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Abstract

Neuronal networks encode information through patterns of activity that define the net-

works’ function. The neurons’ activity relies on specific connectivity structures, yet the link

between structure and function is not fully understood. Here, we tackle this structure-

function problem with a new conceptual approach. Instead of manipulating the connectivity

directly, we focus on upper triangular matrices, which represent the network dynamics in a

given orthonormal basis obtained by the Schur decomposition. This abstraction allows us

to independently manipulate the eigenspectrum and feedforward structures of a connec-

tivity matrix. Using this method, we describe a diverse repertoire of non-normal transient

amplification, and to complement the analysis of the dynamical regimes, we quantify the

geometry of output trajectories through the effective rank of both the eigenvector and the

dynamics matrices. Counter-intuitively, we find that shrinking the eigenspectrum’s imagi-

nary distribution leads to highly amplifying regimes in linear and long-lasting dynamics in

nonlinear networks. We also find a trade-off between amplification and dimensionality of

neuronal dynamics, i.e., trajectories in neuronal state-space. Networks that can amplify a

large number of orthogonal initial conditions produce neuronal trajectories that lie in the

same subspace of the neuronal state-space. Finally, we examine networks of excitatory

and inhibitory neurons. We find that the strength of global inhibition is directly linked with

the amplitude of amplification, such that weakening inhibitory weights also decreases

amplification, and that the eigenspectrum’s imaginary distribution grows with an increase

in the ratio between excitatory-to-inhibitory and excitatory-to-excitatory connectivity

strengths. Consequently, the strength of global inhibition reveals itself as a strong signa-

ture for amplification and a potential control mechanism to switch dynamical regimes. Our

results shed a light on how biological networks, i.e., networks constrained by Dale’s law,

may be optimised for specific dynamical regimes.
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Author summary

The architecture of neuronal networks lies at the heart of its dynamic behaviour, or in

other words, the function of the system. However, the relationship between changes in the

architecture and their effect on the dynamics, a structure-function problem, is still poorly

understood. Here, we approach this problem by studying a rotated connectivity matrix

that is easier to manipulate and interpret. We focus our analysis on a dynamical regime

that arises from the biological property that neurons are usually not connected symmetri-

cally, which may result in a non-normal connectivity matrix. Our techniques unveil dis-

tinct expressions of the dynamical regime of non-normal amplification. Moreover, we

devise a way to analyse the geometry of the dynamics: we assign a single number to a net-

work that quantifies how dissimilar its repertoire of behaviours can be. Finally, using our

approach, we can close the loop back to the original neuronal architecture and find that

biologically plausible networks use the strength of inhibition and excitatory-to-inhibitory

connectivity strength to navigate the different dynamical regimes of non-normal

amplification.

Introduction

Recurrent network models are known to produce different types of dynamics, ranging from

regular to irregular, and from transient to persistent activity [1–6]. Moulding network dynam-

ics to resemble experimental observations usually involves changes in the network architec-

ture, i.e., the existence of synapses and their efficacies [7–9]. With this approach, the

eigenspectrum and the non-normality of the connectivity matrix are indirectly affected, and

the relationship between changes in those qualities of the weight matrix and the network

dynamics remain unclear. This is challenging because both the eigenspectrum and non-nor-

mality carry important information about the dynamics. The eigenspectrum, i.e., the distribu-

tion of eigenvalues in the complex plane, carries information about the stability of the network

(e.g., asymptotic behaviour) [6, 8, 10], and timescale of the dynamics [4, 11]. However, the

eigenspectrum alone is not sufficient to describe the transient dynamical behaviour of a net-

work [10, 12]. The transient dynamics, and more specifically, the phenomenon of transient

amplification, depends on the alignment between the eigenvectors of the connectivity matrix

[10]. Importantly, the more aligned the eigenvectors are, the more non-normal a matrix is. The

non-normality of a matrix can be assessed through the Schur decomposition, an orthogonal

similarity transformation that results in an upper triangular matrix on which the eigenvalues

appear along the diagonal. The Schur decomposition of a matrix W can be formally written as

W = U(Λ + T)U†, where U is an unitary matrix (its columns are the orthogonal Schur modes),

Λ is a diagonal matrix containing the eigenvalues of W (complex eigenvalues are represented

as 2-by-2 block diagonals with the real and imaginary parts), and T is a strictly upper triangu-

lar matrix. The strictly upper triangular part contains information related to the interactions

between the corresponding Schur modes [12]—it’s useful to note that a normal matrix has this

strictly upper triangular part equal to zero because all eigenvectors are orthogonal. As such,

the strength (measured by the norm [13]) of the strictly triangular part of the Schur decompo-

sition plays an important role for the dynamics.

Therefore here, we consider upper triangular matrices and manipulate their spectrum and

non-normality, such that their characteristics can be directly translated into dynamical proper-

ties (Fig 1A). These matrices no longer represent the neuronal connectivity, but modes of acti-

vation that are arranged in a feedforward manner [10, 12, 14] (Fig 1B). We are particularly
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interested in the different forms of transient amplification, a phenomenon that can resemble

motor cortex activity during reaching [15–17] and also emulate long-lasting working memory

dynamics [18–20]. For a network to be able to transiently amplify an input signal (i.e., initial

condition), not only the eigenvectors need not be orthogonal (allowing for non-normal ampli-

fication), but also eigenvalues cannot have any real part larger than unity (allowing for the

transient amplification to be followed by a decay back to baseline) [6, 10, 12]. This constrains

the possible structure of the eigenspectrum. For example, when the connectivity matrix is ran-

dom, the bulk of the eigenvalues is uniformly distributed on a disc centred at zero, which

together with the stability constraint imposes that the radius can’t be larger than 1 [2, 6, 12].

