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inference to identify COVID-19 related chemicals
that pose a high concern to drinking water

Min Han,1,2,3,4 Jun Liang,5 Biao Jin,1,2,3,4,8,* Ziwei Wang,1,2,3 Wanlu Wu,1,2,3 and Hans Peter H. Arp6,7

SUMMARY

Various synthetic substances were utilized in large quantities during the recent coronavirus pandemic,
COVID-19. Some of these chemicals could potentially enter drinking water sources. Persistent, mobile,
and toxic (PMT) substances have been recognized as a threat to drinking water resources. It has not
yet been assessed how many COVID-19 related substances could be considered PMT substances. One
reason is the lack of high-quality experimental data for the identification of PMT substances. To solve
this problem, we applied a machine learning model to identify the PMT substances among COVID-19
related chemicals. The optimal model achieved an accuracy of 90.6% based on external test data. The
model interpretation and causal inference indicated that our approach understood causation between
PMT properties and molecular descriptors. Notably, the screening results showed that over 60% of the
COVID-19 chemicals considered are candidate PMT substances, which should be prioritized to prevent un-
due pollution of water resources.

INTRODUCTION

The severe acute-respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic of coronavirus disease COVID-19 across the

globe.1,2 Though much attention has been placed on impacts to human health, there has been comparatively less attention on the environ-

mental impacts. One environmental aspect is the consumption and emission of numerous chemicals, including disinfectants, antivirals, and

other auxiliary drugs, that were used to control the outbreaks.3,4 During the pandemic, a large quantity of disinfectants were consumed in

indoor and outdoor settings and during wastewater treatment, and later entered the environment, including surface water and ground-

water.5–7 The residual chlorine concentrations in certain freshwater lakes in China were observed to have increased up to 0.4 mg/L during

February and March 2020, likely due to the increased consumption of pharmaceuticals.8 A significant proportion of these pharmaceuticals

are excreted from the human body and remained unaltered in wastewater and surface water.5 For instance, Zhang et al. found that the

pandemic resulted in a significant increase in concentrations of lopinavir and ritonavir in wastewater effluents and surface water.8 Wastewater

discharge from municipal areas and hospitals is a major environmental emission pathway for COVID-19 related chemicals,3,9–11 and some of

these emissions may have further polluted drinking water sources by lowering water quality.4

When it comes to drinking water quality, persistent, mobile, and toxic (PMT) substances are becoming increasingly prioritized.12–14 PMT

substances are hard to degrade and persist in wastewater and water environments for a long period after emissions and, based on their

mobility in soils, sludges, and sediments, can travel long distances through natural and artificial barriers, eventually entering groundwater

and drinking water sources.15 Very recently, the European Commission adopted PMT and very persistent, very mobile (vPvM) as two new haz-

ard categories as part of the Classification, Labeling, and Packaging (CLP) regulation.15,16 For health professionals, water resourcesmanagers

and wastewater engineers, identifying and prioritizing PMT substances among COVID-19 chemicals are of primary importance to better

manage their emissions and impact on water quality. Reliable determination of PMT/vPvM substances depends on high-quality experimental

data such as experimentally determined half-life values in water, soil or sediment, as well as experimentally determined organic carbon-water

partitioning coefficients, KOC.
15,17

Given the laboratory data are often unavailable for many chemicals, ‘‘in-silico’’ screening tools are utilized to identify potential PMT/vPvM

substances as a pre-screening or weight-of-evidence approach. In recent years, machine learning (ML) models have become a powerful tool
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to address complex environmental problems due to their powerful fitting abilities.18,19 One emerging application of ML in environmental

research is predicting chemical properties.20–25 Such ML models were developed to identify the correlation between chemical properties

and molecular structures. For instance, Sun et al.21 and Wang et al.23 established ML models for screening persistent, bio-accumulative,

and toxic (PBT) substances with a comprehensive consideration of attributes for persistence (P), bioaccumulation (B) and toxicity (T).

Although satisfactory predictive performance could be realized, the currently available ML models have ‘‘black box’’ features, leading to

opaque decision-making process and the obscuring ofmechanistic causality.26–28 Recently, many studies explored usingMLmodels tomech-

anisms using the SHapley Additive exPlanations (SHAP) method.28–32 Very few studies have tested whether ML models combined with mo-

lecular features could understand causality between molecular features and chemical properties. The ability to use this approach for diverse

molecular processes remains an open question. When an MLmodel makes predictions based on spurious correlation, the model is not trust-

worthy in spite of satisfactory predictive performances. For instance, McCloskey et al.33 found that ML models still learn spurious correlations

despite achieving perfect accuracy on test datasets. In order to improve the credibility of the model, it is of primary importance to verify

whether the model makes accurate property predictions, such as between ‘‘PMT’’ and ‘‘Not PMT’’, based on correct and causal mechanistic

reasons.34 Furthermore, ML models can potentially identify complex patterns that experts have overlooked. Thus, understanding prediction

mechanisms of ML models aids in providing new insights to human decision makers.35

Toward this goal, the specific aim of this study is to use ML models and causal inference approaches to better understand causal mech-

anism for how molecular descriptors influence PMT properties. This is herein utilized to identify PMT substances among the COVID-19 sub-

stances. The specific goals are: (1) to develop machine learning model to predict candidate PMT substances; (2) to validate our model with

expert judgment; (3) to analyze predictionmechanisms by global interpretation, local interpretation and feature interaction analysis based on

the SHAP method; and (4) to explore causality between molecular features and PMT properties by combing the SHAP method and causal

inference. The results are discussed in the context of how to better identify COVID-19 substances that may pose a threat to water resources

during an outbreak, as well as the wider context of new substances introduced to the market in high volumes.

