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Abstract

Recombination is the exchange of genetic material between homologous chromosomes via physical crossovers. High-
throughput sequencing approaches detect crossovers genome wide to produce recombination rate maps but are difficult
to scale as they require large numbers of recombinants individually sequenced. We present a simple and scalable pooled-
sequencing approach to experimentally infer near chromosome-wide recombination rates by taking advantage of non-
Mendelian allele frequency generated from a fitness differential at a locus under selection. As more crossovers decouple
the selected locus from distal loci, the distorted allele frequency attenuates distally toward Mendelian and can be used to
estimate the genetic distance. Here, we use marker selection to generate distorted allele frequency and theoretically
derive the mathematical relationships between allele frequency attenuation, genetic distance, and recombination rate in
marker-selected pools. We implemented nonlinear curve-fitting methods that robustly estimate the allele frequency
decay from batch sequencing of pooled individuals and derive chromosome-wide genetic distance and recombination
rates. Empirically, we show that marker-selected pools closely recapitulate genetic distances inferred from scoring
recombinants. Using this method, we generated novel recombination rate maps of three wild-derived strains of
Drosophila melanogaster, which strongly correlate with previous measurements. Moreover, we show that this approach
can be extended to estimate chromosome-wide crossover interference with reciprocal marker selection and discuss how
it can be applied in the absence of visible markers. Altogether, we find that our method is a simple and cost-effective
approach to generate chromosome-wide recombination rate maps requiring only one or two libraries.
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Introduction
T.H. Morgan first envisioned the exchange of genetic material
between homologous chromosomes through physical cross-
overs (Morgan 1911b). After backcrossing F1 heterozygotes,
he recovered novel allelic combinations, or recombinants, of
markers on the same chromosome that are absent in parental
lines (Morgan 1911a). At face value, this appeared to violate
Mendel’s law of segregation and the chromosome theory of
inheritance (Blixt 1975). A.H. Sturtevant, then a prodigious
undergraduate in Morgan’s laboratory, confirmed his men-
tor’s theory by crossing mutant Drosophila strains with dif-
ferent visible X-linked markers. Noticing that different pairs of
markers produced recombinants at different frequencies,
Sturtevant realized that the positions of these markers can
be ordered on a linear map, with the frequency of recombi-
nants as the genetic distance between any two markers
(Sturtevant 1913). This was the birth of the very first genetic
map (Brush 2002).

Measured as the number of recombinants divided by the
total number of offsprings, the frequency of recombinants
(henceforth recombinant fraction) does not reflect the true
probability of crossovers between two loci (Castle 1919). This
is because only odd numbers of crossovers are observable
since even numbers of crossovers produce recombinants
that maintain the allelic combinations of the parents
(Sturtevant 1913; Sturtevant et al. 1919). With increasing ge-
netic distance, the probability of multiple crossovers also
increases causing recombinant fraction to deviate from true
genetic distance. To account for multiple crossovers, mapping
functions are applied to convert recombinant fractions (D) to
true genetic distances (d). Although many mapping functions
have been developed to account for different rates of cross-
over interference (Felsenstein 1979; McPeek and Speed 1995;
Tan and Fornage 2008), the two most popular are Haldane’s
(Haldane 1919) and Kosambi’s mapping functions (Kosambi
1943). Haldane’s mapping function (H) assumes no crossover
interference and tends to overestimate genetic distance
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(Tan and Fornage 2008). Kosambi’s mapping function (K)
assumes that crossover interference is inversely proportional
to the genetic distance between any two loci and produces
estimates that are more consistent with crossing experiments
(Huehn 2011). After these functions, the genetic distance
is expected to be additive such that HðDACÞ ¼ HðDABÞ
þ HðDBCÞ given three loci A, B, and C, in that order.

In the century after Morgan and Sturtevant conceptual-
ized and devised the recombinant backcross scheme, recom-
bination has been recognized as one of the most fundamental
and universal biological processes across sexually reproducing
eukaryotes with vast implications in many biological fields.
For example, crossover events are crucial for the fidelity of
chromosome segregation (see reviews, Page and Hawley 2004;
Hunter 2015; Hughes et al. 2018) and recombination rate is
intimately linked with the efficacy of natural selection and
genome evolution (see reviews, Cutter and Payseur 2013;
Martin and Jiggins 2017; Stephan 2019). Despite rapid tech-
nological and methodological advances, methods to measure
recombinant fraction, genetic distance, and recombination
rate remain grounded in the approach devised by
Sturtevant—tallying the number of recombinants between
loci that are either phenotypically or molecularly marked. The
advent of whole-genome sequencing has permitted the gen-
eration of high-resolution crossover maps, by identifying
regions of the genome where parental haplotypes change
in recombinant individuals (Kulathinal et al. 2008; Rockman
and Kruglyak 2009; Dumont et al. 2011; Comeron et al. 2012;
Miller et al. 2012). More recently, single-cell sequencing tech-
nologies have further extended such high-throughput cross-
over detection directly from sperm cells (Hinch et al. 2019).
Although providing impressive resolution often at the level of
individual bases, these approaches are difficult to scale, as
each recombinant individual/cell requires a separate library
preparation and/or barcode. Since each chromosome, on av-
erage, has only one to two crossovers, hundreds to thousands
of individuals, and therefore libraries/barcodes, need to be
sequenced for a comprehensive map.

In addition to cross-based experimental measurements,
recombination rate is also frequently estimated at the popu-
lation level (Langley et al. 2000; McVean et al. 2004; Wang and
Rannala 2008; Chan et al. 2012). Such population estimates, in
short, are inferred from the breakdown of linkage patterns
from historical recombination events. Recent developments
have further allowed highly cost-effective and accurate pop-
ulation level estimates from single diploid genomes (Barroso
et al. 2019) and pooled sequencing of unrelated individuals
(Adrion et al. 2020). In conjunction with experimental
approaches, these methods have been instrumental in reveal-
ing the importance of recombination on population dynam-
ics and genome evolution.

However, the lack of a scalable method to experimentally
estimate recombination rate at genome scale is particularly
problematic since recombination rate is a highly labile phe-
notype (Ritz et al. 2017). It is sensitive to environmental
stresses like temperature (Stern 1926), nutrition (Neel
1941), and infection (Singh et al. 2015), and changes with
age (Redfield 1966). Furthermore, recombination rate differs

drastically not only between closely related species (Jensen-
Seaman et al. 2004; Kulathinal et al. 2008; Smukowski and
Noor 2011; Brand et al. 2018) but also between individuals of
the same species (Nachman 2002; Dumont et al. 2009, 2011;
Stevison and Noor 2010; Comeron et al. 2012; Kaur and
Rockman 2014; Hunter et al. 2016). Therefore, a scalable
and cost-efficient approach is necessary to fully capture the
extent of the variability of recombination rate and enrich our
understanding of this fundamental yet volatile molecular
process.

Instead of scoring recombinants or identifying crossover
breakpoints in individuals from a typical backcross, we dem-
onstrate here that recombination rate can be estimated from
allele frequency (AF) attenuation around loci that cause dis-
torted AF. When the homologous alleles across all loci have
equal fitness, the AF of the progeny pool is expected to be
Mendelian across the chromosome, regardless of the number
of recombinants produced by crossovers in the F1 parents
(fig. 1A). However, when the alleles at a given locus do not
have the same fitness/viability, that is, a fitness differential, the
AF at the locus will deviate from the Mendelian ratio.
Importantly, the deviating AF is expected to show a signature
attenuation pattern whereby it peaks at the distorting locus
and attenuates distally toward Mendelian due to increasing
number of crossover events between the locus and gradually
more distal loci. Therefore, the AF and its rate of change
should be related to the genetic distance and recombination
rate, respectively. Since chromosome-wide AF can be deter-
mined using pooled whole-genome sequencing of the back-
cross progenies (Kofler et al. 2011; Wei et al. 2017; Tilk et al.
2019), the recombination rate map can be generated with as
little as one library preparation. This is, at a minimum, two
orders of magnitude fewer than current approaches. Fitness
differential can be easily achieved by using marker selection,
therefore allowing recombination rate to be estimated from
AFs in marker-selected pools (fig. 1B). Previously, AF has been
utilized for fine-scale crossover rate estimates in pools where
recombinants were specifically selected by a double marker
selection scheme (Singh et al. 2013) but had analytical short-
falls that resulted in problematic estimates (Gilliland 2015)
(also see Discussion). Our approach here requires only one
marker and does not require identification and scoring of
visible recombinants.