Taking into account this effect, random weight matrices are not particularly flexible for gener-

ating distinct eigenspectrum distributions, not allowing for a rich plethora of network dynam-

ics. Specific eigenspectrum distributions (given that the matrix is non-normal), can indeed

elicit richer dynamics through either optimisation of weights taking into consideration their

effect on the eigenspectrum [8] or the combination of matrices with different statistics [6, 21,

22]. However, it is still unclear how modifications in the distribution of only real or imaginary

parts of the eigenspectrum change the dynamical regimes of a non-normal network which is

able to transiently amplify inputs. Moreover, it’s not entirely known how these changes can be

imposed to biologically realistic networks in which neurons are either excitatory or inhibitory,

and neurons might not connect to themselves, i.e., without self connections.

To better understand how the manipulations in eigenspectrum and non-normality of a

connectivity matrix are translated to biologically plausible networks, in this work we manipu-

late them directly in upper triangular matrices and then translate our main findings to biologi-

cally plausible networks. We start by defining the relationship between the network’s activity

and the eigenmodes given by the Schur decomposition, showing how simple manipulations of

the eigenspectrum’s imaginary diameter and real distribution can drastically affect the neuro-

nal dynamics. We then systematically explore how the eigenspectrum’s imaginary diameter

and the feedforward norm control the different regimes of transient amplification, showing

that either shrinking the eigenspectrum’s imaginary diameter or increasing the feedforward

norm increase amplification levels. Analysing the neuronal dynamics of these networks via the

effective rank of the eigenvectors of the connectivity matrix, we find a trade-off between ampli-

fication and the underlying dimensionality of the possible dynamics of the network: networks

Fig 1. Elements explored in the manuscript. A, Schematic of the elements explored in this manuscript. Top left and

clockwise: The connectivity matrix WB; its corresponding Schur upper triangular decompositionfW; the

eigenspectrum; and the induced dynamics. In WB andfW, red dots indicate positive (excitatory) connections while

blue dots indicate negative (inhibitory) connections. B, The upper triangular matrixfW with the quantities that we alter

in this manuscript in pink.

https://doi.org/10.1371/journal.pcbi.1010365.g001
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with high (respectively low) levels of amplification produce dynamics in low (respectively

high) dimensional subspaces. After a dissection of the underlying mechanisms of transient

amplification using general upper triangular matrices, we consider biological constraints on

the spectral distributions, and consequently, on the dynamics. Finally, we show how we can

implement our findings in a biological plausible connectivity matrix with excitatory and inhib-

itory neurons, i.e., a matrix satisfying Dale’s law. We explore three different manipulations:

lack of autapses, global inhibition, and ratio between excitatory-to-inhibitory and excitatory-

to-excitatory connections. We show that increased global inhibition can lead to more amplify-

ing dynamics due to its connections with the eigenspectrum, and that changing excitatory-to-

inhibitory connections affect the eigenspectrum’s imaginary diameter.

Results

Throughout the paper we use the following notation for the connectivity matrix: W for a

generic connectivity matrix,fW for a matrix given in upper triangular form, and WB for a

matrix following biological constraints (Fig 1A). The dynamics of the recurrent network are

defined by

t
dxðtÞ
dt
¼ � xðtÞ þWf x tð Þð Þ; ð1Þ

where x(t) is the internal state of the network at time t, and xi(t) can be understood as the

membrane potential of the ith neuron of the network (with i = 1, . . ., N; N is the number of

neurons in the network). This internal state of the neurons evolves with a characteristic time

constant τ (fixed at τ = 200 ms throughout the paper) and is affected by the activity of other

neurons of the network through the recurrent connections determined by W. Finally, the acti-

vation function, f(x(t)) = r(t), represents the input-output relation between the internal state,

x(t), and the firing rate deviation, r(t), from the baseline activity, r0. We assume linear dynam-

ics, r = f(x) = x, for the mathematical analysis and compare to networks with richer dynamics

using a known non-linear function given by

f ðxÞ ¼

rmintanh
x

rmin

� �

for x < 0

rmaxtanh
x

rmax

� �

otherwise;

8
>>>><

>>>>:

ð2Þ

where rmin = 1 Hz and rmax = 4 Hz are the bounds of the sigmoid function f(x). Note that in

this case, and generally used in previous works [4, 8], negative values of ri(t) means less than

baseline activity (see S1 Text for a non-negative version). In the linear case, the network

dynamics can be described using the eigenvalues, λi, and eigenvectors, vi, of the weight matrix

W. To quantify whether and by how much the network can amplify specific inputs, we calcu-

late the norm of the rate vector, kr(t)k, by decomposing it along the directions of the eigenvec-

tors of W,

krðtÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

jrkðtÞj
2
þ
X

k6¼j

rkðtÞrjðtÞhvk; vji
r

; ð3Þ

where rkðtÞ is the complex conjugate of rk(t) and hvk, vji is the inner product of the complex

vectors vk and vj (see Methods). Here, rkðtÞ ¼ r̂ k exp t
t
ðlk � 1Þ

� �
is the solution of the system

along the direction of the eigenvector vk, which is associated with the eigenvalue λk (r̂ k is a con-

stant, uniquely determined by the initial condition). In a stable regime, Re(λk)< 1, 8k, the
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system exhibits a single fixed point that represents the baseline activity. An increase of the

response norm, kr(t)k, with respect to the norm of the initial condition, kr(t0)k (here always

normalised to 1), defines the phenomenon of transient amplification. A necessary condition

for this to happen is the non-normality of W, i.e., the eigenvectors do not form an orthogonal

basis [10]: hvk, vji 6¼ 0, for some j, k.