RESULTS AND DISCUSSION

Data description

The internal dataset for model training includes 132 PMT substances and 898 Not PMT substances which were reported in previous studies (see

Table S1). Separately, 108 COVID-19 related substances were identified from the literature (Tables S2 and S3). The COVID-19 substances were

categorized into three types based on their intended use: disinfectants,36 antivirals,37 and other auxiliary drugs (see Figure 1; section S1.1 for

further description). The COVID-19 substances were each classified based on PMT assessment criteria (section S2.2), though only 32 of the

108 COVID-19 substances had available high-quality experimental data or weight-of-evidence data (see Table S4). Among these 32 substances,

22were evaluated as ‘‘Not PMT’’ (including all 20whichwere disinfectants), and 9 substanceswere evaluated ‘‘Potential PMT++’’ and 1 ‘‘PMT’’ as

shown in Table 1. Here, ‘‘Potential PMT++’’ represents potential PMT substances that have a high weight-of-evidence they likely fulfill the PMT

criteria, though are lacking some experimental data for a more definitive classification.13 An exemplary PMT substance used for COVID-19 is

ibuprofen, a high-volume, anti-inflammatory drug with antipyretic functions, recommended by FDA as a medical treatment for management

of COVID-19 symptoms.38 Ibuprofen is hardly able to be metabolized completely by the human body, and later could enter wastewater and

natural waters.39,40 Therefore, the above-mentioned 10 PMT or Potential PMT ++ substances deserve special attention.

Model validation

The best model was selected among all the possible combinations of 4 molecular representations, 15 data balancing methods and 12 ML

algorithms (seeMethod details, and Tables S5–S7). The models were evaluated based on twometrics (i.e., recall rate and balanced accuracy,

see Method details) and only 4 models are simultaneously among the top 5% of the both metrics (see Table S8). The four models are:

molecular descriptor (MD)-random undersampling (RU)-support vector machine with the radial basis function kernel (RSVM) (Model 1);

MD-EasyEnsemble-linear support vector machine (LSVM) (Model 2); MACCS-RU-RSVM (Model 3); and MD-EasyEnsemble-XGBoost (Model

4). The data balancing methods of Model 1–4 are undersampling strategies, which balance the dataset by reducing the number of majority

class samples (Not PMT) and thus greatly improve recall rate (the accuracy of minority class). Due to the priority of recall rate, we preferentially

selected the model with the highest recall rate among the four models. Both Model 1 and Model 2 showed the highest recall of 86.4%, while

Model 2 returned a higher balancing accuracy (78.2%) than Model 1 (see Figure 2A). Based on the results above, Model 2, combining MD,

EasyEnsemble and LSVM, gave the best performance. EasyEnsemble could, in particular, effectively solve the problem of unbalanced

data and reduce loss of information induced by undersampling (see Figure 1). In Figure 2B, Model 2 with 1804 MDs produced the highest

recall rate (89.5%). All results of feature selections were summarized in Table S9. After hyperparameter optimization, Model 2 even achieved

a better performance (recall of 90.2% and balancing accuracy of 79.6%). Furthermore, the area under curve (AUC) of receiver operating char-

acteristic (ROC) curve reached a value of 0.87, indicating that Model 2 showed good overall predictive performances (see Figure 2C). It was

therefore used for further analysis. Furthermore, the complexity of the best model was discussed in Supplemental information (Note S3).

A different strategy was also tested, which involved the construction of models based on sequential P, M, and T classification, as a three-

step prediction process.31 This was executed using the same training set. The data selection procedures of the three-step model are

summarized in Supplemental Information (Section S1.4). The samemodel construction procedures and evaluation metrics (see Model estab-

lishment and evaluation in STAR Methods) were used for both the one-step and three-step models. The detailed information of model com-

paration and optimization for three-step model was presented in Supplemental information (Section S1.4; Figure S1; Tables S10–S12).
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Prior to applying ourmodel to the targetCOVID-19 chemicalswithout experimental data, the prediction capability of the one-stepmodel and

the three-step model was tested by using the above-mentioned 32 chemicals. As shown in Table 1, the one-step model correctly identified 29

chemicals, while the three-stepmodel correctly identified 27 chemicals. Specifically, the recall rate (90%) of the one-step model was higher than

70%of the three-stepmodel. Besides, the one-stepmodel resulted in higher balanced accuracy (90.5%), accuracy (90.6%), F-measure (85.7%) and

precision (81.8%) in comparison with the three-step model (80.5%, 84.3%, 73.6%, and 77.8%). These results suggested that the one-step model

achieved thebetter performance. Furthermore, previousmodels basedonQuantitative Structure-Activity Relationship (QSAR) were calculated in

parallel for the target chemicals for comparison (details ofQSARareprovided in theSTARMethodsandNoteS2).Among the 32 chemicals,QSAR

method correctly identified 26 chemicals, and the accuracy (81.3%) was lower than 90.6% of one-step model.

As false negatives for PMT substances are probably more problematic than false positives, we determined the best value for probabilistic

decision cutoff such that it gives the highest recall rate (without affecting precision much) using a Precision-Recall curve. As shown in

Figures 2E and 2F, the model resulted in the best performance when the cutoff was 0.495, achieving a recall rate of 100% and an accuracy

of 93.5%. Furthermore, the highest value of the Youden index was achieved with a threshold value of 0.495.41 Therefore, 0.495 was selected

as the probabilistic decision cutoff. However, as a decrease in the cutoff value and the prioritization of recall rate would lead to an increase in

false positives, the term ‘‘Potential PMT’’ was proposed to denote uncertain positive predictions.With this consideration, themodel achieved

the highest precision (100%) and accuracy (93.5%) when the cutoff was 0.548 (see Figures 2E and 2F). This suggests that there are no or few

false positives in the validation set when the cutoff is 0.548. Therefore, this range (from0.495 to 0.548) can be used to express the uncertainty of

model predictions, and compounds that fall into this range could be concluded as ‘‘Potential PMT’’ based on this ML screening tool.

