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Abstract

The rapid spread of SARS-CoV-2 infection around the globe has caused a massive health and socioeconomic crisis.

Identification of phosphorylation sites is an important step for understanding the molecular mechanisms of SARS-CoV-2

infection and the changes within the host cells pathways. In this study, we present DeepIPs, a first specific deep-learning

architecture to identify phosphorylation sites in host cells infected with SARS-CoV-2. DeepIPs consists of the most popular

word embedding method and convolutional neural network-long short-term memory network architecture to make the

final prediction. The independent test demonstrates that DeepIPs improves the prediction performance compared with

other existing tools for general phosphorylation sites prediction. Based on the proposed model, a web-server called DeepIPs

was established and is freely accessible at http://lin-group.cn/server/DeepIPs. The source code of DeepIPs is freely available

at the repository https://github.com/linDing-group/DeepIPs.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is

a highly transmissible and pathogenic coronavirus that emerged

in late 2019 and has caused a pandemic of acute respiratory

disease, named ‘coronavirus disease 2019’ (COVID-19), which

presents a massive health and socioeconomic crisis [1, 2]. To

devise therapeutic strategies to conquer SARS-CoV-2 infection

and the associated COVID-19 pathology, it is urgent to develop

new drugs and repurpose existing ones to dampen the disease

course and reduce the burden of medical institutions [3]. As of
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2 October 2020, there were about 405 therapeutic drugs in devel-

opment for COVID-19 but mostly remain computational without

tests in infection models [4]. Comprehensive understanding of

the molecular mechanisms of SARS-CoV-2 infection and the

changes within the host cell pathways is essential to rationally

repurpose drugs [5].

Proteomics approaches are powerful tools to elucidatemech-

anisms of pathogenesis by quantifying changes in protein abun-

dance and phosphorylation [6]. For instance, Stukalov et al. [7]

characterized interactome, proteome and signaling process in a
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systems wide manner to study the relationship of SARS-CoV-

2 and host cells. Bouhaddou et al. [8] presented a quantitative

mass spectrometry-based phosphoproteomics survey of SARS-

CoV-2 infection in Vero E6 cells to reveal dramatic rewiring

of phosphorylation on host and viral proteins. Klann et al. [5]

used a SARS-CoV-2 infection system in Caco-2 human cells to

study signaling changes by phosphoproteomics.Hekman et al. [9]

performed a quantitative phosphoproteomics survey of SARS-

CoV-2 infection in iAT2 cells to exploit the mechanisms driving

infection and pathology. The high-throughput Mass Spectrome-

try techniques used in the above studies can annotate phospho-

rylation sites accurately, therefore accumulating a large number

of phosphorylation examples. However, traditional experimen-

tal methods are labor-intensive and time-consuming especially

applied in verifying huge amounts of candidate phosphorylation

sites. Alternately, as a complementary technique to traditional

experimental strategies, the computational approach is a better

choice.

To date, a considerable number of predictors for identifying

phosphorylation sites have been proposed. Most of them show

a common strategy that can be summarized as two steps: (i) to

encode original sequence based on artificially designed feature

extraction method and (ii) to choose an optimized machine

learning algorithm for classification and prediction. For exam-

ple, PhosPred-RF used information theory feature, overlapping

property feature, 20-bit features, 21-bit features and Skip-n-gram

features, trained by random forest-based algorithm for phos-

phorylation sites prediction [10]. Quokka applied a variety of

sequence scoring functions combined with an optimized logis-

tic regression algorithm for the prediction of phosphorylation

sites [11]. GPS 5.0 utilized two novel methods named position

weight determination and scoring matrix optimization followed

by logistic regression algorithm to identify phosphorylation sites

[12]. Although features involved in thesemethods achieved good

performance phosphorylation sites predictions, there is limita-

tion of ‘feature engineering’, which requires artificially design

that may result in biased features [13].

One promising and attractive solution for such a challenge

is the deep-learning-based approach. Compared with the cum-

bersome ‘feature engineering’ of conventionalmachine-learning

techniques, deep-learning shows a distinctive advantage. It can

automatically generate complex patterns and capture the high-

level abstraction adaptively from the training data. Based on

these, several deep-learning-based models have been proposed

for phosphorylation sites identification. For example, Musit-

eDeep took raw sequence data as input and used convolu-

tional neural networks (CNNs) with a novel two-dimensional

attention mechanism for predicting phosphorylation sites [13].