To explore regimes of transient amplification, we thus focus on matrices of the formfW ¼
Λþ T (Fig 1B), with the diagonal, Λ, containing the eigenvalues [10, 12, 14], and the strictly

upper triangular part, T, representing the feedforward structure between patterns of activation

(see S1 Text). Note that Λ contains 2 × 2-blocks around the diagonal to accommodate for com-

plex eigenvalues in real-valued matrices. The real parts of the eigenvalues are on the diagonal

and the imaginary parts lie on the off-diagonal entries of the 2 × 2 blocks (Fig 1B; see Meth-

ods). We create Λ by sampling the real and imaginary parts of the eigenvalues from different

distributions, but keeping the number of complex versus real eigenvalues constant (see Meth-

ods). The imaginary distribution needs to be symmetric with respect to zero (a condition

imposed by the conjugacy of the complex eigenvalues), while the real distribution must be

below 1 (and is here always set to have 0.5 as a supremum: maxλRe(λ) < 0.5) to ensure stabil-

ity. For our analysis, we define the spectrum norm as the Frobenius norm of the matrix Λ,

jjΛjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

kjlkj
2

q

(note that the spectrum norm defined here is different than the commonly

used spectral norm [23]). We create T in two different ways: from the Schur decomposition of

a Stability-Optimised Circuit (SOC) [8] or sampled from a uniform distribution. A SOC is cre-

ated from an initially unstable network (i.e., the initial weight matrix has some of the eigenval-

ues with real part greater than unity, Re(λk)> 1 for some k), whose inhibitory connections are

modified (optimised) so that no eigenvalue has real part greater than unity (see Methods).

After optimisation, a SOC produces strong non-normal transient amplification [8]. We thus

use the SOC’s corresponding feedforward structure because it is tuned to create transient

amplification. We linearly scale all the elements of T after its structure has been fixed to vary

its norm.

The subsequent sections are organised as follows. First, we explore the effects of changing

the distribution of the eigenspectrum’s imaginary and real parts. We then examine the influ-

ence of the spectrum and feedforward norms, ||Λ|| and ||T||, respectively, for different regimes

of transient amplification, analysing the dimensionality of the dynamics in such regimes.

Finally, we link some of the findings from abstract to biological networks through manipula-

tions in a biologically realistic weight matrix that satisfies Dale’s law.

Shrinking the imaginary distribution increases amplification

We start our investigation of how the eigenspectrum affects the dynamics by drawing both real

and imaginary parts from uniform distributions with diameters dim and dre, respectively

(Fig 2A–2D, top left). To quantify the dynamical response of the network, we find an orthogo-

nal basis of initial conditions of the linear network that elicit maximum amplification,

IB ¼ fa1; . . . ; aNg, ordered according to their evoked energy [8], EðaÞ: if x(t = 0) = a, ||a|| = 1,

then EðaÞ ¼ 2

t

R1
0
jjxðtÞjj2dt. We first calculate the initial condition a1 that maximises EðaÞ, fol-

lowing an iterative calculation of the subsequent orthogonal initial condition, ai, that maximise

EðaÞ in the subspace orthogonal to the previously calculated initial conditions, {a1, . . ., ai−1}.

To make sure that the evoked energy is due to an amplified response rather than merely a

slower exponential decay, we compute the maximum value of the norm of the firing rate vec-

tor, for all vectors in IB (Fig 2A–2D, bottom left).
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With broad distributions, the system can slightly amplify a few conditions (Fig 2A). When

the range of the real-part distribution is decreased and the real parts are pushed towards 0.5,

the resulting network produces stronger amplification (Fig 2B). This can mainly be attributed

to the fact that the eigenvalues have now larger real parts and hence longer decay envelopes. A

longer decay envelope allows for the network dynamics to undergo a larger proportion of a

full period of the underlying oscillation without damping of the maximum amplitude, reveal-

ing the hidden feedforward structure, and thus increasing the maximum norm. Indeed, clus-

tering away from 0.5 leads to less amplification (explored in the next section).