Global interpretation

As presented in Figure 1, the model interpretation involved three parts, including global interpretation, local interpretation and feature inter-

action analysis. Here the global explanations aim to summarize the relevance between inputmolecular features and predictedproperties (i.e.,

PMT or Not PMT) based on SHAP values.30 Figure 3A showed the 20 most important molecular features that affect model predictions. The

Figure 1. The workflow of dataset establishment, model construction using machine learning models, model application/validation, model

interpretation and causal inference
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detailed information of these molecular features was summarized in supplemental information (Table S13). Specifically, the most important

feature is B04[C-N] and the corresponding importance value is significantly higher than others (see Figure 3A). B04[C-N] is a 2D atom pair

descriptor and denotes presence/absence of ‘‘C-N’’ at topological distance 4.When the fragment is present, the target compound is trending

to be predicted as a PMT substance. This result could be due the occurrence of ‘‘C-N’’ contributes to impart the polarity in themolecules, and

thus resulting in higher aqueousmobility,42 and perhaps to some extent persistence.43 Furthermore, the featureN% is a type of constitutional

descriptor anddenotes percentageofN atoms. In general, themolecular toxicity increases with the content of nitrogen atoms.44 According to

these results the N% is positively correlated with a PMT classification, which is consistent with the above-mentioned knowledge. In addition,

the feature B06[C-C] denotes presence/absence of ‘‘C-C’’ at topological distance 6, which can be representative of hydrophobicity.35 This is

consistent with the knowledge learned by ourmodel, where the presence of this fragment trends towardNot PMTpredictions. The discussion

of other molecular descriptors is presented in supplemental information (Note S5).

Given that thePMTclassification is a combinationof threeproperties, the three-stepmodelwasalso interpretedbyutilizingSHAPmethod to

further explore theassociationsbetweenPMTproperties andmoleculardescriptors. Figure 3A summarized theeffectsof theabove-mentioned

top-20 molecular features on three properties (P, M, and T). Detailed information is presented in Figures S2–S21. In Figure 3A, the red arrows

represent if the feature contributes positively on predicted property, and the blue arrows denote the negative influence. The absence of an

arrow indicates that the feature exerts no influence on the property. The majority of the model interpretation results were consistent with

Table 1. Model predictions on Covid-19 related compounds (32 expert-verified compounds)

Chemical name CAS number Expert judgment QSAR predicted Three-step model One-step model

Capric acid 334-48-5 Not PMT Not PMT Not PMT Not PMT

Citric acid 77-92-9 Not PMT Not PMT Not PMT Not PMT

Thymol 89-83-8 Not PMT Not PMT Not PMT Not PMT

Ethanol (Ethyl alcohol) 64-17-5 Not PMT Not PMT Not PMT Not PMT

Isopropanol (Isopropyl alcohol) 67-63-0 Not PMT Not PMT Not PMT Not PMT

o-Phenylphenol 90-43-7 Not PMT Potential PMT PMT PMT

Phenol 108-95-2 Not PMT Not PMT Not PMT Not PMT

Glycolic acid 79-14-1 Not PMT Not PMT Not PMT Not PMT

Hydrogen peroxide 7722-84-1 Not PMT Not PMT Not PMT Not PMT

Octanoic acid 124-07-2 Not PMT Not PMT Not PMT Not PMT

Peroxyacetic acid (Peracetic acid) 79-21-0 Not PMT Not PMT Not PMT Not PMT

Glutaraldehyde 111-30-8 Not PMT Not PMT Not PMT Not PMT

Tetraacetyl ethylenediamine 10543-57-4 Not PMT Potential PMT PMT PMT

Triethylene glycol 112-27-6 Not PMT Not PMT Not PMT Not PMT

C14 benzalkonium chloride 139-08-2 Not PMT Not PMT Not PMT Not PMT

C16 benzalkonium chloride 122-18-9 Not PMT Potential PMT Not PMT Not PMT

Dioctyl dimethyl ammonium chloride 5538-94-3 Not PMT Not PMT Not PMT Not PMT

Didecyl dimethyl ammonium chloride 7173-51-5 Not PMT Potential PMT Not PMT Not PMT

Hexadecyl trimethyl ammonium chloride 112-02-7 Not PMT Not PMT Not PMT Not PMT

Tetradecyl trimethyl ammonium bromide 1119-97-7 Not PMT Potential PMT Not PMT Not PMT

Ambroxol 18683-91-5 Potential PMT ++ Potential PMT ++ PMT PMT

Amprenavir 161814-49-9 Potential PMT ++ Potential PMT ++ Not PMT PMT

Baricitinib 1187594-09-7 Potential PMT ++ Potential PMT ++ PMT PMT

Chlorpheniramine 113-92-8 Potential PMT ++ Potential PMT ++ Not PMT PMT

Chlorpromazine 34468-21-8 Potential PMT ++ Potential PMT ++ PMT PMT

Colchicine 64-86-8 Potential PMT ++ Potential PMT ++ PMT PMT

Ibuprofen 15687-27-1 PMT Not PMT PMT PMT

Remdesivir 1809249-37-3 Potential PMT ++ Potential PMT ++ Not PMT PMT

Thalidomide 50-35-1 Potential PMT ++ Potential PMT PMT Not PMT

Tofacitinib 477600-75-2 Potential PMT ++ Potential PMT ++ PMT PMT

Vitamin C (Ascorbic Acid) 50-81-7 Not PMT Not PMT Not PMT Not PMT

Acetylcysteine 616-91-1 Not PMT Not PMT Not PMT Not PMT
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the domain knowledge. For instance, the feature B04[C-N] positively affected on P (persistence), and the feature N% exhibited positive contri-

bution on T (toxicity). In addition, the model explanation offered novel insights that aid in comprehending the correlation between molecular

descriptors andPMTcharacteristics. Specifically, the feature B04[C-N] alsowas positively correlatedwith T property, while the feature B06[C-C]

had negative effects on P property. According to Figure 3A, we hypothesize that the relationship between the roles of molecular features in

individual properties (P, M, and T) and their roles in the combined property (PMT) is that once a molecular feature has a negative contribution

to any of the individual properties (P, M or T), the feature would have a negative contribution to the overall PMT classification.

Local interpretation

Global model interpretations cannot account for prediction mechanisms for individual compounds.29 To better explore the influence of the

molecular descriptors on model predictions at the local, individual compound level, we analyzed 32 compounds from the validation set.

Figure 2. Model selection, feature selection, hyperparameter optimization and model calibration

(A) Recall rate and balanced accuracy of four candidate models (5-fold cross-validation).

(B) Recall rate of Model 2 with different numbers of selected molecular descriptors during feature selection.