CapsNet introduced a capsule network with multi-layer CNN for

protein post-translational modification site identification and

presented some outstanding properties of capsules in charac-

terizing biologically meaningful features [14]. DeepPSP designed

a global–local information-based deep neural network for the

prediction of phosphorylation sites [15]. These approaches using

only raw sequence have shown superior to the previous tradi-

tional machine learning methods. However, there is no specific

deep-learning architecture to identify phosphorylation sites in

host cells infected with SARS-CoV-2.

Here, we present a novel CNN-long short-term memory

network (LSTM) architecture, DeepIPs, to accurately predict

phosphorylation sites in host cells infected with SARS-CoV-

2 (Figure 1). Different from aforementioned deep-learning

methods, DeepIPs uses word embedding approaches in natural

language processing to obtain protein sequence representation,

which avoids the limitation of ‘feature engineering’ and

effectively improves the performance of the model. To evaluate

the performance of DeepIPs, we built different independent

datasets to assess the model. The evaluation results reveal that

the robust representations generated by word embedding and

CNN-LSTM architecture have a strong discriminant power in

recognizing general phosphorylation sites. We believe that the

proposed architecture can also address other bioinformatics

problems better than previous methods. In addition, our study

provides an early example use-case of popular word embedding

methods in biological sequence analysis and may shed light on

other biological prediction problems.

Materials and methods

Benchmark dataset construction

In this study, the experimentally verified phosphorylation sites

of human A549 cells infected with SARS-CoV-2 were collected

from literature [7]. The dataset included 14 119 phosphorylation

sites. To reduce the sequence redundancy of phosphorylation

proteins and avoid model overfitting, the CD-HIT program [16]

was used with the sequence identity threshold of 30%. To facil-

itate comparison with other existing methods on phosphory-

lation site prediction, the processed sequences were truncated

into 33-residue-long sequence segments with S/T or Y located at

the center. A segment was defined as a positive sample if its cen-

tral S/T or Y was phosphorylation; otherwise, it was defined as a

negative sample. As a result, a great number of negative samples

were obtained. To balance the positive and negative data, we

randomly selected a subset of non-redundant negative samples

to match the number of positive samples [17–19]. After doing

all of these, 5387 positive samples and 5387 negative samples

of S/T sites, 102 positive samples and 102 negative samples of

Y sites were obtained. Meanwhile, a common used performance

evaluation strategy in deep-learning frameworks for sequence

analysis was adopted in this study, which separates the dataset

into strictly non-overlapping training set and independent test-

ing set randomly in a ratio of 8:2 [20]. The detailed description of

data is listed in Table 1.

The representation of proteins with word embedding
vectors

Word embedding is a set of techniques in natural language

processing in which words from a vocabulary are represented as

vectors using a large corpus of text as the input. Our previous

study has demonstrated that word embedding method which

convert each amino acid (aa) into a fixed-length vector of a

defined size alongwith reduced feature dimensions can produce

satisfactory prediction performance [21]. Thus, in this study, two

strategies were implemented to encode protein sequences: one

is a supervised embedding layer (SEL); another is an unsuper-

vised embedding layer based on pre-trained word embedding

methods such as Word2Vec [22], GloVe [23] and fastText [24, 25].

Details were described as follows.

Supervised embedding layer

The essence of embedding layer in Keras [26] is a fully con-

nected neural network, which turn positive integers (indexes)

into dense vectors of fixed size. For a given protein sequence,

a fixed-length digital vector was generated by replacing the

amino acids with their corresponding encoders. If the length

is less than ‘max_length’, we used function ‘pad_sequence’ to
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Figure 1. Schematic diagram of the change process of phosphorylation modification levels in vivo after host cells are infected with SARS-CoV-2.

Table 1. Phosphorylation data collected in this study. The benchmark datasets of S/T sites and Y sites were divided into training set and
independent testing set randomly in a ratio of 8:2, respectively