We theoretically, computationally, and empirically ex-
plore the series of steps to infer recombination rates from
AF attenuation in marker-selected pools. First, we formally
demonstrate the mathematical relationship between re-
combination rate and AF using the Drosophila X chromo-
some with the recessive white eye marker (w-) as an
example. Then, we generalize the relationships allowing
for applications in the presence of any locus with a fitness
differential and demonstrate how additive fitness impacts
from offsite loci modulate the AF. Using simulations, we
show how inherent noise in the sequencing platform can
be addressed statistically for robust AF estimates. For em-
pirical validation, we show that genetic distances esti-
mated from the AF changes closely recapitulate the
distances estimated from scoring recombinant individuals.
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Using this approach, we generated the third chromosome
recombination map of three wild-derived strains of
Drosophila melanogaster, producing rates that are highly
correlated with previous estimates. Lastly, we extend this
approach to estimate chromosome-wide crossover inter-
ference. Although this marker selection and sequencing
scheme does not produce basepair resolution crossover
maps since it does not infer breakpoints, it can generate a
near chromosome-wide genetic and recombination rate
maps in as little as one or two library preparations.

Results

Recombinant Fraction Is Directly Proportional to AF
in Marker-Selected Pools
In a typical recombinant backcross, F1 heterozygotes are
backcrossed to one of the inbred parents generating BC1
progenies that are scored for recombinants (fig. 1A).
Although gametes of the F1s are ideal for detecting crossovers
as they are direct products of meiosis (Hinch et al. 2019),
there are currently very few viable and reliable means of gam-
ete selection (Umehara et al. 2019). Marker selection in prog-
enies entails that the half of the genome derived from the
inbred backcross parent (paternal genome in flies) is unin-
formative despite contributing to the AF. Since the X chro-
mosome in sons are maternally inherited, male and female
pools will have different AF signatures with the male pool
reflecting the gametic AF (fig. 1B). For simplicity, we will first
focus on the male marker-selected pools as their X chromo-
somes are free of paternal contributions. For illustrative pur-
poses, we will use the X-linked white gene (w) in Drosophila as

the selected locus (fig. 1B); selection is based on the recessive
phenotype of white eyes (w�) versus red eyes (wþ). Between
the selected locus w and any position i, the recombinant
fraction between the two loci is Di; the frequency that the
w� and wþ chromosomes had zero or even numbers of
crossovers between w and i (peveni and qeveni, respectively)
is peveni ¼ ð1� DiÞ=2 and qeveni ¼ ð1� DiÞ=2. The fre-
quency of odd numbers of crossovers is then poddi ¼ Di=2
and qoddi ¼ Di=2. In the absence of selection, the AF of the
allele on the w� chromosome (q) will therefore be qi ¼ qeveni

þpoddi ¼ ð1� DiÞ=2þ Di=2 ¼ 0:5: When w� is selected,
poddi ¼ 0, therefore,

qi ¼ 1� Di (1)

and when wþ is selected,

qi ¼ Di: (2)

Thus, the AF is directly proportional to the recombinant
fraction in marker-selected pools.

To illustrate this relationship between recombination
and AF change in the male selected pools, we used the
available X chromosome recombination rate from the
Recombination Rate Calculator (Fiston-Lavier et al. 2010)
which models the chromosome-wide rate by a quadratic
function. We converted the recombination rate to genetic
distance from the white locus, followed by transformation
into the recombinant fraction using either the Haldane or
Kosambi mapping functions (fig. 2A). Depending on
whether w� and wþ males are selected, AF peaks (q¼ 1)
or troughs (q¼ 0) at the selected white locus, respectively,
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FIG. 1. Estimating recombination rate around locus with fitness differential. (A) Conceptual schematic of AF attenuation around a locus with
fitness differential. On the left are cartoon schematics of crossover between homologous chromosomes and their recombinant products. After
strong sources of selection (with markers) at locus sl (dotted line), the recombinant chromosomes are ordered by the length of the haplotypes for
illustrative purposes. The AFs of the recombinant pools are depicted in the cartoons to the right. (B) Application of this approach using the
X-linked eye color marker white (w). The recombinant backcross scheme is on the top and the resulting four sexed and genotyped BC1 pools are
displayed on the bottom. The AFs of these pools are displayed to the right, where the red and white areas represent the frequency of the wþ and
w� alleles, respectively. (C) Workflow of the method, from crosses to allele counting to recombination rate estimation using the Software package
MarSuPial.
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and attenuates distally, approaching the expected
Mendelian ratio of 0.5 (fig. 2B).

In order to select for the recessive w� marker in females,
they must be sired by w� fathers (fig. 1B). In the homozygous
female (w�/w�) marker-selected pool, the w� chromosome
AF with paternal contributions will therefore be

qi ¼
1� Di þ 1

2
: (3)

The AF peaks (q¼ 1) at the selected white locus and attenu-
ates toward the expected Mendelian ratio of q¼ 0.75 (fig. 2B).
If, instead, wþ heterozygous females (wþ/w�) are selected and
pooled, the AF troughs at q¼ 0.5 (fig. 2B). Autosomal marker
selection will have the same AF attenuation pattern.

Selection/Fitness Differential Creates AF Deviation
and Decay
The relationship between D and q can be further generalized
to any locus (l) where the two alleles have differential fitness
of s ranging between �1 and 1, such that

ql ¼ 0:5þ 0:5sl: (4)

Then, in the absence of paternal contribution, the AF at
position i is captured by the addition of the proportion of
alleles that did not recombine between l and i and pro-
portion in which recombination occurred between l and i
(fig. 2C):

qi ¼ ð1� DiÞðqlÞ þ ðDiÞð1� qlÞ: (5)
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FIG. 2. Theoretical relationship between recombination rate, genetic distance, recombinant fraction, selection differential, and AF attenuation. (A)
Based on the backcross scheme in figure 1B, transformation between the recombination rate of the X chromosome (red line), the genetic distance
from the white locus (solid black line), and the recombinant fractions after applying the Kosambi and Haldane mapping functions. (B) AF of
different pools across the X chromosome given the Kosambi transformed recombinant fraction from A. The w� and wþ pools are in gray and red
lines, respectively; the female and male pools are in solid and dotted lines, respectively. (C) Crossover schematic between homologous chromo-
somes carrying linked alleles L and I their respective homologs and l and i; the two loci have a distance of Di. Below the schematic, the frequencies of
all four possible allelic combinations are depicted, with the nonrecombinants on the left and the recombinants on the right. (D) AF attenuation
based on different fitness differential (sl).
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When sl ¼ �1 and sl ¼ 1, ql equals 0 and 1, respectively, which recapitulates marker selection as described in
equations (1) and (2). When sl ¼ 0, that is, no difference in fitness between alleles, the AF is Mendelian (q¼ 0.5).
With other values of s, the AF still peaks and decays around l (fig. 2D), thus allowing for estimation of D. Therefore, even
in the absence of a visible and selectable marker, as long as a locus exists where alleles have differential fitness causing
non-Mendelian AF, recombination rate can be estimated around it. Such a locus may be a naturally segregating
deleterious or lethal alleles (McCune et al. 2002), a meiotic driver (Fishman and Willis 2005; Wei et al. 2017), or even
a partially penetrant marker, allowing for wide applicability of this approach beyond model organisms.