(C) Receiver operating characteristic (ROC) curve andmean area under curve (AUC) of the final selected model (Model 2) with the optimal hyperparameter based

on 5-fold cross-validation.

(D) Confusion matrix of Model 2 on external test set (COVID-19 related chemicals with available expert assessments).

(E) Accuracy plotted against cutoff.

(F) Youden index, precision and recall rate plotted against cutoff.
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Figure 3. Model global and local interpretation

(A) Left: The effects of the top-20 molecular features on three properties (P, M, and T) individually. The red lines meant that the feature has a positive contribution

on property and the blue lines represented the negative influence. The absence of an arrow indicates that the feature exerts no influence on the property. Median:

Bar chart of the average impact on global model output magnitude, denoting feature importance values for ourmodel. Right: Beeswarm plot of themodel on the

training dataset, presenting the magnitude, prevalence and direction of the above-mentioned molecular features’ influences on model predictions by

summarizing the multiple local explanations. The x axis represents SHAP values and the y axis denotes feature. SHAP >0 means that a specific feature has

positive impact on the model predictions (i.e., tending to be PMT). Each dot refers to a compound and the color of the dots reflect the value of the feature.

The redder color indicates a higher value of feature, and vice versa.

(B–E) Decision plots of our model prediction on o-Phenylphenol (false positive, B), and C14 benzalkonium chloride (true negative, C), and thalidomide (false

negative, D), and ibuprofen (true positive, E). SHAP decision plots show how complex models arrive at their predictions.
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Specifically, Figure 3 shows the local explanation of a true positive (ibuprofen), a false negative (thalidomide), a true negative (C14 benzalko-

nium chloride) and a false positive (o-Phenylphenol). The individual interpretations of the other 28 compounds are available in Supplemental

information (Figures S22–S28). In the SHAP decision plots presented Figure 3, the x axis represents the model’s output, where the larger the

value is, the more possibly the compound is identified as a PMT substance. The compound is predicted as a PMT substance when the model

output value is greater than 0.5, and vice versa for a Not PMT substance. The y axis of the SHAP decision plot (Figure 3) represents the 20most

important molecular features, which are sorted by descending importance. According to these SHAP decision plots, we counted the 20 most

important features of each of the 32 compounds and sorted these features by number of occurrences in these compounds (Table S14).

Notably, the top 5 features with the highest number of occurrences in compounds are B04[C-N], BIC2, NdssC, SIC2 and MATS8i (see Fig-

ure S29). These features belong to the top-20 important features of global interpretation, demonstrating the consistency between global

and local explanations. Furthermore, these results suggested that the global interpretation prioritizes features that consistently influence

most predictions.27 However, it was also found that the top-20 molecular features of the individual compounds are not absolutely identical

regarding the global importance ordering (see Figures 3 and S22–S28). This indicated that global interpretation derived from training data

could not uncover feature patterns driving the prediction of individual compounds.

These results can be explained by the following reasons. First, the influence of molecular descriptors on the PMT classification differs for

different values of themolecular descriptor. Specifically, B04[C-N] is ranked among the top 20 significant features for only 15 compounds, but

not for all 32 compounds (see Figure S29). Significantly, the B04[C-N] values for all 15 compounds are consistently 1. Furthermore, of the re-

maining 17 compounds, 16 exhibit a B04[C-N] value of 0. The value of B04[C-N] of 1 represents the presence of ‘‘C-N’’ at topological distance

4 and vice versa. This suggests that the model might give priority to B04[C-N] when ‘‘C-N’’ at topological distance 4 is present. Similarly, the

influence of BIC2 on model prediction is significant when the value of BIC2 deviates from a range of 0.6–0.8 (see Figures 3B, 3C, S22D, S23B,

S23C, and S24B–S24D). In summary, we speculate that the mechanism of the model prediction is as follows. Whenmaking predictions for the

PMT classification, the model would most likely prioritize the global important features. However, for certain compounds when the values of

these features are approaching to the average of the training dataset or the feature fragments are absent, the global important features

become less important.27 Second, the impact of one feature on the PMT classification can be influenced by other features. Specifically, it

was found that the effect of B04[C-N] on the PMT classification prediction for different compoundsmight vary despite these compounds pos-

sessing identical values for B04[C-N]. For instance, B04[C-N] significantly influences the PMTprediction of quaternary ammonium compounds

(Figures 3C, S25B–S25D, S26A, and S26B), yet it does not rank among the top-20 important features in remdesivir (Figure S28B). In addition,

the presence of multiple features with low global importance can markedly alter a single prediction. The molecular features of low global

significance refer to those that do not rank within the top-20 most important features of global interpretation. For instance, although the

most important feature has a positive effect on the PMT classification, the cumulative effects of the other features ultimately lead C14 ben-

zalkonium chloride to have correctly received a Not PMT substance classification (see Figure 3C). These phenomena emphasize the impor-

tance of feature combination andmight be caused by feature interaction (see the next section). In conclusion, global interpretations prioritize

general feature correlations that account formany predictions, whereas local explanations allow for the examination of synergistic or compen-

satory effects that may not be globally apparent.27

Feature interaction analysis

The above-mentioned global and local model interpretation targeted the effect induced by a specific molecular feature whenmaking model

predictions; though did not address the issue of interactions between different molecular features. As shown in Figures 4A–4C, the SHAP

values of the different compounds vary even when the feature values are the same. These results suggest that the SHAP value of a molecule

descriptor could be affected by the values of other molecular descriptors within the substance. In other words, there are feature interactions

between different molecular descriptors, which may also explain why feature importance orders vary by different compounds in Figures 3B–