More surprisingly, shrinking, instead, the imaginary distribution also leads to more amplifi-

cation (Fig 2C), and shrinking both distributions produces very large amplification that in the

non-linear case lasts for a long time (longer than 10 seconds), approximating timescales of

working memory dynamics (Fig 2D), previously known to arise through spectral abscissas

near the stability line. Additionally, the percentage of conditions that are amplified is consider-

ably increased, i.e., the ability of such a network to amplify orthogonal initial conditions is

enhanced. Note that splitting and clustering the (positive and negative) imaginary parts away

from zero gives rise to slightly different amplification regimes that also depend on the linearity

of the system (S1 Fig). From these examples (Fig 2 and S1 Fig) it is clear that varying the

Fig 2. Eigenspectra and dynamics of the corresponding networks. A–D, Four cases of eigenspectra and dynamics of

the corresponding network of size N = 200. In each panel, clockwise: The spectrum; linear dynamics; non-linear

dynamics; the logarithm of the maximum norm of the firing rate per initial condition. The same initial condition that

elicits the maximum norm is used for both linear and non-linear dynamics. Pink dotted line indicates the percentage

of conditions whose norm is amplified by at least 50%. The feedforward structure is taken from a stability-optimised

circuit [8] and its Frobenius norm is fixed to 75. Real and imaginary parts follow an uniform distribution with

diameters dim and dre, respectively. A, When dim = dre = 10, only 1% (2 out of 200) of the conditions are slightly

amplified. B, When dim = 10 and dre = 1, the system is capable of more amplification. C, Here, dim = 1 and dre = 10,

surprisingly creating more amplification compared to the case shown in panel A. D, When dim = dre = 1, the system

amplifies almost half of the initial conditions. The dynamics, given an initial condition of norm 1, reach the value

of* 105 Hz in the linear case and consequently long-lasting dynamics in the non-linear case.

https://doi.org/10.1371/journal.pcbi.1010365.g002
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diameter and position of the centre of the distribution of both imaginary and real parts of the

eigenspectrum play distinct roles in the levels of amplification of a network undergoing tran-

sient amplification.

Manipulating the spectrum and the feedforward norms

When we study the effects of the imaginary and real distributions more systematically, we find

that the shape of the real distributions affects the levels of amplification, but has minimum

effect on how amplification changes with the imaginary distribution (Fig 3Ai and 3Aii and

S2(A) Fig). Amplification emerges from the non-normality of W, which can be partly

Fig 3. Effects of manipulating the spectrum and the feedforward norms. A, Maximum response norm for the

preferred initial condition (i), percentage of directions whose norm is amplified more than 50% (ii), and the

percentage of angles (between pairs of eigenvectors) that are less than 45˚ (iii). Every line is a function of the imaginary

diameter. We plot four real distributions. Light green: a uniform distribution in which all real parts are distributed

uniformly in the interval (−0.5, 0.5). Dark green: a uniform distribution in which all real parts are distributed

uniformly in the interval (−9.5, 0.5). Light pink: a single valued real distribution in which all real parts are equal to

zero. Dark pink: a single valued real distribution in which all real parts are equal to −0.5. In all cases the network size is

N = 200 and the feedforward Frobenius norm is fixed at 75. dre indicates the diameter of the uniform distribution of

the eigenspectrum’s real part. B, Same as panel A, but plotted as a function of the feedforward Frobenius norm.

Different colours correspond to 5 different spectra; all spectra have fixed single-valued real distributions (equal to zero)

and different imaginary diameters. dim indicates the diameter of the uniform distribution of the eigenspectrum’s

imaginary part. C, Normalised inner product between vectors from a simplified 3-by-3 upper triangular matrix (Eq 4)

as a function of the imaginary diameter (β in Eq 4) for three conditions: “strong feedforward” (ϕnorm = 30 and α − γ =

−0.3); “weak feedforward” (ϕnorm = 3 and α − γ = −0.3); and “large dre” (ϕnorm = 3 and α − γ = −3). D, Same as panel C,

but plotted as a function of the feedforward norm for three different conditions: “small dim” (β = 100 and α − γ = 0);

“intermediate dim” (β = 1000 and α − γ = 0); and “large dim” (β = 10000 and α − γ = 0).

https://doi.org/10.1371/journal.pcbi.1010365.g003
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quantified by the angles between the eigenvectors (Eq 3); if more pairs have overlaps, the

matrix will be more non-normal. The imaginary distribution changes the geometry of the

eigenvectors (Fig 3Aiii), providing a mechanism for its drastic effect on the amplification in

these networks (Fig 3Ai and 3Aii). This is a surprising effect given that we do not alter the feed-

forward norm, kTk, i.e., the Frobenius norm of the strictly upper triangular part offW, nor the

decay envelopes at all (see S2(B) Fig and S1 Text for variations of feedforward structures).

The feedforward norm is more directly linked to the non-normality [10], and as expected,

it increases both the norm of the maximum response (Fig 3Bi), and the percentage of amplified

conditions (Fig 3Bii), for larger values. The percentage of eigenvector pairs with small angles

also grows with increasing feedforward norm strength (Fig 3Biii). Interestingly, there is a satu-

rating point of eigenvector pairs aligned with angles smaller than 45˚ that depends on the

imaginary distribution. Once the number of pairs saturates, increased amplification may be

associated with an increase in the matrix norm, ||W||, or further alignment of these eigenvector

pairs (even smaller angles).