Accounting for Offsite Viability Effects That Modulate AF Decay
Although the AF decay pattern is a product of crossovers between the selected and distal loci, it is also sensitive to loci with alleles that
differentially affect viability, body size, and fitness (which we will collectively refer to as viability effects), as such alleles can cause non-
Mendelian contributions of individuals and DNA in the final pool. To evaluate how such loci will affect AF estimates, we further
expand on the mathematical relationship between AF and recombinant fraction (eqs. 1–3) by a secondary locus at site o that also
modulates AF in addition to the selected locus at site l. For simplicity, we are removing the paternal contribution. The two loci have
respective viability effect of so and sl that individually (absent of other contributing loci) cause AF (bq) of bql ¼ 0:5þ 0:5sl andbqo ¼ 0:5þ 0:5so. Given that the distance between l and o is Dlo, the AF at o is then

qo ¼
ð1� DloÞbqlbqo þ Dloð1� bqlÞðbqoÞ

ð1� DloÞbqlbqo þ ð1� DloÞð1� bqlÞð1� bqoÞ þ Dloð1� bqlÞðbqoÞ þ DloðbqlÞð1� bqoÞ
:

With the selection process acting at l, sl ¼ 1 and bql ¼ 1, so the equation reduces to

qo ¼
ð1� DloÞbqo

ð1� DloÞbqo þ Dloð1� bqoÞ
: (6)

From this, it can be inferred that

Dlo ¼
bqoð1� qoÞ

ð1� qoÞbqo þ qoð1� bqoÞ
: (7)

The AF at i (qi) will depend not only on its genetic distance from l (Dil) and o (Dio) but also on where it is positioned with
respect to the two loci as its relative positions affect the recombinant allele combinations (fig. 3). First, we will consider no
crossover interference. When l is between i and o, that is, HðDioÞ ¼ HðDilÞ þ HðDloÞ (fig. 4A),

qi ¼
ð1� DilÞð1� DloÞbqo þ ð1� DilÞDloð1� bqoÞ

ð1� DilÞð1� DloÞbqo þ ð1� DilÞDloð1� bqoÞ þ Dilð1� DloÞbqo þ DilDloð1� bqoÞ
:

This simplifies to
qi ¼ 1� Dil; (8)

which indicates that as long as sl ¼ 1, so will have no effect on the AF on the distal side of l. When i is between l and o, that is,
HðDloÞ ¼ HðDilÞ þ HðDioÞ (fig. 3B),

qi ¼
ð1� DilÞð1� DioÞbqo þ ð1� DilÞDioð1� bqoÞ

ð1� DilÞð1� DioÞbqo þ ð1� DilÞDioð1� bqoÞ þ Dilð1� DioÞð1� bqoÞ þ DilðDioÞðbqoÞ
:

When o is between l and i, that is, HðDilÞ ¼ HðDloÞ þ HðDioÞ (fig. 3C),

qi ¼
ð1� DioÞbqoð1� DloÞ þ ðDioÞð1� bqoÞDlo

ð1� DioÞbqoð1� DloÞ þ ðDioÞð1� bqoÞDlo þ ð1� DioÞð1� bqoÞDlo þ Diobqoð1� DloÞ

and reduces to

qi ¼
ð1� DioÞbqoð1� DloÞ þ ðDioÞð1� bqoÞDlobqoð1� DloÞ þ ð1� bqoÞDlo

: (9)

To account for interference, the double crossover components are multiplied with the coefficient of coincidence (2D for the
Kosambi function) with single crossovers reciprocally increased (see supplementary fig. 1, Supplementary Material online). To
illustrate these relationships, we, again, used the recombination rate from the Recombination Rate Calculator (Fiston-Lavier et al.
2010) and varied the fitness differential (so) at the offsite loci. In both the presence and absence of interference, the AF is more
sensitive to negative fitness impact at the secondary loci (so < 0). At extreme values of so (fig. 3D), local maximum and
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minimums can be observed and identified, but at intermedi-
ate levels, the AF curves do not show obvious “kinks,” sug-
gesting that moderate loci need to be determined separately
(see below). Unlike the curves in the absence of crossover
interference, so modulates the AF across the selected locus
(fig. 3E). Unexpectedly, at higher so, the AF is lower on the
other side of l. The reason for this is that a positive so ensures
more individuals lacking crossovers between l and o, which, in
the presence of interference, results in increased probability of
crossovers on the other side of l and therefore faster AF
decline.

Given these relationships, it is then possible to solve for
Dil, Dlo, and Dio when so and qi are known. Although Dlo

can be deduced based on equation (7), we can solve for Dil

computationally using a root-finding algorithm since Dil

cannot be easily isolated in the equations (see Materials
and Methods).

Nonlinear Nonparametric Curve Fitting Robustly
Estimates AF Decay in Short-Read Whole-Genome
Sequences
Because recombinant fraction and crossovers are necessarily
sampled from a finite pool of individuals, larger pools will
produce more representative and accurate estimates. With
marker-selected pools, pool sizes can be increased with no
increase to sequencing cost. To evaluate how sampling error
affects recombinant fraction in marker-selected pools, we first
considered pools where the AF is known exactly across the
chromosome. Simulating w� selection pools of different sizes
(n¼ 500, 2,000, and 5,000), we generated pools of individuals
with crossovers sampled based on the X chromosome recom-
bination rate (fig. 4A, see Materials and Methods). Across all
sizes, variability increases as recombinant fraction increases.
This increase is partly due to the inherent variance with
(binomial) sampling which is highest when P¼ 0.5. It also

A D

E

B

C

FIG. 3. Effects of a secondary locus on AF decay. In the marker-selected pool, the selected locus (l), the offsite locus that affects viability (o), and
any position along the chromosome (i) effectively create a three-point cross. Upper- and lowercase letters of these loci differentiate the
homologous alleles. (A–C) Depending on the relative position of the three loci along the chromosome (schematics on the left), different allele
combinations are produced at different frequencies (right). The frequencies of all possible allelic combinations are described by the equations
which take into account of the fitness of the selected and offsite loci (bql and bqo , respectively). When bql ¼ 1, only the allelic combinations on
the left column are incorporated in the marker-selected pool and allelic combinations on the right will all equal 0. The combinations in bold
are those that contain the uppercase I allele. Equations (11)–(14) are derived from dividing the sum of the allelic combinations in bold by the
sum of the allelic combinations on the left for each three-point cross. The frequencies of the different allelic combinations assume no
interference. (D) AF modulation given different values of so based on the X chromosome recombination rate, Haldane’s transformation,
selected locus at 5 Mb, and secondary locus at 10 Mb. Black curve represents so¼ 0 (no secondary offsite viability effect). (E) Same as (D), but
with Kosambi’s transformation and taking into account of interference with C ¼ 2D. Colors are added to differentiate between the curves
with different values of so. Formula for how interference is incorporated into the AFs can be found in supplementary figure 1, Supplementary
Material online.
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reflects the increasing probability of double crossovers which
results in nonmonotonic decay. Expectedly, these sources of
noise decrease with larger pools; at their highest, the 95%
confidence intervals are 0.034, 0.0106, and 0.0067 when 500,
2,000, and 5,000 individuals are pooled, respectively (fig. 4A).

To evaluate whether short-read whole-genome sequenc-
ing can sensitively capture the AF signature in marker-se-
lected pools, we simulated various average sequencing
depths with a conservative single-nucleotide polymorphism
(SNP) density of one differentiating site per 1 kb (see

Materials and Methods). Within a reasonable range of se-
quencing depth of 10�–100�, allele counts at individual sites
are too variable to provide meaningful AF estimates (fig. 4B
and supplementary fig. 2A, Supplementary Material online).
Since neighboring sites are expected to have negligible differ-
ences in their AFs, their counts and frequencies can be ag-
gregated as if they are independent in sliding windows to
better approximate the AF (Wei et al. 2017). However, instead
of assuming all sites in a window have the same AF, we first
estimated AF using linear regression in overlapping sliding