Data type Residue type Positive samples Negative samples

Training S/T 4308 4308

Y 81 81

Testing S/T 1079 1079

Y 21 21

amplify the length of protein sequence to 200 aa. By doing this,

a protein sequence is converted to a sparse vector with many

zeros. However, this ordinary encoding scheme cannot reflect

the relationship between protein residues and their sequential

and spatial neighbors. Thus, we used embedding layer to map

amino acids to dense vectors by simulating protein sequences

as documents and amino acids as words [27]. The semantic

similarity between two arbitrary amino acids learned from large-

scale sequences allows us to use the continuous metric notions

of similarity to assess the semantic quality of individual amino

acids. Embedding an amino acid can be done by multiplying the

one-hot vector from the left with a weight matrix W ∈ Rd×|V|,

where |V| is the number of unique amino acids and d is the

embedding size. Supporting that vi is the one-hot vector of an

amino acid xi in a given protein sequence x = x1x2 · · · xn, the
embedding of xi can be represented as follows:

ei = Wvi. (1)

The weight matrix is randomly initialized and updated in

a back-propagation fashion. After the embedding layer, an

input sequence can be presented by a dense matrix Ed×n =
(e1, e2 · · · , en).

Word2Vec

Word2Vec is a machine learning model based on feed-forward

neural network that can be used to generate vector represen-

tations of words in a text and has been widely used in bioin-

formatics problems [28–31]. The basic idea for training such a

model is to assign similar vector representations to words in

similar contexts according to word proximity collected from

a large corpus of documents. Here, we utilized Word2Vec to

train a distributed representation and embedding for protein

sequences. We considered subsequences of fixed-length k as

amino acid ‘word’ (also referred to as k − mers). The collection

of all possible k − mers was defined as the vocabulary (size of

vocabulary = 21k).We then used a k sized sliding window to scan

protein sequence as well as its flanking region with step size

1. After protein sequences and their flanking regions were built,

we adopted CBOWmodelwhich has the advantage over the skip-

grammodel of uniformly organizing the information distributed

in the dataset to pre-train the embedding layer.TheCBOWmodel

aims to predict the currentword using a few surrounding context

words. There are three layers in the model: the input layer,

hidden layer and output layer. W and W′ are the shared input

weight matrix and output weight matrix, respectively. The input

layer of the model is a word vector. Since the CBOW model

produces the target word through n predictions before and after

the target word as shown in Eq. (2), the target function of the

model can be easily obtained as follows:

Jθ =
1

T

T
∑

t=1

log P (wt|wt−n, · · · ,wt−1,wt+1, · · · ,wt+n) , (2)

where wt is target word and wt−n, . . . ,wt+n represent the context

words. Because the hidden layer does not involve any non-linear

transformation, it can be regarded as a softmax layer, so that

P(wt|wt−n, · · · ,wt+n) can be defined by

P (wt|wt−n, · · · ,wt+n) =
exp

(

W′T
t ht

)

∑v
k=1 exp

(

W′T
k ht

) , (3)

where ht is the value of the input word vector mapped to the

hidden layer vector. The input vector is first subjected to matrix
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operation with the matrix W, and the average value of all input

vectors after matrix operation is obtained to obtain ht; W′ is the

hidden layer to the output weight matrix between layers.

After training the CBOW model, the optimized parameters

were transferred as the initial weights of the embedding layer,

and fine tuning is done with the subsequent layers together

under the supervision of the label of fragments. In our work, the

Word2Vec was implemented with genism 3.8.0.

GloVe

GloVe is an unsupervised learning algorithm to produce vector

representations of words. Learning is performed in global word-

word co-occurrence statistics counted from a corpus [23]. The

GloVe model learns items on the non-zero entries of a global

word-word co-occurrence matrix, which shows how frequently

words co-occur in the given corpus in a table. In general, the

number ofmatrix entries that are non-zero ismuch smaller than

the total number of words in the corpus. Thus, the loss function

based on theweighted least-squares regressionmodel converges

faster

N
∑

i,j

f
(

Xi,j

) (

vTi vj + bi + bj − log
(

Xi,j

))2
, (4)

where X is a word co-occurrence matrix, Xi,j is the frequency

of word i co-occurring with word j and Xi =
∑V

k Xik is the total

number of occurrences of word i in the corpus. The probability

ofword j that occurs in the context ofword i isXi,j = P(j|i) = Xi,j/Xi.

v is word embedding, vi and vj are the word vectors of word i and

word j,bi and bj are constant terms, f is theweight function andN

is the size of the vocabulary. In our experiment,we set the vector

size to 100 and the window size to 15.

fastText

fastText is a library created by the Facebook Research Team

that allows us to create an unsupervised learning algorithm for

obtaining vector representations for words [32]. The model uti-

lizes low-rank matrix to reduce the computation burden while

sharing parameters among features and classes. This is espe-

cially useful in the case of large output space, where rare classes

may have only a few training examples [25]. fastText uses archi-

tecture similar to the CBOW model, which minimizes the soft-

max loss ℓ over N documents

N
∑

n=1

ℓ
(

yn, BAxn
)

, (5)

where xn is a bag of one-hot vectors and yn is the label of the

nth document. Unlike Word2Vec and GloVe, which are based

on word-level representation, fastText uses a smaller unit of

character level to obtain word representation. In this study, we

implemented a bag of 1 g to capture some partial information

about the local word order.