To get an intuition of the mechanisms behind the changes in amplification levels we ana-

lysed a 3-by-3 upper triangular matrix with one purely real eigenvalue, λ1 = γ, and two com-

plex eigenvalues, l2 ¼ l3 ¼ a � ib. Two out of the three eigenvectors of this matrix are

orthogonal, hv2, v3i = 0. The inner product of the non-orthogonal eigenvectors is given by (see

Methods for details)

hv1; v2i

kv1kkv2k

�
�
�
�

�
�
�
� ¼

hv1; v3i

kv1kkv3k

�
�
�
�

�
�
�
� ¼

�normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½�
2

norm þ ða � gÞ
2
þ b

2
�

q ; ð4Þ

where ϕnorm is the feedforward norm. The result from the simplified 3-by-3 matrix follows the

same trends as the simulations (Fig 3C and 3D). The overlap between the eigenvectors

increases as the imaginary part of the eigenvalues, β, decreases—equivalent to shrinking the

imaginary diameter in the large upper triangular connectivity matrix,fW. The eigenspectrum’s

real elements, α and γ, have a similar effect: the larger their difference the more the eigenvec-

tors are aligned. Interestingly, when α = γ, the real distribution has no influence over the

overlap between the eigenvectors, such as seen when we decrease the single real-valued distri-

bution (S2(A) Fig, bottom)—the decrease in amplification levels is mostly due to the faster

decay times when decreasing the single real-value distribution (S2(A) Fig, top). Because of the

square, the larger the absolute value of α − γ (negative or positive) the less the eigenvectors are

aligned, which we confirm with a large upper triangular matrix,fW, varying the diameter of

the eigespectrum’s real distribution while keeping its maximum value at maxλRe(λ) = 0.5

(S2(C) Fig). The eigenspectrum’s real distribution may affect the level of amplification in two

ways: it changes the asymptotic behaviour (decay times) and the eigenvector alignment. These

results give a broad intuition for the distinct contribution of the eigenspectrum’s imaginary

diameter and feedforward norm, but we still do not exactly know how the dynamics of

such networks evolve. Thus, we next study the relative directions of the eigenvectors in

state-space.

The geometry of output trajectories

If most eigenvectors are pointing in similar directions, the dynamics will be biased towards

these directions too (Eq 3). This does not mean that W or the eigenvector matrix V are not full

rank—on the contrary, they almost always are. What it means is that, in order to quantify the

global eigenvector geometry, we have to use the effective rank of V. The effective rank of V

measures the average number of significant dimensions in its range, and is formally defined as

PLOS COMPUTATIONAL BIOLOGY Regimes and mechanisms of transient amplification in neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010365 August 15, 2022 8 / 32

https://doi.org/10.1371/journal.pcbi.1010365


the exponential of the spectral entropy of its normalised singular values [24]. Specifically, if σ1,

σ2, � � �, σN are the singular values of V, and pi ¼
si
ksk1

, with ksk
1
¼
PN

k¼1
jskj, then

erankðVÞ ¼ exp½Hðp1; � � � ; pNÞ�; ð5Þ

where H(p1, � � �, pN) is the Shannon entropy, i.e., Hðp1; � � � ; pNÞ ¼ �
PN

k¼1
pklogpk.

The effective rank of V is indeed small in the highly amplifying regimes (Fig 4A), revealing

an underlying duality between amplification and output dimensionality. The consequence for

the dynamics is that, even though the system may amplify many initial conditions, they never-

theless evolve in the same low dimensional subspace [22]. To identify the dimensionality of

this subspace we compute the effective rank of the matrix P which is constructed as follows:

the jth column of P is the first principal vector of the dynamics, given the jth amplified initial

condition of the IB basis. We find that there is a discrepancy between the number of amplified

directions and effective rank when the system produces large amplifications (Fig 4B; see S3 Fig

for results with larger number of principal components). This suggests that the dynamical

responses evoked by orthogonal initial conditions evolve in the same subspace, indicating that

any added noise will be amplified in the same subspace and that different initial conditions

could potentially lead to similar linear readouts (see ref. [6] for capacity estimates of transient

amplifying networks). There is thus a trade-off between the number of orthogonal amplified

conditions and the noise robustness of the system. The effective rank of V is preserved in a

recurrent network that is a rotated version of an upper triangular one (S4(A) Fig) while the

effective rank of the connectivity matrices differ (S4(B) Fig). Similarly, the discrepancy

between the number of amplified directions and effective rank is preserved for the rotated

(recurrent) weight matrix (S4(C) Fig; compare to Fig 4B), which highlights the robustness of

our method to describe the geometry of the network dynamics.

To further describe the system, we use the timescale of the transient amplification, i.e.,

period, Δt, for which kr(t)k � 1 for the nonlinear network (Fig 5A and S5 Fig). This timescale

Fig 4. Geometry of output trajectories. A, The effective rank of the eigenvector matrix V offW as a function of the

imaginary diameter (left) and the feedforward norm (right). B, Amplified directions and effective rank of the matrix P
(see text) in the linear and nonlinear cases as a function of the imaginary diameter (left) and the feedforward norm

(right). The feedforward structure is random from a uniform distribution, and the real distribution is uniform on

(−0.5, 0.5). In all cases the network size is N = 200. The feedforward Frobenius norm is fixed at 75 for the plots with

varying imaginary diameter. The imaginary diameter is fixed at 20 for the plots with varying feedforward norm.

https://doi.org/10.1371/journal.pcbi.1010365.g004
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varies continuously as a function of the norms of the eigenspectrum and the feedforward

structure (Fig 5B and S6(A)–S6(F) Fig). Importantly, the dynamics evoked in each of these

regimes—defined here by the transient amplification period—lie in different subspaces. For

very short periods (e.g., Δt� 500 ms; Fig 5A “weak”), the eigenvectors are effectively orthogo-

nal to each other but span the entire output space equally. For short transient periods (e.g., 500

< Δt< 2000 ms; Fig 5A “short transient”), there is a good balance between amplification of

orthogonal inputs and diversity in the responses. For long transient periods (e.g., Δt� 2000

ms; Fig 5A “long transient”), many initial conditions are amplified but the responses lie in the

same low-dimensional subspace. This result is well explained by the alignment of the eigenvec-

tors of the simplified 3-by-3 upper triangular matrix (Eq 4): larger feedforward norm or

smaller eigenspectrum norm result in eigenvectors being more aligned (S6(G)–S6(I) Fig).