A B C

D

G

E F

FIG. 4. In silico simulation of AF in sequenced pools. (A) Simulation of AF attenuation around white in marker-selected pools of 500, 2,000, and
5,000 males. Black line depicts the expected AF. Colored areas demarcate the 95% confidence intervals for the different pool sizes after 20 000 trials,
given that AF can be exactly estimated. (B) One example of AF distribution from simulated read counts of a pool of 1,000 w� males. With SNP
density of one site per kb, the allele-specific read counts across the chromosome is randomly sampled to simulate fly collection, library preparation,
and sequencing to a read depth of 30; the AF at each site is plotted (light blue dots) to illustrate the extent of noise from site to site. Site-specific AF
chromosome-wide is either binned in overlapping 500-kb sliding windows followed by linear regression fit (dark blue dots) or fitted with cubic
splines anchored at the selected w locus (orange line). Red line depicts the true AF of the simulated pool. (C) The slope of the AF decay
approximates the recombination rate. The left and right of the selected locus is expected to be increasing (positive slope) and decreasing (negative
slope), respectively. The slope of the linear regressions (blue) and cubic spline fit (red) across the chromosome, and the colored areas demarcate
the 95% confidence interval of the slope. The expected slope is in black. (D–F) Same as (A–C), but with the heterogeneous recombination rate
inferred by Comeron et al. (2012). (G) Summary of the effects of sequence depth (X-axes), pools size (colors), and resolution (panels) on the
standard deviation of the slope (Y-axes). For each combination of parameters, 5,000 simulations were conducted using the Comeron et al. (2012)
recombination rate, from which the standard deviation of the slope is derived at each position after curve fitting; the standard deviation averaged
across the entire chromosome is plotted.
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windows (see Materials and Methods). We find that 500-kb
overlapping windows in 100-kb increments can roughly reca-
pitulate the expected AF (fig. 4B) but create high variance in
the slope, which approximates the recombination rate
(fig. 4C). Second, rather than binning the genome into win-
dows, we implemented a nonparametric and nonlinear
curve-fitting strategy using either local regressions (LOESS)
(Cleveland 1979) or cubic splines (Perperoglou et al. 2019)
(fig. 4B). We find this to be more flexible and robust, as it
allows for nonlinear fit, is more robust to noise (fig. 4B), and
estimates the slope of the AF decay with less error than the
window-based linear regressions (fig. 4C).

To further determine whether this strategy can capture
realistic recombination rate distributions which can be highly
heterogeneous, we simulated pools using the D. melanogaster
X chromosome recombination rate inferred from crossover
distributions by Comeron et al. (2012) (fig. 4D–F). In partic-
ular, we were interested as to whether our curve-fitting strat-
egy can approximate the fluctuating slope (fig. 4F). As with
most fitting methods, there is a tradeoff between resolution
and accuracy. We fitted the AF from simulations with differ-
ent numbers of individuals and sequencing depths at four
different resolutions equivalent to 200 kb, 500 kb, 1 Mb, and
2 Mb and inferred the slopes of the fitted curves (fig. 4G and
supplementary fig. 3, Supplementary Material online).

Expectedly, increasing the numbers of individuals, sequencing
depth and window sizes produces less variable slope esti-
mates. But between the resolution of 1 and 2 Mb, the gain
in accuracy becomes marginal. We note that because our
simulation uses a conservatively low SNP density (1 per
1,000 bp), the extent of noise at different resolutions is likely
overestimated. Indeed, simulations with a realistic SNP distri-
bution (inferred from inbred D. melanogaster strains DGRP
315 and mutant strain glass ebony, see below and table 1)
which has on average more than three times the SNP density,
we find reduced noise across all resolutions (supplementary
figs. 4 and 5, Supplementary Material online).

AF from Whole-Genome Sequencing of Marker-
Selected Pools Closely Estimates Recombinant
Fraction
To empirically test the efficacy of this approach, we set up
recombinant back crosses pairing two double recessive
marker strains, sepia ebony (se� e�) and glass ebony (gl�

e�), with three wild-derived inbred strains (Canton-S,
DGRP-315, and DGRP-360) (table 1). We first sexed and tal-
lied the number of recombinant and nonrecombinant indi-
viduals to infer the genetic distance between the two linked
markers, then we pooled the flies based on the presence of

Table 1. Genetic Distance Estimates between Double Markers.

Parents BC1 Offspring Genotypes and Counts Recombinant Fraction Genetic Distance (cM)a

Wild-Type
Strain (F)

Marker
Strain (M)

Sex Punnett Squares Overallb Pool
Specificc

From AF
Estimates

Overall Pool
Specific

From AF
Estimates

eþ e�
Canton-S se0, e0 F seþ 726 226 0.2384 0.2524 0.2414 25.95 27.78 26.33

se� 212 628
M se1 657 183 0.2476 0.2352 27.14 25.53

se� 178 541
Canton-S se0, e0 F seþ 610 177 0.2370 0.2564 0.2538 25.76 28.33 27.98

se� 179 519
M seþ 621 151 0.2776 0.2367 31.30 25.73

se� 191 497
Canton-S e�, gl� F gl1 534 30 0.0887 0.1339 0.1370 8.96 13.73 14.05

gl� 58 375
M glþ 485 41 0.0921 0.1047 9.32 10.62

gl� 46 404
Canton-S e�, gl� F gl1 492 54 0.0977 0.1053 0.1155 9.89 10.69 11.76

gl� 40 340
M glþ 438 45 0.1122 0.1256 11.42 12.83

gl� 37 356
DGRP-360 e�, gl� F gl1 1,120 107 0.0885 0.0930 0.0791 8.95 9.41 7.97

gl� 102 995
M glþ 1,189 111 0.0891 0.0745 9.01 7.51

gl� 113 1,155
DGRP-315d e� gl� F glþ 892 89 0.0940 0.0907 0.0966 9.52 9.17 9.78

gl� 89 818 0.0981 0.1000 9.94 10.14
M glþ 1,003 113 0.1013 0.1165 10.27 11.87

gl� 101 1,064 0.0867 0.0944 8.76 9.55

NOTE.—Tracks of different colors represent different crosses. In each row, cells in italics are counts of selected genotypes that were pooled and sequenced.
aAfter Kosambi transformation.
bSum of all recombinants divided by sum of all individuals in the cross.
cRecombinant individuals in the pool divided by total number of individuals in the pool.
dIndividuals in this cross are genotyped and pooled into either gl� or glþ pools.
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one of the two markers followed by bulk DNA extraction and
whole-genome sequencing to an average of 25.45� coverage
(supplementary table 1, Supplementary Material online).
Thus, we were able to compare the genetic distance estimates
between the two loci based on the de facto method of fly
scoring with that from AF attenuation in the marker-selected
pools within the same recombinant backcrosses (table 1).
Canton-S was separately crossed to the two double marker
strains in duplicates; in the crosses to gl� e�, we selected and
pooled by gl� in females but by e� in males with the expec-
tation that the two pools should yield identical recombina-
tion rates. For DGRP-315 and DGRP-360, we crossed each of
the two strains only to gl� e� and sexed and pooled by gl�.
However, with the DGRP-315 cross, in addition to the gl�

pool (positive marker selection), we also pooled the glþ indi-
viduals (negative marker selection) from the same cross, again
with the expectation that the two pools should yield identical
recombination rates, despite differences in AF. Allele-specific
read counts were determined only at informative SNP sites
where the parental strains are homozygous for different
nucleotides (see Materials and Methods) (supplementary ta-
ble 2 and fig. 6, Supplementary Material online). Sites with
segregating variants in the parental strains are removed (sup-
plementary table 3 and fig. 7, Supplementary Material online).
We then estimated the AF using cubic splines as described
above (fig. 5A–D and supplementary fig. 8, Supplementary
Material online). We elected to use a broad resolution of
1 Mb, as the number of individuals and SNP density are low
in the Canton-S crosses.

We find that the recombinant fractions and genetic dis-
tances estimated from marker-selected pools are highly sim-
ilar to those from fly scoring with no significant differences
(P¼ 0.9515, paired Wilcoxon ranked sum test) (table 1); with
the exception of one pool (Canton-S� se� e�), estimates are
within 1.5% of each other which is comparable to the vari-
ability between replicate fly count data as well as different
pools from the same cross. Extensively, this demonstrates that
the recombinant fraction can be inferred between the se-
lected locus and any site along the chromosome until reach-
ing the Mendelian ratio (fig. 5A–D and supplementary fig. 8,
Supplementary Material online). As expected, when individ-
uals homozygous for the markers are pooled, the AFs of the
chromosome carrying the marker peaks at the selected locus
with AF of 1 and decrease distally (fig. 5A and C and supple-
mentary fig. 8, Supplementary Material online). Consistently,
for DGRP315 � gl� e� cross, the AF of the negative marker
selection pool (gl�/glþ) expectedly dips to 0.5 at gl and
attenuates upward (fig. 5D). In all these crosses, the AF stays
at a near constant level across the centromere and pericen-
tromeres of 3L and 3R, fitting the expectation of no recom-
bination across the region. When converted to recombinant
fractions, both the positive (gl�/gl�) and negative selection
(gl�/glþ) pools yield highly similar results (supplementary fig.
9, Supplementary Material online). Across replicates, and dif-
ferent pools from the same cross, the recombinant fraction
appears to be most variable around the pericentric region
(fig. 5E–G), resulting from the reduced SNP density and
poor mapping quality due to increased repeat content

(supplementary fig. 10, Supplementary Material online).
However, the recombinant fractions converge outside the
pericentromere, producing highly robust estimates (fig. 5E–
G). Notably, the Canton-S� gl� e� crosses have the highest
variance; this is due to the fact that the Canton-S strain used
had unexpectedly high levels of heterozygosity which reduces
the number of usable informative sites (supplementary table
3 and figs. 6 and 7, Supplementary Material online).

