

GD
�
di; dj

�
others

: (14)
GM
�
mi;mj

�
= exp

�� gm � k VðmiÞ�V
�
mj

� k 2
�

(12)

gm =
1

g
0
m

�
1
nm

Pnm
i= 1kIPðmiÞ k 2�; (13)

where binary vector VðmiÞ [or VðmjÞ)] is the interaction profile of
miRNA mi (or mj) by observing whether mi (or mj) has association
with each of the 850 diseases and is equivalent to the i-th (or j-th) col-
umn vector of adjacency matrix X.

Multi-source Feature Fusion

By combining the semantic similarity of the disease with the GIP sim-
ilarity constructed above, a comprehensive similarity matrix incorpo-
rating heterogeneous information is computed.38 The element
DSðdi; djÞ represented combined similarity between disease di and
dj, and was described as follows:
The miRNA similarity matrix MS is constructed from miRNA func-
tional similarity MF and miRNA GIP similarity GM. The miRNA
similarity matrix [r(i), r(j)] formula for miRNA r(i) and miRNA
r(j) is as follows:

MS
�
mi;mj

�
=

�
MF

�
mi;mj

�
if mi;mj in FS

GM
�
mi;mj

�
others

: (15)
Molecular Therapy: Nucleic Acids Vol. 19 March 2020 607

http://www.moleculartherapy.org


Figure 3. CGR of the miRNA Named hsa-mir-135
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CGR

In this study, based on the research of Jessime et al.39 that homo-
logs can be effectively detected even if all positions of ncRNA are
treated equally, we introduced CGR to map RNA sequences.
In 1990, Jeffrey40 built a scale-independent representation for
RNA sequences named CGR. CGR is an iterative mapping
that can be traced back to chaos theory and is the basis of
608 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
statistical mechanics. However, studies never fully explore
identifying the resulting sequence scheme as representing the
nucleotide sequence by the CGR format. RNA sequences can be
mapped into the CGR space, which is planar. The four possible
nucleotides confine the CGR space as vertices of a binary square
(Figure 3).

nti = nti�1 + q � ð nti�1 � liÞ (16)

li =

8>><
>>:

ð0; 0Þ if nucleotide=A
ð0; 1Þ if nucleotide=C
ð1; 1Þ if nucleotide=G
ð1; 0Þ if nucleotide=U

; (17)

where nti is the CGR positions, Nseq is the length of the sequence, li is
the nucleotide coefficient, parameter q is the decay factor, and we
define i= 1.Nseq and nt0 = ð0:5;0:5Þ.

Sequence Similarity for miRNAs

Information on miRNA sequences is mapped to Euclidean
space, and its region distance is utilized to quantify the similarity
of miRNA sequence. It will be easy to implement assignments
such as miRNA sequence recognition, verification, and clustering
using standard methods with DBMDA embeddings as feature
vectors, if this space has been built. First, we downloaded
1,057 miRNA precursor sequences from the miRBase. Second,
each nucleotide is mapped to a Euclidean space, and the
CGR space is separated from the appropriately sized grid. After
Figure 4. The Flowchart of Quantify the Sequence

Similarity Utilizing its Regional Distance

(A) The CGRs of hsa-mir-27a are plotted with the average

coordinates for each 8 � 8 quadrant represented. (B)

The CGRs of hsa-mir-651 are plotted with the average

coordinates for each 8 � 8 quadrant represented.

(C) Figuring the region distances of hsa-mir-27a and

hsa-mir-651.



Figure 5. The Workflow of DBMDA Model to Predict Potential miRNA-Disease Associations
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that, average coordinate in each quadrant is figured (Figure 4).
Third, the regional distance between each miRNA and other
miRNAs is calculated. The region distance as DRmimjðgðiÞÞ was
figured by:
DRmimjðgðiÞÞ =
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xmi � xmj

�2
+


ymi � ymj

�2
r

if mi and mi both have average coordinate in gðiÞ
0 if mi and xmj both don’t have average coordinate in gðiÞ

a else

; (18)
where gðiÞ indicates the i-th grid, a represents the penalty parameter,
and xmi, ymi is the average coordinate of mi in gðiÞ. Fourth, the
calculation of the similarity between sequences at any scale was based
on the region distance DRmimjðgðiÞÞ, defined as follows:

Simseq

�
mi;mj

�
=

Xn2c
t = 1

DRmimjðgðtÞÞ: (19)
Finally, we used a 2nc � 2nc grid to get the distance-based similarity
matrix of nucleotide length nc. (1057� 1057). Therefore, each
miRNA sequence could be described by a 1,057-dimensional
vector:
Fseq =
�
f1; f2; f3;.; f1056; f1057

�
: (20)

Rotation Forest

Rotation Forest() independently trains decision trees using different
extraction feature sets.41,42 Rodríguez et al.42 defined
F = ½f1; : : : ; fn�T as n features (attributes), which is an N � n ma-
trix that represents the training and T = ½T1; : : : ; Tr� as the
Molecular Therapy: Nucleic Acids Vol. 19 March 2020 609
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ensemble of r classifiers. Each bootstrap sample is trained separately
for the independent classifiers. The improvement of RoF is extracting
a feature and rebuilding a complete training set for each decision tree
in T . Specifically, the RoF randomly divides the training set into e sub-
sets and runs principal-component analysis (PCA) separately. The
data are mapped into the new feature space and use it to train classi-
fier Ti. Different subsets will extract different features that improve
the diversity through the bootstrap sampling.
Method Overview

A DBMDA was built. It assumes that functionally similar diseases
have relation to similar miRNAs, which is also used to compute the
association between target proteins and drug. DBMDA has four
main processes: first, choosing positive examples and
negative examples; second, gathering complex feature vectors by
miRNA and disease similarity matrixes; and third, building an effec-
tive prediction model to figure potential miRNA-disease pairs. Specif-
ically speaking, we will introduce each process in more detail.

First, we constructed the training examples. Specifically, we
analyzed HMDD v.3.0 and selected the known miRNA-disease as-
sociations as positive samples. Then, we clustered all of the posi-
tive samples with negative samples to build a training set. There
are three steps of selecting negative samples: (1) we selected a dis-
ease from all known diseases (850) randomly, (2) chose a miRNA
in the same way, and (3) combined the miRNA and disease if
miRNA and disease pair is not in positive samples as a negative
sample.

Second, we built the feature set. In particular, we gathered
three disease matrixes, which are a Gaussian profile kernel similar-
ity matrix and two semantic similarity matrixes, into feature
vectors as disease features. Feature vector of disease is described
as follows:

DSðdiÞ = ðh1; h2; h3;.h849; h850Þ; (21)

where the i-th row vector of matrix DS is described as DSðdiÞ, and the
combined similarity value between disease di and dj is defined as hj. In
the same way, we calculated each of 1,057 similarity values to
construct a 1,057-dimensional feature vector by Gaussian interaction
kernel profile similarity matrix as follows:

MSðmaÞ = ð41;42;43;.41056;41057Þ; (22)

where the a-th column vector of matrix MS is described as MSðmaÞ,
and the gathered similarity value of miRNAma andmb is described as
4b. Each miRNA-disease sample can be described as 1,907-dimen-
sional vector as follows:

F sim = ðDSðdiÞ;MSðmaÞÞ: (23)

F sim = ðh1;h2;h3;.41906;41907Þ, whereðh1; h2; h3;.h850Þ are the 850
gathered similarity values of the disease and ð4851; 4852; 4853;

.41907Þstands for the 1,057 combined similarity values of the
miRNAs. After that, we resized F sim by autoencoder (AE) from
610 Molecular Therapy: Nucleic Acids Vol. 19 March 2020
1,097 to 32, and the sequence feature matrixes Fseq is resized in
same way from 1,057 to 32.43 We defined each miRNA-disease sam-
ple as a 64-dimensional vector as follows:

F =
�
F sim

0; Fseq
0�: (24)

Finally, we used RoF to build the prediction model by training set. In
particular, we got 64-dimensional vectors in steps 2 and 3 and used
them as training set. Then, training samples were put into RoF, and
a predicting potential miRNA-disease associations model was built.
The workflow of the DBMDA model is shown in Figure 5.
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