3E; from the physical chemistry literature, this is expected based on previous investigations on nonadditive effects on physicochemical

properties due to intermolecular interactions of multifunctional molecules.45 Figures 4D–4F depicts the interactions of the above-mentioned

features (i.e., B04[C-N], B06[C-C] and N%) with other features with respect to the PMT/Not PMT prediction. Concerning the interaction be-

tween B04[C-N] and Chi0_AEA(ed) (Figure 4D), a higher Chi0_AEA(ed) value is always accompanied by smaller SHAP values when B04[C-N] is

larger than 0. Chi0_AEA(ed) belongs to connectivity-like indices, molecular descriptors based on Kier-Hall Connectivity indices. These indices

are calculated on the edge adjacencymatrices by replacing the vertex degreewith the edge degree. The edgedegree is the number of edges

adjacent to a given edge in the H-depleted molecular graph. Specifically, Chi0_AEA(ed) characterizes connectivity-like index of order 0 from

augmented edge adjacency mat. weighted by edge degree. This suggests that lowering the Chi0_AEA(ed) values is moving model predic-

tions away from a PMT classification when B04[C-N]>0. As for interaction of B06[C-C] and J_H2 (i.e., Balaban-like index from reciprocal

squared distance matrix), a lower J_H2 leads to a positive impact on a Not PMT classification when the B06[C-C] > 0. According to Figure 4F,

it is found that SHAP values are lowered alongwith higher nC (i.e., number of carbon atoms), which implies that increasing carbon atoms could

weakens properties leading to a PMT classification when an N atom is present in a compound. In summary, there are interactions between

different features and our model had already taken this influence into account.

Identification of the causation between PMT property and molecular descriptors

As discussed above, we aimed to interpret the relationship between molecular descriptors and PMT or Not PMT classifications by using the

SHAP approach. Even though the SHAP method is efficient to explore the correlation between input features and model predictions, the
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correlations are not equivalent with causality due to mediation or confounding effects (see the SI Section S1.6).46,47 In order to eliminate

pseudo-correlation, causal models are built for each of the top 20 important features selected by SHAP to quantify the causal effects (average

treatment effect or ATE). As presented in Table 2, the causal effects of 19 features were nonzero, indicating that these features causally asso-

ciated with a PMT classification, albeit with large uncertainties.

To ensure the reliability of causal inference results, we tested the robustness of each of the above-mentioned causal relationships following

the procedures presented in the Method Details (see Figure 1). Although the causal effects of some features were high, they failed to pass all

the robustness tests. For instance, ATS7i holds the highest negative causal effect (�0.589) but only passes 1 test, indicating that the robustness

of the causal relationship is insufficient. In the end, only 6 features (i.e., B04[C-N], MATS5p, NdssC, MATS5i, MATS3m, and MATS8e) went

through all robustness tests. In particular, B04[C-N] and MATS5p, the top two features identified via SHAP, passed all robustness tests, re-

sulting in causal effects of 0.086 and �0.008, respectively. This partly suggests that our model captured causation between the PMT

classification andmolecular descriptors. However, the twentieth-ranked featureMATS8e and the eighth-rankedMATS3m resulted the higher

positive causal effect (0.118) and negative causal effect (�0.103) than the ones of the top two features. This could be explained by that

MATS8e has positive contributions on three properties (P, M, and T) while B04[C-N] only positively contributes to P and T property (see Fig-

ure 3A). Similarly, MATS3m has negative effects on three properties (P, M, and T) but MATS5p only negatively correlated with P property (see

Figure 3A). Notably, the contributions of MATS5i on PMT predictions based on SHAP and causal inference are opposite. This requires addi-

tional validation in future research. Based on the interpretations above, six features (B04[C-N], MATS5p, NdssC, MATS5i, MATS3m, and

MATS8e) are likely to be causally related to PMT properties. The detailed information of the causation between Not PMT properties and mo-

lecular descriptors was presented in Note S7 and Table S15.

PMT substances among COVID-19 related chemicals

After conducting the model validation, model interpretation and causal inference, our approach was applied to the COVID-19 chemicals

without expert judgments. An analysis of the applicability domain (AD) was conducted to evaluate if themodel could be applied to the target

Figure 4. Feature interaction analysis

(A) SHAP dependence plot of B04[C-N] versus its SHAP value.

(B) SHAP dependence plot of B06[C-C] versus its SHAP value.

(C) SHAP dependence plot of N% versus its SHAP value.

(D) Plot of the SHAP interaction value of B04[C-N] with Chi0_AEA(ed).

(E) Plot of the SHAP interaction value of B06[C-C] with J_H2.

(F) Plot of the SHAP interaction value of N%with nC. The x axis is the value of the feature and the y axis is the SHAP value for that feature. The color corresponds to

a second feature that may have an interaction effect with the feature.
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Table 2. Causal effect and refutation results of top 20 important molecular features

bThreshold

of RCC

Threshold

of RCC

Threshold

of RCC

Feature Definitions aATE 5% 1% 5& cPT dDS

eB04[C-N] Presence/absence of C - N at

topological distance 4

0.086 fP P P P P

MATS5p Moran autocorrelation of lag 5

weighted by polarizability

�0.008 P P P P P

MATS8i Moran autocorrelation of lag 8

weighted by ionization potential

�0.002 P P P P gF

NdssC Number of atoms of type dssC �0.065 P P P P P

Eig15_EA(bo) eigenvalue n. 15 from edge adjacency

mat. weighted by bond order

�0.531 F F F P F

BIC2 Bond Information Content index

(neighborhood symmetry of 2-order)

�0.096 F F F P F

MATS5i Moran autocorrelation of lag 5

weighted by ionization potential

0.015 P P P P P

MATS3m Moran autocorrelation of lag 3

weighted by mass

�0.103 P P P P P

SIC2 Structural Information Content index

(neighborhood symmetry of 2-order)

�0.293 P P P P F

Eta_betaS_A eta sigma average VEM count 0.151 P P F P P

B06[C-O] Presence/absence of C - O at

topological distance 6

�0.016 P P P P F

ATS7i Broto-Moreau autocorrelation of

lag 7 (log function) weighted by

ionization potential

�0.589 F F F P F

Chi1_EA(dm) connectivity-like index of order 1 from

edge adjacency mat. weighted by

dipole moment

�0.003 F F F F P

B06[C-C] Presence/absence of C - C at

topological distance 6

0.000 P P P F P

ATS7e Broto-Moreau autocorrelation of

lag 7 (log function) weighted by

Sanderson electronegativity

0.240 P F F P F

N% percentage of N atoms 0.027 F F F P P

GATS6i Geary autocorrelation of lag 6

weighted by ionization potential

0.058 P P P P F

nCt number of total tertiary C(sp3) 1.111 P P P P F

BIC3 Bond Information Content index

(neighborhood symmetry of 3-order)