Indeed, when we fix the norm of W, and distribute a—continuously decreasing—percentage

of this norm on the diagonal and the rest on the feedforward structure, the network transitions

from weakly to strongly amplifying (Fig 5C). Thus, it’s the relation between the diagonal (rep-

resenting the spectrum) and feedforward parts of the matrix that shapes the dynamics of the

network.

Towards biologically realistic networks that satisfy Dale’s law

Up to here we explored different regimes of transient amplification in networks defined by an

upper triangular connectivity matrix. This allowed us to have precise control over both eigen-

spectrum and feedforward structure of the connectivity matrix. However, these abstract net-

works do not represent biologically realistic neural networks, especially because of Dale’s law,

i.e., neurons are either excitatory or inhibitory. In an upper triangular connectivity matrix,fW,

the feedforward structure (and consequently feedforward norm) is given by the elements of its

strictly upper triangular part, while the eigenspectrum (and consequently spectrum norm) is

given by the elements of its diagonal. However, both the eigenspectrum and the feedforward

structures are not trivially manipulated in a biological connectivity matrix, WB. As a last appli-

cation, we thus explore how to navigate the regimes of transient amplification in biological

networks (i.e., satisfying Dale’s law) based on our results from upper triangular matrices. First,

we consider the effect of the absence of self loops in the connectivity matrix. We then focus on

Fig 5. Amplification regimes. A, Representative examples of non-normal amplification defined by the timescale of

the transient response of the nonlinear network—period, Δt, for which kr(t)k � 1: “weak” (Δt� 500 ms); “short

transient” (500< Δt< 2000 ms); and “long transient” (Δt� 2000 ms). Grey dotted line indicates krk = 1. B, Timescale

of the response in the nonlinear network (as in panel A), parametrised by the norms of the spectrum and feedforward

structure. Yellow indicates timescale longer than 10 seconds. Boxes correspond to the values used for the plots in panel

A (colour coded): (feedforward norm, spectrum norm) = (100, 700), (500, 500), and (700, 100) for weak, short

transient, and long transient, respectively. C, Maximum norm of the dynamical response per initial condition for

different percentages of the norm assigned to the spectrum, ranging from a matrix whose entire norm is assigned to

the spectrum (yellow; 100% case, normal matrix) to a matrix whose entire norm is assigned to the feedforward part

(dark red; 0% case, nilpotent matrix). The network size is N = 200 in all panels. Both eigenspectrum and feedforward

structures are random uniform.

https://doi.org/10.1371/journal.pcbi.1010365.g005
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the indirect manipulation of the spectrum norm and the distribution of eigenvalues via modi-

fications of global inhibition and the indirect manipulation of the eigenspectrum’s imaginary

diameter via modifications of the ratio between excitatory-to-inhibitory and excitatory-to-

excitatory connections, respectively.

In the simulations of networks satisfying Dale’s law, half of the neurons are chosen to be

excitatory (only positive output weights) and the other half to be inhibitory (only negative out-

put weights) [2, 8, 12]. For additional biological plausibility, the connections are sparse, i.e.,

elements are set to zero following an uniform distribution. We thus have a set of constraints to

fulfil: (i) stable asymptotic dynamics (limt!1 kr(t)k = 0, i.e., maxλRe(λ) < 1); (ii) transient

amplification (kr(t)k> kr(0)k for t0 < t< t0 + Δt, with t0⩾ 0 and Δt> 0); and (iii) neurons

are excitatory or inhibitory. To do so we build biological weight matrices, WB, with the algo-

rithm from Stability-Optimised Circuits (SOC) [8] (see Methods), which fulfils all constraints

mentioned above. The SOC algorithm optimises inhibitory connections to ensure that no

eigenvalue has real part greater than αmax, αmax < 1 (maxλRe(λ) < αmax). Moreover, it allows

for additional constraints to be implemented, such as the level of global inhibition, and

whether neurons have autapses, which we use to translate the results from upper triangular

matrices,fW, to biological matrices, WB.

The absence of neuronal self loops shrinks the real distribution. Experimental evidence

supports the existence of autapses [25, 26], yet it is common for modelling work to impose no

self connections [27, 28]. As a starting point, we thus analysed the consequence of the lack of

self connections in networks, i.e., networks without autapses. When neurons are not structur-

ally connected to themselves, the trace of the weight matrix of such a network is equal to zero.