Architecture design

Here, we presented a hybrid deep-learning architecture con-

sisted of CNNs followed by a LSTM layer, where CNNs were

used to extract high-level motif features and LSTM was used

to learn long-range dependencies (Figure 2). The details of the

architecture are as follows:

(i) Convolutional layer: The convolutional layer is a major

building block of CNN, which contains a set of learnable

filters where each filter is convolved with the input of

the layer to encode the local knowledge of the small

receptive field.This process helps conserve the dimensional

relationship between numeric values in the vectors [33].

Thus, a 1D convolutional layer was used to construct a

convolution kernel and then derive features encoded in the

embedding layer [34].

(ii) Rectified Linear Unit (ReLU): An additional non-linear oper-

ation was presented after every convolution operation. It

aims to introduce the property of non-linearity into the

model and produce a more desirable output. The output

function of ReLU is as follows:

f (x) = max (0, x) , (6)

where x is the number of inputs in a neural network.

(iii) Pooling layer: Max pooling is a sample-based discretization

process. It was used to down-sample the hidden-layer out-

put matrix, reducing its dimensionality and allowing for

assumptions to be made about features contained in the

sub-regions binned. In this step, we set Max pooling stride

equal to 2.

(iv) Dropout layer: A technique which probabilistically drop-

ping out nodes in the network for reducing overfitting and

improving the generalization of deep neural networks. In

this step, we set the dropout size equal to 0.5.

(v) LSTM layer: An LSTM layer consists of a set of recurrently

connected blocks, which contain one or more recurrently

connected memory cells and three multiplicative units—

the input, output and forget gates. The output of each LSTM

cell encodes the observed short- and long-term dependence

on that cell’s input. The outputs of the LSTM layers are fused

using concatenation to obtain the final feature vector. In

this step, we set the output size equal to 70.

(vi) Dense layer: A neural network layer that is connected

deeply, which means that each neuron in the dense layer

receives input fromall neurons of its previous layer.Our task

is to train a binary classification model to distinguish phos-

phorylation sites and non-phosphorylation sites. Therefore,

in this step, we set the number of nodes equal to 2.

In our work, the CNN-LSTM architecture was implemented

with Keras library 2.2.2 [26], TensorFlow 1.2.1 and sklearn 0.22.1.

Detailed parameter information can be obtained from https://gi

thub.com/linDing-group/DeepIPs.

Performance evaluation

To assess the performance of phosphorylation site prediction,

several commonly used evaluation metrics were employed in

this study, including sensitivity (Sn), specificity (Sp), overall accu-

racy (Acc) and Matthew’s correlation coefficient (MCC) [35–39].

The detailed definitions are



































Sn = TP
TP+FN

0 ≤ Sn ≤ 1

Sp = TN
TN+FP

0 ≤ Sp ≤ 1

Acc = TP+TN
TP+TN+FP+FN

0 ≤ Acc ≤ 1

MCC = TP×TN−FP×FN√
(TP+FN)×(TN+FN)×(TP+FP)×(TN+FP)

− 1 ≤ MCC ≤ 1

, (7)

where TP, TN, FP and FN represent the number of true posi-

tive samples, true negative samples, false positive samples and

https://github.com/linDing-group/DeepIPs
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Figure 2. Visualization of the detailed architecture of DeepIPs. The input of DeepIPs is four different word embedding methods. The protein sequences are encoded as

vectors that are fed into CNN-LSTM block. The convolution block was used for initial feature extraction and LSTM block was used to further capture the features from

convolutional layer. Finally, the output of CNN-LSTM is fed into an additional fully connected layer and a Softmax layer to produce the final output.