To correct for potential offsite viability effects, we reasoned
that any such locus will cause AF to deviate from Mendelian
ratios in pools with no marker selection (Wei et al. 2017). To
emulate this, we summed the AF from the positive and neg-
ative marker selection pools for the DGRP315 � gl� e�

crosses where we sequenced both positive and negative
marker-selected pools. Using this method, we find a
very minor AF deviation at e�, which is equivalent to
s ¼ �0:015 (supplementary fig. 11A, Supplementary
Material online). Correcting for this resulted in negligible
changes in the recombinant fraction (supplementary fig.
11B, Supplementary Material online).

Given chromosome-wide recombinant fractions (D), the
genetic distance (d) can then be estimated by transformation
with mapping functions (fig. 5E–G, dashed lines). However,
when the recombinant fraction approaches 0.5, the genetic
distance estimate approaches infinity. In practice, the genetic
distance should, therefore, be limited to 50 cM which entails
that two loci are effectively genetically unlinked (fig. 5E–G);
this equates to recombinant fractions of <0.381 and 0.316
with the Kosambi and Haldane functions, respectively. Using
the Kosambi transformation, for DGRP-315 and DGRP-360
which were under glass selection, we were able to infer re-
combination rate for 86.2% and 89.5% of Chr. 3, respectively
(fig. 6A). The Canton-S pools were selected on both glass and
ebony and the composite of the two covered 85.2% of the
chromosome.

Lack of AF Decay Captures Crossover Suppression
within Inversions
Interestingly, unlike the crosses with the gl� e� double marker
strain, the Canton-S � se� e� crosses produced AF curves
that do not have a clear peak flanked by distal decay (fig. 5B).
The AF on Chr. 3L where the selected locus se resides shows
minimal decay with elevated level of AF extending into 3R,
where it begins to show clear attenuation. Based on the e�

selected pool in the Canton-S� gl� e� crosses, the recombi-
nant fraction between e and se is 0.368 equating to 47.0 cM
using Kosambi’s map function (fig. 5E, blue line), but the
estimates from both fly scoring and AF decay using the se�

e� marker strain indicate a substantially lower recombinant
fraction of 0.238 equating to 25.8 cM (table 1 and fig. 5F).
Suspecting that the shorter genetic distance resulted from
structural rearrangements on the se� e� chromosome arm
causing suppression of crossovers and/or lethal rearrange-
ments in recombinants, we used the structural variant discov-
ery software Lumpy (Layer et al. 2014) to infer the presence of
inversions. Indeed, we identified two large inversions on 3L:
one from 0.25 to 7.22 Mb and another pericentric inversion
from 7.81 Mb of 3L to 2.08 Mb of 3R (fig. 5B and F), confirming
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our suspicion that inversions are interfering with recombina-
tion in this region. Interestingly, we still observe minor reduc-
tion in AF across this region. This likely reflects rare double (or
even number) crossover events which resolve lethal recombi-
nant rearrangements caused by single (or odd number) cross-
over events within the inversion (Hughes et al. 2018).

Heterogeneity and Natural Variation in
Recombination Rate
Since recombination rate is genetic distance per physical dis-
tance, for regions to the left and right of the selected locus,
the recombination rate is the negative and positive slope of
the genetic distance curve, respectively. We converted the
genetic distance to recombination rate for all the gl� e�

crosses by taking the slope of d in 10-kb windows within
the 650 cM range (fig. 6A). In all three lines, the

recombination rate is minimal across the highly repetitive
regions and gradually increases away from the centromere,
as expected. Our estimates broadly follow previous estimates
based on crossover breakpoint distribution (Comeron et al.
2012) (fig. 6A, gray). Both estimates of the DGRP lines are
highly and significantly correlated with each other (supple-
mentary fig. 12, Supplementary Material online) and that of
Comeron et al. (2012) (P< 2.2� 10�16), as well as when it is
smoothed into an equivalent resolution (fig. 6B and C). The
significant positive correlations, similarly, hold at the resolu-
tion of 500 kb; but at 200 kb, the recombination rate esti-
mates become too unreliable due to overfitting
(supplementary fig. 13, Supplementary Material online).
Much of the correlation appears to be driven by regions
with low recombination rate; after removal of these sites
the correlations, although still significant, are substantially
reduced (supplementary fig. 14, Supplementary Material

A C

B

E F G

D

FIG. 5. Recombinant fraction and genetic distance inferred from marker-selected pools for Chr. 3. The per site (blue) and inferred (red line) AFs
across the chromosome are displayed for four pools: (A) Canton-S � gl� e� with gl� selection (table 1, row 6), (B) Canton-S � se� e� with
se�selection (table 1, row 1), (C) DGRP-315� gl� e� with gl� selection (table 1, row 12), and (D) DGRP-315� gl� e� with glþ selection (table 1,
row 13). For all marker-selected pools, see supplementary figure 6, Supplementary Material online. Note that (D) has a different Y-axis scale. The
positions of the double markers are marked in the chromosome schematics above and with vertical dotted lines in the plots. For the Canton-S�
se� e� cross, large inversions are marked in chromosome schematic above with parentheses. (E–G) Averaged recombinant fraction (solid curve)
and genetic distance (dotted curve) from the selected loci. Interval around the recombinant fraction estimates represent the standard error across
the replicates. Horizontal dotted lines represent recombinant fraction equivalent of 50 cM after Kosambi transformation. (E) Canton-S� gl� e�

crosses when gl� (red) or e� (blue) are selected. Note here that gl� pools were the female pools and e� pools were the male pools. (F) Canton-S�
se� e� crosses with e� selection. (G) DGRP-315 (red) or DGRP-360 (yellow)� gl� e� crosses. For the DGRP-315 cross, values are averaged across
glþ and gl� selection pools, whereas only gl� pools were sequenced for DGRP-315.
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online). Discrepancies are likely partially due to strain-specific
rate variations (see below) and differences in rearing condi-
tions as our crosses were reared in 25 �C versus 21 �C in that
of Comeron et al. (2012).

Interestingly, all three lines show similar regions with ele-
vated rates each of which spans multiple megabases and are
interrupted by valleys (fig. 6A). Since these regions are also
elevated in the estimates by Comeron et al. (fig. 6A), they are
unlikely to be artifacts of our method, or the strains used.
These broad megabase-sized blocks of elevated recombina-
tion rates and narrow valleys of low recombination are likely a
general feature of the recombination landscape of the
chromosome.

Despite global similarities in the recombination landscape
among the different lines, recombination rate is highly vari-
able between them. From 5.5 Mb of Chr. 3L to 29.1 Mb of Chr.
3R where recombination rate can be determined for both
DGRP-315 and DGRP-360, these two lines and the

Comeron et al. (2012) estimates show significantly different
distribution of recombination rates (P< 0.001, paired
Wilcoxon ranked sum test; fig. 6C). DGRP-315 has more
regions with intermediate recombination rates (3–5 cM/
Mb), whereas DGRP-360 is heavily skewed by a large fraction
of regions with a rate close to 0 but has a longer tail of regions
with high recombination. The large fraction of low recombin-
ing windows caused the DGRP-360 strain to have a shorter
genetic map to the left of the selected locus (fig. 5G and
supplementary fig. 15, Supplementary Material online).
However, to the right of the selected locus, the genetic dis-
tance and recombination rates are comparable between the
two lines (fig. 5G and supplementary fig. 15, Supplementary
Material online). This suggests that the lower recombination
rate and shorter distance in the DGRP-360 line is not due to
global depression of crossovers, but perhaps many local modi-
fiers to the left of glass, possibly in the form of small scale
inversions and TE insertions.