This unfolds as follows:

TrðWBÞ ¼
XN

i¼1

li ¼ i
XN

i¼1

ImðliÞ þ
XN

i¼1

ReðliÞ ¼ 0: ð6Þ

Given that
PN

i¼1
ImðliÞ ¼ 0 due the conjugacy of the eigenvalues, the weight matrix WB with-

out self loops has
PN

i¼1
ReðliÞ ¼ 0. This, together with the stability constraint, maxλRe(λ) =

αmax < 1, bounds the real distribution from below and above, restricting it to a limited diame-

ter that is less than αmaxN. The maximum range for the real distribution is bounded by

−αmax(N − 1) and αmax, when all real parts but one—defined here as the outlier—are equal to

αmax and the outlier is equal to −αmax(N − 1). This observation explains why the spectrum of a

stability-optimised circuit [8], which doesn’t have self loops, has an elongated shape along the

imaginary axis after optimisation. Not only the positive but also the negative real parts of the

eigenspectrum are pushed towards the stability line after optimisation, with the exception of

the outlier, which has a large negative value due to the non-self loops constraint and inhibition

dominating over excitation [8]. The zero trace condition (particularly
PN

i¼1
ReðliÞ ¼ 0) is nec-

essary but not a sufficient condition for the absence of self loops, yet it provides an intuition

for its effect on networks defined by upper triangular matrix that can be translated to biological

networks.

The existence of the negative outlier together with the zero trace condition has an interest-

ing effect in upper triangular matrices. The larger the value of the outlier (in absolute value),

the bigger the amplification (Fig 6A) and the number of amplified directions (Fig 6B). On one

hand, this can be explained by the fact that more real parts are pushed to the right, creating

longer decay envelopes, hence prolonging the time for the hidden feedforward structure to be

amplified. On the other hand, this is not the sole source of the increased amplification; the

combination of a large negative outlier with the zero trace condition has an additional
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non-intuitive effect on the geometry of the eigenvectors, i.e., it gives rise to larger eigenvector

overlaps (Fig 6C). Without the zero trace condition, increasing the (negative) value of the out-

lier does not give rise to the same levels of amplification (S7 Fig), confirming that large amplifi-

cation is an effect from the combination of the negative outlier and the zero trace condition.

Interestingly, the negative outlier, γ, reflects the level of global inhibition [2, 8, 12, 29], such

that (see Methods)

g � E 1 �
I
E

� �� �

; ð7Þ

where E and I are the sum of excitatory and inhibitory weights per postsynaptic neuron,

respectively (Fig 6D).

The eigenspectrum norm is influenced by global inhibition. Taking into account that a

large outlier reflects a connectivity matrix with inhibition dominating over excitation [12], i.e.,

the mean of inhibitory weights is larger than the mean of excitatory weights (Fig 6D), we tested

whether strengthening the inhibitory weights would have a similar effect as increasing the

(absolute) value of the outlier. For that, we built networks with excitatory and inhibitory neu-

rons with an initial spectral radius Router = 10 and various ratios of inhibition and excitation,
I
E

� �
. Non-zero excitatory and inhibitory weights are defined as w0=

ffiffiffiffi
N
p

and � I
E

� �
w0=

ffiffiffiffi
N
p

,

Fig 6. A large negative outlier increases amplification in upper triangular matrices without self loops and is

proportional to I/E ratio in networks satisfying Dale’s law. A, Maximum response norm for the preferred initial

condition as a function of the imaginary diameter using upper triangular connectivity matrices with the zero trace

condition and different outliers (coloured coded). The network size is N = 200 and the feedforward Frobenius norm is

set to 75 in all cases. B, Percentage of directions whose norm is amplified more than 50% as function of the imaginary

diameter as in panel A. C, The percentage of angles, between pairs of eigenvectors, that are less than 45˚, as a function

of the imaginary diameter as in panel A. D, Position of the outlier as a function of the I/E ratio for a network with 100

excitatory and 100 inhibitory neurons sparsely connected with no self loops. An initially random network is optimised

with the Stability-Optimised Circuit (SOC) algorithm [8] with I/E = 40 (see Methods). The additional outliers are

calculated by linearly scaling all inhibitory weights to I/E = 3, 5, 10, 20, 40.

https://doi.org/10.1371/journal.pcbi.1010365.g006
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respectively, with

w0 ¼
Routerffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 � pÞ
2

1þ
I
E

� �� �s ;
ð8Þ

where p is the probability of a connection being non-zero, taken from a uniform distribution.

As a result, the eigenspectrum is mostly distributed inside a circle in the complex plane of

radius Router [2] with one negative outlier due to inhibition dominating over excitation [12],

given by (see Methods)

g �

Routerp 1 �
I
E

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1 � pÞ
N

1þ
I
E

� �2
" #v

u
u
t

:
ð9Þ

Importantly, an inhibition dominated network is characterised by a non-uniform distribution

of eigenvalues inside the circle of radius Router, with a denser region near the origin. The denser

region is limited by an inner circle [2] with radius given by (see Methods)

Rinner �
Router

1

2
1þ

I
E

� �2
" # :

ð10Þ

Thus, the eigenspectrum of a inhibition dominated network is characterised by the presence of

a negative outlier and a denser region of eigenvalues near the origin (Fig 7A); properties that

are preserved after stabilisation of the weight matrix via the SOC algorithm (Fig 7B). The outli-

er’s value is not drastically changed by the SOC algorithm and is well captured by the analytical

expression from Eq 9 (Fig 7C). Considering only the imaginary distribution, the outer circle

shrinks while the inner circle remains mostly constant (Fig 7D), the latter being well described

by Eq 10.