Table 2. Confusion matrices of SEL, Word2Vec, GloVe and fastText with 5-fold cross-validation

Residue type Algorithm Acc(%) Sn(%) Sp(%) MCC AUC

S/T SEL 80.45 79.70 81.19 0.6102 0.8871

Word2Vec 76.04 70.53 81.49 0.5264 0.8397

GloVe 79.54 73.50 85.52 0.5954 0.8849

fastText 78.26 70.33 86.11 0.5740 0.8723

Y SEL 73.44 75.00 72.55 0.4988 0.8199

Word2Vec 74.35 73.33 76.18 0.5160 0.8057

GloVe 75.22 74.85 76.18 0.5183 0.8414

fastText 59.17 35.00 80.00 0.1680 0.6537

false negative samples, respectively. Furthermore, we also used

receiver operating characteristic (ROC) curve as well as the area

under ROC curve (AUC) to assess the overall performance [40–

42], the closer the AUC value to 1, which demonstrates that the

overall performance is better.

Results

Performance evaluation of different word embedding
methods

We evaluated and compared the prediction performance of four

different word embedding methods used by CNN-LSTM archi-

tecture with 5-fold cross-validation based on S/T and Y phos-

phorylation sites datasets. The confusion matrices were shown

in Figure 3 and Table 2. From Figure 3 and Table 2, the following

points were observed.

For S/T sites, the SEL, Word2Vec, GloVe and fastText, all

could produce satisfactory performance, indicating that word

embedding methods have ability to capture information hidden

in the protein sequence by mapping the truncated phosphoryla-

tion and non-phosphorylation peptides from high-dimensional

space to low-dimensional space. In particular, the supervised

learning-based method SEL outperformed the other three

unsupervised learning-based methods in terms of Sn, Acc, MCC,

AUC, except for Sp. This result suggested that SEL method with

more information utilization and robust embedding architecture

may serve as efficient approach for S/T phosphorylation site

prediction. Additionally, compared with fastText and GloVe

methods, Word2Vec performs worse in all evaluation metrics.

The reason is that the sequential information among the

textual units is discarded inside the CBOW model. Even if

the word vector sampled by the sliding window contains

certain sequential information, the embedding constraint on

words is very small, and it is not enough to capture sufficient

sequence order features. In contrast, fastText introduces a

strongly constrained n-gram to extract sequential features,

which helps it improve 4.62, 2.22, 4.76 and 3.26% compare with

Word2Vec in Sp, Acc, MCC and AUC, respectively. Furthermore,

it is clear that GloVe exhibits an advantage over Word2Vec

and fastText in identifying S/T phosphorylation sites. The

reason is that GloVe can mine better word representations

from global corpus, which is different from Word2Vec and

fastText based on local corpus. These results indicated that

sequential features provide significant contribution to improve

the predictive ability of the model. Meanwhile, co-occurrence-

based GloVe is superior to the distributed assumption-based

Word2Vec and fastText in S/T phosphorylation site prediction

problem.
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Figure 3. ROC curves of SEL, Word2Vec, GloVe and fastText with 5-fold cross-validation on S/T sites and Y sites, respectively.

For Y sites, we found that GloVe achieves the best per-

formance (AUC=0.8414), while SEL produces the second best

result (AUC=0.8199). This result suggested that both SEL and

GloVe have the ability to learn specific embedding function that

maps all peptides containing in training data into a joint low-

dimensional embedding space. Interestingly, we noticed that

this result is similar to the S/T sites prediction task, where

SEL and GloVe perform better than other word embedding

methods, which intuitively shows that these two approaches

are robust and effective in learning from small and large

training data. As we all know, the pre-training step involved

in unsupervised learning-based embedding serves as a prior for

the parameter space, which is useful for generalization to small

training data. However, we observed the opposite result that

fastText exhibits worst performance as the number of training

data decreases. This indicated that fastText is not practically

suitable for Y phosphorylation sites prediction. We speculated

that the reasons for this situation include two aspects: different

Y-containing sequences have similar sequential information,

fastText’s operation of averaging the word vectors of each

sequence leads to a large amount of information loss; fastText’s

linear network structure is not capable of complex learning

task such as Y phosphorylation sites prediction. In addition,

Word2Vec performs considerably better on such small training

data, indicating that Word2Vec can achieve stable performance

when being applied to both small and large datasets. Taken

together, in this study, we established the final models for S/T

sites and Y sites based on SEL and GloVe, respectively.