A

B
C

FIG. 6. Recombination rate estimates in wild-derived strains. (A) Chr. 3 recombination rate estimates from Comeron et al. (2012), and marker-
selected pools are depicted. Repeat content (%) and Chr. 3 schematic is plotted above. For the estimates from Comeron et al. (2012), the rates are
plotted as the true rates (gray) and the rates after 1 Mb smoothing (red). For the marker-selected pools (DGRP-315, DGRP-360, and Canton-S), rate
estimates are restricted to 60.381 recombinant fraction (equating to 50 cM after Kosambi’s transformation) from the marker. Area around the
line demarcates the standard error estimated across the different pools. (B) Correlation of recombination rates of DGRP-315 (red) and DGRP-360
(blue) with unsmoothed (left) and 1-Mb-smoothed estimates (right) from Comeron et al. (2012). Each point is the recombination rate estimate of
a 100-kb window. The red and blue lines are the least square regressions. (C) Distribution of the recombination rate of estimates from Comeron
et al. (2012) (gray) and of DGRP-315 (red) and DGRP-360 (blue).
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Inferring Chromosome-Wide Crossover Interference
from Reciprocal Selection of Double Markers
Crossover interference, usually expressed as 1� C where C is
the coefficient of coincidence (Muller 1916), is typically esti-
mated from three-point crosses where double recombinants
can be scored. C is the fraction of observed double crossovers
over expected, and, given three loci ABC in that order, is
expressed as

DAC ¼ DAB þ DBC � 2CDABDBC: (10)

Therefore, if the recombinant fraction between three loci is
known, C can be inferred by

C ¼ DA;B þ DB;C � DA;C

2DA;BlDB;C
: (11)

In our Canton-S � gl� e� crosses, we sequenced pools
of both gl� and e� selection (table 1), generating chromo-
some-wide recombinant fractions with respect to these
two loci. With these two curves, we can estimate the co-
efficient of coincidence, as for any site i, we have the ge-
netic fractions between gl and i (Di;gl), e and i (Di;e), and gl
and e (Dgl;e). Therefore, to the left of gl, between the two,
and right of e, we can solve for C with the following,
respectively:

C ¼ Di;gl þ Dgl;e � Di;e

2Di;glDgl;e
; (12)

C ¼ Di;gl þ Di;e � Dgl;e

2Di;glDi;e
; (13)

and

C ¼ Di;e þ Dgl;e � Di;gl

2Di;eDgl;e
: (14)

For this proof-of-principle analysis, we used the broad win-
dow size of 2 Mb to minimize error in estimates of D, since
these crosses have a low density of informative sites. Because
of the denominator, regions close to loci with small D will
yield nonsensical results. We, thus, only estimate the interfer-
ence beyond 62.5 Mb from the markers, which also pre-
cludes estimating between gl and e, as they are only 2.8 Mb
apart (fig. 7). To the right of e, C increases distally toward the
3R telomere. To the left of gl, C drops sharply and remains low
around the pericentomere, indicating high interference.
Across the pericentromere of 3L, C increases rapidly toward
the 3L telomere. In comparison to the C assumed by the
Kosambi function, the estimated C increases more precipi-
tously, reaching 1 (i.e., no interference) before that of
Kosambi’s function. Historically, the centromere has been
assumed to act as a barrier to interference, disrupting the
propagation of interference across it (Mather 1939;
Colombo and Jones 1997). Similar to later studies
(Colombo and Jones 1997), our chromosome-wide estimates
of C are inconsistent with this assumption and show that
interference is instead high around the centromere (Hult�en
2011), thus further reducing the already low probability of
crossovers within the pericentromere.

Discussion

Broad-Range Recombination Rate Estimation Using
AF in Marker-Selected Pools
We demonstrated theoretically and empirically that AF decay
around a locus with selection differential in a recombinant
backcross can be used to infer near chromosome-wide re-
combination rates. Instead of genotyping individuals for re-
combinant breakpoints, this approach relies on pooled
sequencing of large numbers of marker-selected individuals
from recombinant backcrosses. Since the AF surrounding the
selected locus decays proportionally with the recombinant
fraction, the genetic distance can be determined using map-
ping functions, and the slope will then approximate the re-
combination rate. Since each pool can provide broad-range
recombination rate estimates, this method substantially
reduces the number of library preparations needed for chro-
mosome-wide estimates. Previously, hundreds to thousands
of individuals needed to be sequenced or genotyped to cap-
ture a comprehensive spread of recombinant breakpoints
from which chromosome-wide recombination rates are in-
ferred, but here we used as little as two libraries for near
chromosome-wide estimates. Recently, crossover detection
has been made possible in bulk with “linked read sequencing,”
where large molecular weight DNA molecules are effectively
barcoded in high throughput by 10� Genomics (Sun et al.
2019). Nevertheless, the sequencing depth required for this

FIG. 7. Estimating coefficient of coincidence from reciprocal marker
selection pools with double markers. In the Canton-S� gl� e� crosses,
males were selected by e� and females were selected by gl�. The chro-
mosome-wide recombinant fractions from these two selected pools can
be used to estimate the coefficient of coincidence across the chromo-
somes with respect to these two loci (black line). Estimates near the
selected locus (within 2.5 Mb) are excluded as the values approach their
limits. For reference, the coefficient of coincidence based on the Haldane
and Kosambi mapping functions is in blue and red, respectively.
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approach is still substantially greater than the 30� used here.
Not accounting for fly upkeep, each library of a marker-se-
lected pool costs<$400 to generate and sequence. Using this
approach, we inferred the recombination rate of Chr. 3 of
three wild-derived lines and demonstrated that how it can be
used to infer crossover interference.

Previously, Singh et al. (2013) also used AF to estimate fine-
scale crossover frequency; recombinants between garnet and
scalloped (two phenotypic maker on the D. melanogaster X
chromosome) that carry either one of the two markers were
pooled to estimate the fine-scale recombination rate between
the two loci. The method presented here differs from Singh
et al. (2013) in that recombinants are not explicitly targeted
for selection, and thus the AF decay is directly reflecting the
recombinant fraction (eqs. 1–3). When only recombinants
between two loci are selected, the AF decay is effectively
restricted to estimates of recombinant fraction between the
two loci. As demonstrated by Gilliland (2015), the approach
used by Singh et al. (2013) to measure AF and recombination
rate produces rates that are strongly anticorrelated with the
heterogeneous window sizes used for estimation. As shown
by our simulations and pointed out by Gilliland (2015), the
variability of read counts at individual sites is too large for
fine-scale estimates. Instead, we use curve-fitting methods
leveraging all informative sites across the chromosome to
avoid the inherent noise associated with read counts in small
window sizes.

Methodological Limitations and Workarounds
Given that crossover breakpoints are not identified in marker-
selected pools, recombination rate is estimated from changes
in recombinant fraction, which is itself inferred from AF. The
accuracy of AF estimation is dependent on the sequence
coverage, SNP distribution, and the curve-fitting strategy.
However, whether the AF decay (even if perfectly estimated)
accurately reflects the recombinant fraction depends on the
number of individuals in the pool (see fig. 4A and D). With
smaller pool sizes, sampling error of genotypes leads to
greater levels of noise in the AF decay; this is akin to inferring
crossover breakpoint distribution from a small number of
individuals. Although increasing the number of individuals
necessitates increasing the number of DNA extractions, li-
brary preparations, and sequencing to infer crossover break-
points, the number of individuals in marker-selected pools
can be easily increased with no increase to sequencing cost,
especially for highly fecund invertebrates like worms and flies.
Therefore, although the resolution of this method is markedly
lower than the rates from crossover breakpoints, it can po-
tentially generate more representative maps with very large
numbers of individuals at a fraction of the sequencing cost.