0.042 F F F P F

MATS8e Moran autocorrelation of lag 8

weighted by Sanderson

electronegativity

0.118 P P P P P

aATE: average treatment effect (quantification of causal effects). Specially, ATE >0 means that a specific feature has positive causal effect on PMT property and

vice versa. When the absolute value of ATE for one feature is less than 0.01, there is little causal relationship between that feature and the PMT classification.
bThreshold of RCC: RCC refers to adding random common cause test and threshold represents the maximum allowed variation of an estimate.
cPT: placebo treatment test.
dDS: data subset refuter.
efeatures marked in bold represent passing all tests.
fP: pass.
gF: fail.
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compounds. The AD was determined by evaluating the similarity between the target compound and those within the training dataset. Here,

Euclidean distancewas utilized to calculate the similarity between two compounds. Specifically, the smaller the Euclidean distance, the higher

the similarity. The Euclidean distance between all target compounds and the compounds of training set were less than the threshold value of

AD. Thus, all the target compounds were within applicability domain of our model. The detailed information of applicability domain is sum-

marized in the SI (Section S1.8). In total 46 chemicals including 7 disinfecting chemicals, 25 antivirals and 14 other auxiliary drugs were pre-

dicted as ‘‘PMT’’ substances, accounting for 60.5% of the target COVID-19 chemicals (see Figure 5). Moreover, 13 ‘‘Potential PMT’’ substances

were predicted. A recent study indicated that detection frequency and concentrations of specific chemicals such as azithromycin dramatically

increased during the COVID-19 pandemic.5 Validation of these PMT assessments using high-quality experimental data is recommended to

confirm this assessment.

Conclusions

Clean drinking water is essential to human health.48 Intensive applications of COVID-19 substances may pose risks to drinking water re-

sources, as many of them could meet the PMT/vPvM hazard classification.4 Limited experimental data and inefficient screening tools have

hindered identification and prioritization of PMT substances.49 Here, we developed a machine learning model to screen for PMT substances,

and validated our model with expert judgment, fulfilling the first two aims of the study. The optimal model was validated and achieved an

accuracy of 90.6% based on external test data, and later was applied on 76 different COVID-19 substances.

The third aim of the study was to analyze prediction mechanisms of our model by using global interpretation, local interpretation and

feature interaction analysis based on SHAP methods. The results indicate that our model can implicitly acquire chemical knowledge. By

combining themodel interpretation of one-step and three-stepmodels, we found thatmolecular features would have a negative contribution

to a PMT classification once a molecular feature has a negative contribution to any of the properties P, M or T. Furthermore, the molecular

features of low global importance may be influential due to the observation that combinations of different features together could lead to

accumulative effects on model predictions, due to intermolecular interactions. Some potential causal relationships between chemical prop-

erties (PMT or Not PMT) and molecular descriptors were identified. The results indicated that B04 [C-N] (Presence/absence of C-N at topo-

logical distance 4) may be causally associated with both properties leading to PMT classification and Not PMT classification, which indicates

that our model captured some causation. Identifying this causality between molecular features and PMT properties by combing the SHAP

method and causal inference thereby addressed our fourth aim of the study. The prioritization of PMT substances identified in this study

will facilitate risk-based management of substances produced in high-volume related to the COVID-19 pandemic. The identified COVID-

19 substances that can be considered PMT substances are of relevance for further follow-up, including determination of the experimental

persistence and mobility, as well as prioritization for monitoring and testing remediation technology, since their occurrence in natural water

cycle could lead to negative impact on drinking water resources. It is therefore recommended that follow-up chemical property analysis, and

monitoring studies should be conducted to investigate the relation between outbreaks and the occurrence of the identified COVID-19 PMT/

vPvM substances in water resources. This would help ensure proper environmental management or appropriate policy development toward

public and environmental health. Themodel developed here, alongwith our previous study43 could further facilitate regulatory compliance to

the new PMT/vPvM hazard classes in Europe,16 as a way to rapidly screen new and existing chemicals being introduced to the market.

Limitations of the study

There are a few limitations of this study that should be highlighted. First, the underlying datasets to calibrate the model were limited, espe-

cially in terms of positive samples, resulting in insufficient training for the current model. In future work, the performance of our model will be

enhanced with an increasing number of high-quality experimental data. In addition, further external validation through experimental testing

could be employed to assess the model’s generalizability in future studies. Second, while many types of molecular descriptionmethods were

used to describe the structural information of compounds, molecular images andmolecular graphs have not yet been applied. This could be

done in future work. Third, some of the relevant confounders might remain uncaptured due to limited domain knowledge. In subsequent

research, the integration of additional domain knowledge and sophisticated causal inference methodologies would be advantageous for

a more comprehensive exploration of causality between P, M, and T properties with chemical structures.43 PMT hazard assessments based

solely on models have uncertainties and should be confirmed with high-quality experimental data. In the context of this later point, it impor-

tant to mention this study was conducted prior to the official, European criteria of the PMT/vPvM criteria and hazard classes were estab-

lished.16 Therefore, the PMT substances herein should be considered candidate PMT/vPvM substances, pending a formal classification, as

the model developed did not make differentiations between candidate PMT substances and those that are also candidate vPvM substances.
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Figure 5. The candidate ‘‘PMT’’ substances and ‘‘Potential PMT’’ substances among COVID-19 related chemicals based on model prediction
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Biao Jin (jinbiao@

gig.ac.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

� The datasets generated during this study are available at Supplemental information and the key resources table.
� All original code has been deposited at our GitHub repository (https://github.com/6yunq6/hm_first/tree/master/causal) and is publicly

available as of the date of publication. DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this article is available from the lead contact on request.