Evaluation of DeepIPs for phosphorylation site
prediction

In this section, we first compared DeepIPs with different deep-

learning network architectures including CNN [43] and LSTM [44]

on the training data as described in Benchmark dataset con-

struction section. The AUC values of these methods on residues

S/T and Y were shown in Figure 4. All detailed evaluation indi-

cators were listed in Table 3. In general, DeepIPs obtained higher

AUC value than other deep-learning architectures, showing that

DeepIPs has better overall performance. For instance, on S/T

sites, the AUC value of our architecture is 0.8871, which is 0.98

and 2.16% higher than CNN and LSTM, respectively. In addition

to AUC values, it is obvious that DeepIPs consistently achieved

higher performance in terms of Sn, Acc, MCC than other deep-

learning architectures. For Y sites, Sn, Sp,Acc,MCC andAUC value

of DeepIPs at the high-stringency level are 74.85, 76.18, 75.22,

0.5183 and 0.8414, respectively. These metrics are higher than

CNN and LSTM on all the measurements, which demonstrates

the efficient architecture of the constructedmodel. Furthermore,

we also found that the performance of LSTM is not as good as

other deep-learning approaches on S/T and Y sites, indicating

that LSTM may not be an ideal architecture for phosphorylation

site prediction.

To further assess the performance of DeepIPs, we should

compare DeepIPs with several existing phosphorylation site pre-

diction tools using independent test data.However,most ofmod-

els used different training data and did not provide standalone

tools or web-server, therebymaking it difficult to provide a direct

comparison.To solve it,we only chose three representative deep-

learning-based tools that are DeepPSP [15], MusiteDeep2020 [45]

andMusiteDeep2017 [13]. The code or webserver of these predic-

tors has been provided and available online. For fair comparison,

we rebuilt themodels of these three tools, and the corresponding

performances were obtained. The AUC values on independent

data were plotted in Figure 5. All detailed evaluation metrics

were shown in Table 4. We noticed that DeepIPs is superior to

other three predictors. For S/T sites, the AUC value of DeepIPs

is 0.8937, which is 1.75, 0.7 and 1.39% higher than DeepPSP,

MusiteDeep2020 and MusiteDeep2017, respectively. For Y sites,

AUC values of DeepPSP, MusiteDeep2020 and MusiteDeep2017

are 0.8209, 0.8730 and 0.8141, respectively, while DeepIPs can

produce a higher value of 0.9252. These results indicated that



Identification of phosphorylation sites using deep learning 7

Figure 4. ROC curves of different deep-learning network architectures with 5-fold cross-validation on S/T sites and Y sites, respectively.

Table 3. Evaluation indicators of different deep-learning network architectures with 5-fold cross-validation, including CNN- LSTM, CNN and
LSTM, respectively

Residue type Algorithm Acc(%) Sn(%) Sp(%) MCC AUC

S/T CNN-LSTM 80.45 79.70 81.19 0.6102 0.8871

CNN 80.05 76.53 83.54 0.6035 0.8773

LSTM 79.22 73.50 84.89 0.5903 0.8655

Y CNN-LSTM 75.22 74.85 76.18 0.5183 0.8414

CNN 76.05 76.36 76.18 0.5371 0.8055

LSTM 66.48 68.33 65.09 0.3630 0.6739

DeepIPs has excellent prediction ability when comparing with

existing tools.

Additionally, we noticed that DeepIPs has only a slight

improvement in model performance compared with the

MusiteDeep2020 on S/T sites. The possible reason is that the

independent dataset could be included in the training procedure

of these tools, so that their performance is similar. To make

an equal and objective evaluation of the performance, we

collected the experimentally verified S/T phosphorylation sites

of Vero E6, Caco-2 and iAT2 cell lines infected with SARS-CoV-

2 from literatures [5, 8, 9]. Next, we performed very rigorous

procedure to eliminate the overlap entries between this dataset

and the training data of DeepIPs and MusiteDeep2020. Thus, an

unseen independent dataset was constructed. Subsequently,

we inputted the non-redundant dataset into DeepIPs and

MusiteDeep2020 for examining their performance. The results

showed that DeepIPs can correctly identify 58.66% (210/358)

modification sites which is better than the results generated

from MusiteDeep2020 43.58% (156/358). Apart from this, we also

integrated the unseen independent dataset into training dataset

and built the corresponding model. The result showed that the

model can correctly differentiate 79.05 (283/358) modification

sites contained in unseen independent dataset. Overall, these

results further demonstrate the stability and generalization

ability of our proposed method.