There are several additional limitations to sequencing
marker-selected pools, although some of the issues are not
specific to this method of estimating recombination rates.
First, the conversion from recombinant fraction to genetic
distance with mapping functions requires assumptions about
crossover interference. The Haldane, Kosambi, and other
mapping functions have explicit assumptions about the ex-
tent (or lack) of interference, which, accordingly, affect the

genetic distance conversion, with higher crossover interfer-
ence producing shorter genetic maps. On the other hand,
we presented an extension of our method to infer crossover
interference (fig. 7); by reciprocally selecting for markers in a
double marker strain, we were able to estimate the coeffi-
cient of coincidence across Chr. 3 with respect to the two
markers. Improved understanding of crossover interference
in a genomic context will allow for more accurate conver-
sion between the recombinant fraction to genetic distance
in future investigations. Alternatively, since the mapping
functions have negligible effects for smaller values of recom-
binant fractions (<0.10), multiple markers (if available)
along the chromosome can be used to estimate recombi-
nation rate in smaller intervals. Although this significantly
increases the number of crosses, the number of libraries
generated is still at least one order of magnitude less than
sequencing individuals. As a corollary, mapping functions
break down when the recombinant fraction approaches
0.5. Here, we explicitly restrict the Kosambi mapping func-
tion to a genetic distance of 50 cM on either side of the
selected loci, which translates to a total measurable recom-
binant fraction of 0.762 (0.381 on either side). Again, to
extend the genetic map, multiple markers strategically cho-
sen along the chromosome may be needed to encompass
the entirety of the chromosome.

Second, this approach is sensitive to the SNP density. Based
on simulations, our method is robust even when the SNP
density is as low as one site per 1,000 bp. Although intraspe-
cific strain differences are likely higher in flies, polymorphisms
are not evenly distributed across the chromosome. The SNP
density drops rapidly around the pericentromeric and telo-
meric regions, which resulted in increased error rates. The
decrease in SNP density is particularly problematic in win-
dow-based AF estimates, but our usage of nonlinear non-
parametric curve fitting alleviates this issue on at least two
fronts: The smoothing is conducted based on the number of
sites instead of genomic windows and the reduced pericen-
tromeric SNP density for metacentric chromosomes (e.g.,
Chromosome 3) is flanked by high density on either sides
thus producing more robust estimates across the pericentric
region. However, we note that reduced SNP density also poses
a challenge when inferring breakpoints, since the precise lo-
cation of haplotype changes will be difficult to pinpoint.

Lastly, we demonstrated that offsite viability effects can
modulate the AF decay around the selected locus. Such via-
bility effects can result from alleles that induce lethality or
reduce body size, both of which will change the AF in the
DNA pool to be sequenced. Lethality is similarly problematic
for genotyping and breakpoint inference in individuals, since
it changes the number of recoverable recombinants at spe-
cific loci, but are typically ignored. We analytically showed
how additive offsite viability effects can be accounted for,
provided that the extent of the fitness reduction (so) can
be determined. To estimate so without additional experi-
ments, we simply summed the AF of both the positive and
negative marker selection pools that originated from the
same cross. This effectively removes the peak and the effect
of the selected locus and the remaining elevations and drops
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that deviate from Mendelian ratios are then regions with
viability effects.

Applications beyond Drosophila, Model Genetic
Organisms, and Phenotypic Markers
Although this study focused on D. melanogaster, this method
is readily applicable to other organisms, particularly for model
species with a wealth of phenotypic markers readily available
like Caenorhabditis elegans (Greenwald 2016) or mice (Singh
and Coppola 2014). As discussed above, for species with lon-
ger genetic maps, multiple markers are needed to capture
recombination rate along the entirety of the chromosome,
thus increasing the number of crosses and libraries. Since each
marker-selected pool only reflects recombination rate on one
chromosome, species with higher chromosome numbers will
require more libraries and crosses overall. Notably, markers
from different chromosomes can be selected at the same
time in any given cross allowing for estimates on different
chromosomes in parallel. However, this can introduce poten-
tial epistatic effects between markers which may modulate
AFs of the chromosomes. As with typical recombinant
crosses, the sensitivity of the method depends on the number
of BC1 individuals (fig. 3A). Although we recommend over
1,000 individuals to be collected, for organisms where large
numbers of offspring are unfeasible, the estimates from
marker-selected pools will be similarly underpowered as
counting or genotyping the number of recombinant individ-
uals between markers, but with the added benefit of requiring
only one marker. For species like mice where pulverizing
individuals is impractical, care must be taken when pooling
tissues to minimize variation in tissue size and the resulting
DNA contribution per individual.

Although the abundance of visible markers make our
method particularly suitable for model genetic organisms,
visible polymorphisms and mutations can be found across
wide ranges of species and taxa enabling application of this
method; within the Drosophila genus, many species, even
those distantly related to D. melanogaster, have marker stocks
readily available (Clark et al. 2007, and see The National
Drosophila Species Stock Center). Similarly, many nonmodel
or emerging model organisms including Apis mellifera
(Schulte et al. 2014), Anopholes gambiae (Bernardini et al.
2018), Bombyx mori (Yasukochi 1998), Musca domestica
(McDonald et al. 1975; Meisel et al. 2017), Gerris buenoi
(Armis�en et al. 2018), Daphnia magna (Ismail et al. 2018),
and Parhyale hawaiensis (Ramos et al. 2019) have not only
selectable phenotypes permitting this approach but also high
quality reference genomes.

Moreover, we showed that the signature AF attenuation
enabling estimation of recombination rate is generated at any
locus with a fitness differential (eq. 5 and fig. 2C). However, AF
attenuation will be easier to estimate given stronger fitness
differentials. The closer sl is to 0, the recombinant fraction will
be more difficult to tease apart from the noise introduced by
sample pooling and sequencing. Systems with segregating
recessive lethals (McCune et al. 2002) and strong meiotic
drivers (Fishman and Willis 2005) are therefore prime candi-
dates for this method. Even without a source of lethality or

segregation bias, loci with associated traits, even if not fully
penetrant, can also be used to generate the fitness differential
required. Additionally, advances in gene editing with CRISPR-
Cas9 (Russell et al. 2017; Adli 2018) and ease of genome as-
sembly with long-read sequencing (Miller et al. 2018;
Bracewell et al. 2019) will continue to increase the catalog
of organisms in which marker-selected pools can be applied.
Therefore, our theoretical, statistical, and empirical investiga-
tions here set the stage for wide application of this cost-ef-
fective and scalable method to estimate recombination rate.

Materials and Methods

MarSuPial
The analytical and statistical methods described below are
implemented in the MarSuPial package found in KW’s github
page (https://github.com/weikevinhc/Marsupial). It is an R
package with tools to analyze and simulate read count data
from marker-selected pools.

Conversion of Recombinant Fraction from
Recombination Rate Function
To convert recombination rate function (from
Recombination Rate Calculator [Fiston-Lavier et al. 2010])
to genetic distance centered at the selected locus (e.g., w),
we integrated the quadratic formula from the selected locus
to every position on the chromosome. For example, the ge-
netic distance between w (at position X : 2,684,632) and po-
sition i in megabses isð i

2:684632

ð�0:03x2 þ 0:6xþ 1:15Þ dx:

As per Fiston-Lavier et al. (2010), positions <1.22 Mb and
>21.21 Mb have rates of 0. To convert genetic distance to
recombinant fraction with the Haldane and Kosambi map-
ping functions, we used their inverse functions:

D ¼ �ln
1� 2d

2

(Haldane 1919) and

D ¼ 1

4
ln

1þ 2d

1� 2d

(Kosambi 1943), respectively.
Since the formula from the Recombination Rate Calculator

are based on r5 of the D. melanogaster genome, we used the
r5 instead of r6 coordinates for the genes in the simulations.
The remaining analyses were all based on the r6 reference.

Simulation of Recombinant Fraction and Pooled
Sequencing of Marker-Selected Pools
To estimate the variance of recombinant fraction resulting
from sampling errors, we first simulated crossover events
based on the recombination rate function of Chr. X. For
each 1,000-bp window, the probability of a crossover is de-
termined by integrating over the recombination rate of that
window:
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ð iþ0:001

i

ð�0:03x2 þ 0:6xþ 1:15Þ dx:

To simulate crossover events for one chromosome, a
Bernoulli draw is conducted at each window, with suc-
cesses denoting crossovers. Starting from the selected locus
with an allele state of TRUE, every Bernoulli success causes
a change in allele state (represented in Boolean as either
TRUE or FALSE) of all subsequent windows. To simulate n
individuals, this process is repeated n times. The AFs across
the windows are then determined based on the proportion
of 0 and 1 allele states in the pool of n individuals. The AF
of the one allele equals the recombinant fraction. This
process is repeated 20,000 times to determine the error
rate of recombinant fraction given different n. This simu-
lates crossovers without interference as each crossover is
independent. For read count and AF simulations, the AF
(q) (or ½qþ 1�=2 if there is paternal contribution) from the
simulated pools (above) is used for two random draws. A
Poisson draw is first conducted with the desired read depth
as the mean. A second binomial draw is then conducted
with probability of q and the Poisson-drawn read depth as
the number of trials, to simulate allele-specific read counts
at the site.