METHOD DETAILS

The methods used here are largely based on our previous publication,43 where a summary is presented here with an emphasis on unique

differences to this study. Specifically, this study exclusively constructed a machine learning model for PMT substances rather than PMT

and vPvM substances, and thus the training datasets are different. Secondly, the model prediction mechanism was interpreted by using

both SHapley Additive exPlanations (SHAP) method and causal inference. Lastly, for the first time COVID-19 related chemicals were screened

for PMT substances.

Data collection and preprocessing

The internal dataset with high-quality data is collected from the previous studies.13,14,50 As presented in Figure 1, the canonical SMILES (i.e.,

simplified molecular input line-entry system) codes of these chemicals are obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). In

order to better exact the chemical information of compounds, 4molecular representations including two-dimensional (2D)molecular descrip-

tors (MDs) and three molecular fingerprints (MFs) are compared. Specifically, the MDs with missing values and constant values are removed

and finally 2255 MDs are selected. Given irrelevant and redundant features might cause overfitting problems, feature selection is applied on

MDs. In order to unify the units and scales of different MDs, the descriptor values are standardized (Equation 1):

x� =
x � m

s
(Equation 1)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Internal dataset This paper See Table S1

COVID-19 related compounds This paper See Tables S2–S4

Software and algorithms

Python programming language, version 3.8.8 Python Software Foundation https://www.python.org/

alvaDesc (software for molecular descriptors

calculation) version 1.0.22, 2021

Alvascience https://www.alvascience.com

Anaconda Continuum Analytics https://www.anaconda.com/

SHAP (SHapley Additive exPlanations) Open-Source https://shap-lrjball.readthedocs.io/en/latest/api.html

imbalanced-learn Open-Source https://imbalanced-learn.org/

EconML Open-Source https://econml.azurewebsites.net/

Dowhy Open-Source https://www.pywhy.org/dowhy/v0.8/getting_started/intro.html

Machine learning model Han et al., 202343 https://doi.org/10.1016/j.watres.2023.120470

Causal model GitHub https://github.com/6yunq6/hm_first/tree/master/causal
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where x* is the standardized value of the original molecular descriptor x; m is the mean value of all molecular descriptors; and s indicates the

standard deviation of all molecular descriptors. Furthermore, MFs includes Molecular ACCess System Fingerprints51 (MACCS), Extended

Connectivity Fingerprints52 (ECFP) and Path Fingerprints (PFP). The details of MFs are summarized in supplemental information (Table S5).

These MDs and MFs are calculated by alvaDesc (version 1.0.22) based on SMILES.

Considering that our data are class-imbalanced (i.e. the number of Not PMT substances is much greater than the PMT substances), 15

common data balancing methods (Table S6, Note S9) are used to improve model performance. The above mentioned data balancing

methods are realized using Python 3.8.8 with an imbalanced-learn 0.8.0 package.53

Model establishment and evaluation

Machine learning models are developed through the internal dataset. The internal dataset is divided into training data (80%) and validation

data (20%), which contain same fraction of the positive (i.e., ‘‘PMT’’) and negative samples (i.e., ‘‘Not PMT’’). During model establishment, a

total of 12ML algorithms (Table S7 and Note S10) are compared. The 12 ML algorithms are combined with the above-mentioned 4molecular

representations and 15 data balancing methods to develop machine learning models. Finally, the optimal combination of molecular repre-

sentation, data balancing method and ML algorithm are selected based on matrices of performance evaluation (see below). The establish-

ment of the applicability domain (AD) aims to evaluate if the model could be applied to a certain target compound.54 The further description

of feature selection, hyperparameter optimization andAD are summarized in Supplemental information (Section S1.8; Figure S30). Themodel

training and test was accomplished on a Tianhe-2 Supercomputer.

After model training, the model performance was evaluated by common metrics such as accuracy, recall rate, precision, F-measure and

balanced accuracy (Equations 2, 3, 4, 5, and 6):

Accuracy = ðTP + TNÞ=ðTP + TN + FP + FNÞ (Equation 2)

Recall rate = TP=ðTP + FNÞ (Equation 3)

Precision = TP=ðTP + FPÞ (Equation 4)

F measure = ð2 3 Recall 3 PrecisionÞ=ðRecall + PrecisionÞ (Equation 5)

Balanced accuracy = 0:53 ðTP = ðTP + FNÞ + TN = ðTN + FPÞÞ (Equation 6)

where TN is true negative, TP is true positive, FN is false negative, and FP is false positive. Accuracy indicates the proportion of correctly pre-

dicted samples in the data sets. Recall rate represents the percentage of correctly classified positive samples in all positive samples. Precision

denotes the proportion of correctly classified positive samples in all positive predictions. F-measure is the harmonic mean of recall rate and

precision. Balanced accuracy is computed as the average of the accuracy of positives and the accuracy of negatives. On imbalanced data,

accuracy cannot be primary performance metric. In addition, balanced accuracy is more suitable for evaluating binary classification on unbal-

anced datasets than F-measure.55 Recall rate represents the accuracy of the PMT substance assessment according to the dataset. Due to

more attention given to prediction of PMT substances (positive), recall rate and balanced accuracy are selected as primary performance met-

rics and recall rate is given priority.

To better evaluate the performance of the above-mentionedmodels, we used a 5-fold cross-validation method to eliminate the impact of

dataset partitioning. Firstly, the dataset D is divided into five mutually exclusive subsets of similar size, that is, D = D1WD2WD3WD4WD5,

DiXDj = Ø (isj) (see Figure S31). Then, the union of 4 subsets is used as the training set each time, and the remaining subset is used as

the test set. In this way, 5 sets of corresponding training and test sets can be obtained, so that 5 training and testing times can be performed.

The mean of the 5 test results is used as the final result.

Model validation and application

In Figure 1, the optimal machine learning model is validated and applied on COVID-19 related chemicals. Here, we divide COVID-19-related

compounds into disinfectants, antivirals, and other treatments. 605 disinfectants products are obtained from the U.S. Environmental Protec-

tion Agency’s (EPA) List N: Disinfectants for Use Against SARS-CoV-2.56 About half of products contain quaternary ammonium compounds

(QACs) which are active components in hospital and household cleaners.57 8 commonQACs are selected as our target compounds according

to a previous study.58 Finally, a total of 39 disinfectants compounds are summarized in our list for PMT screening. Furthermore, the antivirals

and other auxiliary drugs are obtained from the previous studies in the ISI Web of Science. In total 69 compounds are collected from 27 lit-

eratures for PMT screening (see Tables S2 and S3). From this literature, a total of 108 COVID-19-related compounds are included (see

Table S4).