Discover potential therapeutic targets

Previous study has shown that some kinase inhibitors, such as

Gilteritinib (a designated FLT3/AXL inhibitor, Ipatasertib (AKT

inhibitor)), can be used as potential drugs for the treatment

of COVID-19 by hindering the replication of SARS-CoV-2 and

interfering with its required host pathway [7]. Therefore, by

integrating different database resources, narrowing the scope

of antiviral compounds and discovering host kinases that act

as therapeutic targets will lay the foundation for the develop-

ment of new therapeutic strategies. Inspired by this idea, we

utilized the gene names and protein accession numbers in the

benchmark dataset used in this work as indexes to search the

corresponding kinases in the databases of PhosphoSitePlus [46]

and phosphor.ELM [47], and categorized the kinase families. The

detailed results were shown in Supplementary Data. We found

that most of the phosphorylation process is mediated by cyclin-

dependent kinases, indicating that viral proteins accelerate the

host cell cycle through interactionwith host kinases. In addition,
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Figure 5. ROC curves of existing tools for phosphorylation site prediction.

Table 4. Performance of existing tools for phosphorylation site prediction with 5-fold cross-validation

Residue type Method Acc(%) Sn(%) Sp(%) MCC AUC

S/T DeepIPs 80.63 79.61 83.50 0.6316 0.8937

DeepPSP 80.21 76.65 83.78 0.6058 0.8762

MusiteDeep2020 80.95 82.95 78.96 0.6196 0.8867

MusiteDeep2017 80.17 78.87 81.46 0.6035 0.8798

Y DeepIPs 83.33 90.48 80.95 0.7175 0.9252

DeepPSP 76.19 95.24 57.14 0.5665 0.8209

MusiteDeep2020 85.71 95.24 76.19 0.7276 0.8730

MusiteDeep2017 80.95 85.71 76.19 0.6219 0.8141

PKC, CK2, PKA and Src are also involved in the phosphoryla-

tion reaction. Thus, the development of specific inhibitors of

these kinases may be a promising approach to treat SARS-CoV-2

infection.

Conclusion and discussion

Phosphorylation is of significance in biological process, which

relates to the occurrence of SARS-CoV-2 infection. Due to the

limitations of experimental verifying sites that cost time and

money, it is very urgent to develop effective computational

methods for phosphorylation identification in SARS-CoV-2

infection. Hence, in this study, we propose DeepIPs, which

consists of the most popular word embedding methods and

CNN-LSTM architecture, to predict phosphorylation sites. The

independent test demonstrates that DeepIPs has a better

performance than existing phosphorylation sites predictors.

Furthermore, a freely accessible web-server called DeepIPs was

established.

The major contributions of our study can be summarized

as follows. Firstly, we systematically compared the pros and

cons of four word embedding methods in predicting S/T or Y

phosphorylation sites. Due to the better transferability of word

embedding, our analysis can promote its application research in

other bioinformatics classification problems. Secondly, we com-

pared the CNN-LSTM architecture used in this work with other

deep-learning algorithms, such as CNN and LSTM. The results

show that CNN-LSTM can comprehensively capture short- and

long-range correlation information which once again proves

that the architecture has capacity in identifying phosphorylation

sites. The last and the most important is that the model we built

has special value in predicting phosphorylation sites in host cells

infected with SARS-CoV-2.

In addition, the following aspects can be further improved

in the future. Firstly, the word embedding methods, such as

SEL, Word2Vec, fastText and GloVe used in this study, are all

based on fixed representations of word vectors, which cannot

represent the different meanings of word in different contexts.

The dynamic word representation methods, such as ELMo, GPT

and BERT, can extract contextual semantic information based

on the words in the context, thus have stronger word repre-

sentation capabilities. Secondly, the CNN-LSTM architecture we

designed cannot explain meaningful biological process well due

to ‘black box’ property. Therefore,we will use some interpretable

deep-learning algorithms in future works, such as generating

adversarial network.
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Key Points

• We provided a systematic comparison of the most

popular word embedding methods in identifying

phosphorylation sites in host cells infectedwith SARS-

CoV-2.
• We proposed DeepIPs, a new CNN-LSTM architecture

for phosphorylation sites prediction.
• The independent test demonstrates the excellent per-

formance of DeepIPs.
• We established a freely accessible web-server called

DeepIPs.

Data availability

We provide the Python source code of DeepIPs model train-

ing, which is freely available at https://github.com/linDing-

group/DeepIPs.
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