Predicting and Smoothing the AF with Linear
Regression, LOESS, and Cubic Splines
Predicting and smoothing the AF with linear regression,
LOESS, and cubic splines once AF at differentiating sites is
determined from read counts (simulated or real) across
the chromosome, sites within 500-kb windows are then
used for a weighted linear regression with the R function
lm() where the weight of each site is the coverage of that
site. The AF of the window is then determined for the
midpoint of the window using the slope and y-intercept
of the linear regression. Given the linear regression, AF can
also be predicted for any point within the window. AF in
500-kb windows are determined every 100 kb, resulting in
overlapping sliding windows. For LOESS and cubic splines
fitting, we implemented the R function loess() and
smooth.splines() in MarSuPial, respectively, to fit two
curves on either side of the selected locus, which prevents
smoothing of the expected peak/trough. The AF at each
site is weighted by the coverage at the site. To “anchor”
the functions, we include an additional point at exactly
the selected locus with the expected AF (0, 0.5, or 1,
depending on the selection procedure and/or chromo-
some), with a weight of 1,000,000, ensuring that the
curves intersect the expected AF at the selected locus.
The predict() function is used on these curve-fitting
objects to estimate the AF and standard error for any
position across the chromosome. For cubic splines, we
used degrees of freedom (df) as a proxy for resolution.
Since df� 4 number of knots are evenly spaced across the
sites for cubic splines, window size ¼ chromosome size/
(df � 4). With cubic splines, the first derivative (slope)
of the fitted curves is determined using the predict()
function in R.

Genetic Distance and Recombination Rate from AF
Given the LOESS-predicted AF chromosome wide in 5-kb
windows for each cross, we removed the paternal contribu-
tion and inferred the recombinant fraction using equation
(3). The only exception is the DGRP315� gl� e� pool where
the glþ individuals were selected (negative marker selection);
instead, we used the formulae:

qi ¼
Di þ 1

2
:

To get the genetic distance, we then applied either
Haldane’s or Kosambi’s mapping functions:

d ¼ � 1

2
lnð1� 2DÞ

and

d ¼ 1

4
ln

1þ 2D

1� 2D
;

respectively. Recombination rate (r) at position i bp was then
derived taking the positive or negative slope between the 5-
kb windows:

ri ¼
diþ2;500 � di�2;500

5; 000
;

depending on whether i was to the left or right of the selected
locus, respectively. Summary statistics for genetic distances
and recombination rates (median, standard deviation, etc.)
were estimated from replicate and/or different sexed pools
from the same cross. For the Canton-S� gl� e� crosses, the
reciprocal marker selection produced two different sets of
genetic distances from either glass or ebony. However, once
converted into recombination rate, the reciprocals were then
treated as replicates, since recombination rate is expected to
be unaffected by the marker selected. To convert the publi-
cally available recombination rate which is in 100-kb windows
Comeron et al. (2012) to genetic distance, we multiplied the
recombination rate in each window by 100 kb.

Fly Stocks, Maintenance, and Collection
The Canton-S and double marker lines were ordered from
Bloomington Drosophila Stock Center, stock numbers
BL64349 (Can-S), BL1669 (e� se�), and BL507 (gl� e�).
Notedly, the source of the elevated heterozygosity in the
Canton-S strain is due to stock center contamination, which
BDSC has now acknowledged under the strain’s listing.
DGRP-315 and DGRP-360 are gifts from Dr Yuh Chwen G.
Lee. All stocks and crosses were raised on standard molasses
food at 25 �C. For the crosses, 4–8-day-old virgin females were
mated with the marker strain males and F1 virgins were then
collected. For each recombinant cross, over 40 F1 virgins were
collected and backcrossed to the marker males in vials of five
to eight virgin females to eight to ten males. To avoid over-
crowding in the subsequent generation, backcrosses were
transferred every 2–3 days to new vials and after adults began
to emerge, flies were cleared and scored daily. Every vial is
collected for 10 days to ensure that genotypes that may
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introduce developmental delays will not be underrepre-
sented. Sexed and genotyped flies were maintained in fresh
vials for 3–5 days prior to freezing in the �20 �C freezer.

DNA Extraction and Library Preparation
Frozen flies of the desired genotypes were pooled, pulverized
with sterilized mortar and pestle that are chilled in liquid
nitrogen, and then transferred to 50-ml falcon tubes. After
adding 15 ml of Cell Lysis Solution from Qiagen (Catalog
No.158908), samples were incubated at 65 �C for 4 h and
vigorously shaken every hour. In total, 75 ll of ProteinaseK
(Catalog No. 19131) was then added and incubated at 55 �C
overnight; 200 ll of EtOH was added into 400 ll of the
sample then passed through the columns from the DNeasy
kit (Catalog No. 69506). The columns were then processed in
accordance with the kit protocol. DNA for parental lines were
extracted from five females using the DNeasy kit. The result-
ing DNA was fragmented to 550 bp using the Covaris soni-
cator and libraries were made with the Illumina Truseq DNA
Nano kit. Library quality was determined with the Bioanalyzer
at the Functional Genomics Laboratory at UC Berkeley and
samples were pair-end sequenced using the Illumina HiSeq
4000 machine at the Vincent J. Coates Genomics Sequencing
Laboratory at UC Berkeley. Coverage of each cross can be
found in supplementary table 1, Supplementary Material
online.

Predicting and Smoothing the AF with Linear
Regression, LOESS, and Cubic Splines
Demultiplexed paired-end reads were mapped to the
D. melanogaster genome r6.12 downloaded from Flybase
(Thurmond et al. 2019), using bwa mem (v0.7.15) on default
settings (Li and Durbin 2009). Raw reads for the two DGRP
strains were downloaded from SRA under SRX006143 for
DGRP-315 and SRX155999 for DGRP-360. We removed dupli-
cates using Picard tools (v2.18.14) and merged the parental
strains with the crosses using Samtools (v1.5) (Li et al. 2009) to
allow them to be genotyped together with GATK
HaplotypeCaller (v3.8) (McKenna et al. 2010). By default,
HaplotypeCaller only outputs sites where at least one sample
has a nonreference variant. This is particularly problematic if
samples were genotyped individually, since many of the sites
will be deemed as homozygous reference and unreported,
particularly around the selected locus in our selected pools
where the AF is close to either 0 or 1. By genotyping the
crosses together with the parents, we are ensuring that all
informative sites are reported, because at least one of the two
parents will be homozygous for the nonreference allele at
informative sites. To filter for informative sites, we used
bcftools (Li 2011) (v1.6) to first isolate the parental strains
and retained only SNP sites where the parental strains have
different homozygous alleles with both genotype quality of
�30 (supplementary table 2, Supplementary Material online).
In the crosses, all sites other than the informative sites are
removed. No genotyping filter is applied on the crosses since
many of the sites in the crosses will have intermediate AF that
are difficult to genotype. Sites within 100 bp of repeats are
removed to avoid copy number variants. The coverage and

number of SNP sites after filtering can be found in supple-
mentary table 1, Supplementary Material online. The allele-
specific read counts can be determined from the AD field in
the vcf files (Danecek et al. 2011).

Inversion Identification
For structural variant calls, we used the smoove wrapper for
Lumpy (v0.2.13) after aligning e se to the reference genome
(Layer et al. 2014). We identified large structurals variant over
1 Mb within and between Chr. 3L and 3R.

Removing Offsite Viability Effects with Root-Finding
Algorithm
Given the complex equations for the offsite viability effects,
we use root-finding algorithms to solve for Dil instead of iso-
lating it from the equation. Since bqo and Dlo can be prede-
termined, and Dio can be substituted with Dil in accordance
with equation (9), we are left with formulae with only Dil as
the variable to solve. We use the root-finding function uni-
root.all() from the package rootSolve in R to closely approx-
imate the solution (Soetaert and Herman 2009). Note in
some instances, more than one solution is possible, but usu-
ally only one is within reasonable range (between 0 and 0.5).

Data Availability
Intermediate files can be found on Dryad at https://doi.org/
10.6078/D10D8F.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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