The above-mentioned 108 compounds in our list were screened manually for their PMT properties based on available experimental data

and weight-of-evidence data using the approach demonstrated in the previous studies13 (see Table S4). The screening results for PMT sub-

stances are divided into two categories based on the quality of data. One kind is the results based on high quality data (expert judgement).

When the expert-verified results of compounds were unavailable, the QSARmethod is utilized to evaluate the P, M and T properties of these

substances. The method applies existing modeling tools to evaluate the persistency (e.g., using the BIOwin and P-estimator tools in QSAR
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Toolbox (https://qsar-toolbox.org/), mobility (e.g., calculating pH dependant octanol-water distribution coefficients, logDow, ins ChemAxon,

https://www.chemaxon.com/) and toxicity (e.g., QSAR Toolbox) and the final identification conclusion is given by combining the above-

mentioned results (seeNote S2). Finally, the 32 chemicals with available expert judgments are retained to evaluate the performance ofmodel.

The optimal machine learning model is applied to the remaining 76 chemicals.

SHAP method and causal inference

In order to break up the ‘‘black box’’ of machine learning model, a locally interpretable explanatory method termed SHAP59 is utilized to

explore the mechanism of our model. SHAP is a model interpretation method based on game theory,60 which could interpret the output

of any machine learning model. For the predicted compound xi which has n molecular features, SHAP method calculates the Shapley value

(4jðf ;xiÞ) of each feature to measure the impact of the features on the final prediction value (f ðxiÞ) as shown in Equation 7:

f ðxiÞ = 40ðf ; xÞ+
Xn

j = 1

4jðf ; xiÞ (Equation 7)

where 40ðf ; xÞ is the base value and the 4jðf ; xiÞ is SHAP value which denotes contribution of the jth molecular feature in the compound xi to

the final predicted value. The mathematical definition of SHAP value (4jðf ;xiÞ) is shown in Equation 8:

4jðf ; xiÞ =
X

z04x0

jz0j!ðn�jz0j!� 1Þ!
n!

½fxðz0Þ � fxðz0 jÞ� (Equation 8)

where x0 is the set of all possible feature combinations containing feature j, n is the number of all molecular features, |z’ | is the number of non-

zero entries in feature combination z0, z0 j denotes feature combination which removes feature j from z’ , fxðz0Þ and fxðz0 jÞ represent model

predictions for feature combinations z0 and z0 j , respectively. In summary, the SHAP value of feature j is obtained by weighting and averaging

the difference with and without feature j in all possible feature combinations. A more detailed explanation of the SHAP method was summa-

rized in Supplemental information (Note S11). Model interpretation was carried out with Kernel Explainer module within shap 0.40.0 package.

Although the SHAP method is useful to extract correlation information, we cannot determine the causal impact.46 Thus, we trained causal

models and estimated the causal effects for each of top 20 important molecular features selected by SHAPmethod. As a promising approach

for discovering causal relationships,34 structural causal model (SCM) is selected to explore the causation between molecular descriptors and

PMT/Not PMT classifications. For causal inference, the first step is defining the causal model in form of causal graph based on the domain

knowledge and assumptions. For instance, to estimate the causal effect of feature B04[C-N] to PMT properties, we selected the molecular

feature B04[C-N] as the treatment feature (T) and select PMT properties as outcome (Y). The other 19 top important features were selected

as co-variates (X) and the rest 1784 features were selected as confounders (W). Here, X refer to the variables which are used to estimate het-

erogeneous treatment effect. Thus, a causal graph is defined (see Figure S32). The second step is building estimators to estimate the causal

effects between T and Y according to causal graph. Recently, many estimators have been proposed for causal inference, mainly including

machine learning basedmethods. Specially, theDMLOrthoForestmethodperforms particularly well in the presence of high-dimensional con-

founding factors due to the orthogonalization aspect of the method. Therefore, we select DMLOrthoForest method to build estimators for

each feature. A more detailed introduction to the DMLOrthoForest method can be found in the Supplemental information (Section S1.12).

Finally, checking the robustness of the estimates is the most important step in the causal analysis. We obtained an estimate using steps 1-2,

but each step might have made certain assumptions that could lead to wrong results. This step relies on refutation tests by using various

robustness checks to verify the correctness of the estimate. Here, we used three refutation test methods, adding random common cause

(RCC), placebo treatment (PT) and data subset refuter (DS) to test the robustness of causality. The RCC checks the following: Does the esti-

mation method change its estimate after we add an independent random variable as a common cause to the dataset? Here, the PT replaces

the true intervening variable with an independent random variable to determine whether the causal effect will go to zero. DS replaces the

given dataset with a randomly selected subset to test whether the causal effect will change significantly. For a robust causal relationship,

the new causal effects of RCC and DS refutation test should be similar with the original causal effects but the new causal effects under PT

test should be zero. To quantify the robust check criterion (similarity between new causal effects under refutation test and the original causal

effects), we use variance between the new causal effect and the original value as evaluation thresholds for RCC and DS tests. For this, three

evaluation thresholds were set (5%, 1% and 5&), suggesting an increasingly strict criterion.61 The potential causal relationship passed the

initial refutation when the variance was less than 5%. Furthermore, the variance of the estimates under RCC test with respect to the original

values within 1% represents the second level. In order to make sure the robustness of causal relationships, the causality is considered robust

only when passing the strictest criterion (5&).61 Furthermore, the causal relationship between molecular descriptors and ‘‘Not PMT’’ classi-

fications was also explored by labeling ‘‘PMT’’ as 0 and ‘‘Not PMT’’ as 1. The causal inference was implemented by using Python 3.8.8 with

EconML 0.13.1 package and DoWhy 0.7.1 package. The causal inference was accomplished on Tianhe-2 Supercomputer.
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