The existence of a denser region of imaginary elements near the origin suggests an effect

similar to shrinking the imaginary distribution. This effect may be augmented by the lack of

autapses, which moves the real elements towards the stability maximum to accommodate for

the large negative outlier that emerges from inhibition dominating over excitation. We find

that, indeed, larger global inhibitory strength leads to more amplified conditions and also to

slightly larger amplification per condition when the Frobenius norm of the weight matrix is

kept fixed (Fig 7E). By assigning larger values to the inhibitory weights, the spectrum norm

decreases and the feedforward norm increases (Fig 7F). To highlight this finding, we note that

when the inhibitory to excitatory ratio is large, I/E = 40, the strength of every nonzero excit-

atory-to-excitatory connection is 0.08, and yet the network is capable of stronger amplification

compared to when I/E = 3 in which the nonzero excitatory-to-excitatory weights are set to 1.05

(see Eq 8).

Finally, the new amplified conditions induced by the strongest inhibition do not share their

first principal component directions in their dynamical responses (Fig 7C), i.e., the noise

robustness of the system is not compromised in this case [6]. This is possible because we are

still in the short transient regime; the long transient regime cannot be reached by solely

increasing the global inhibitory strength, i.e., large feedforward norms are always accompanied

by small spectrum norms in stability-optimised circuits (S8 Fig), which restricts the
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accessibility to the different dynamics regimes of transient amplification (S6(D)–S6(F) Fig).

Since the overall norm of the matrix stays the same (for comparison reasons), further increas-

ing the inhibitory dominance would unavoidably decrease the excitatory weights even further.

Therefore, the amplification power of the network through this mechanism eventually satu-

rates before reaching the long transient regime. Notice that the Frobenius norm of the weight

matrix was constrained by our choice of the initial spectral radius, Router, that, consequently,

constrains the possible spectrum and feedforward norms.

Fig 7. The effect of inhibitory dominance in Dalean matrices. A, Eigenspectra of connectivity matrices satisfying

Dale’s law: 100 excitatory and 100 inhibitory neurons sparsely connected (probability of connection, p = 0.1) without

self loops, constructed with spectrum of radius 10 and global inhibitory dominance of strength I/E (indicated on top of

each panel). Outlier, outer radius (Router), and inner circle (Rinner) are highlighted. See Methods for details. B,

Eigenspectra of connectivity matrices from panel A after optimising inhibitory weights with the SOC algorithm (see

Methods for details). C, Value of the purely real outlier before (open circle) and after (closed circle) optimisation.

Dashed line represents the analytical expression (Eq 9). Circles correspond to average over 1000 realisations. D,

Imaginary diameter of the outer (left) and inner (right) circles. Open and closed circles represent average values before

and after SOC optimisation algorithm, respectively, for 1000 random realisations. The outer and inner radii are

calculated as the radius for which the density of imaginary elements drops below 0.005 and below half the maximum

density, respectively. Dashed grey line (left) indicates dim = 20, and purple dashed line (right) represents the analytical

expression (Eq 10). E, Maximum norm per initial condition for different I/E ratios. Grey dotted line corresponds to a

response norm that is 50% larger than the norm of the initial condition. Pink dashed lines indicate the percentage of

initial conditions that elicit transients with maximum norm larger than 50% for I/E = 3 (lower percentage) and I/
E = 40 (higher percentage). We linearly scale all weights to keep the same Frobenius norm (equal to 100) for

comparison. F, The spectrum and the feedforward norms for different values of I/E in the corresponding real Schur

transformation. G, Percentage of amplified conditions and effective rank of the corresponding matrix P (defined in

the text) in the linear case.

https://doi.org/10.1371/journal.pcbi.1010365.g007
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These results indicate that the strength of the global inhibition, if modulated by an external

signal, could thus serve as a dynamical switch between amplifying and non-amplifying

regimes, and counter-intuitively, weakening of inhibitory synaptic weights would decrease the

level of amplification of an originally amplifying network. To test this hypothesis, we built a

network with strong inhibitory connections (I/E = 40) that enables the network to amplify cer-

tain inputs in the short transient regime (Fig 8A–8C). This network transitions into a network

that is unable to amplify any inputs by scaling its inhibitory weights down (Fig 8D–8F), con-

firming that global inhibition can indeed serve as an external switch that controls whether the

network is able or not to transiently amplify inputs.

The diameter of the imaginary distribution is influenced by the relationship between

excitatory-to-inhibitory and excitatory-to-excitatory connections. In the upper-triangular

version of the weight matrix,fW, the eigenspectrum’s imaginary distribution is given by the

off-diagonal terms offW (see Fig 1B). However, for a biologically plausible weight matrix, WB,

the manipulation of the imaginary distribution is not as trivial [2, 12]. To get an intuition of

the role of each connection type, we use a mean-field approach in which a large weight matrix

is simplified as a 2-by-2 matrix [10]: rows and columns correspond to the excitatory and inhib-

itory populations (Fig 9A), and the elements represent their mean connections (Fig 9B). We

Fig 8. From short transient to non-amplifying with weakened inhibition. A, Schematic of a network with strong

excitatory and inhibitory connections and I/E ratio of 40. B, The network’s dynamics given the preferred initialisation.

The resulting network is in the short transient regime; the preferred initialisation yields amplifying dynamics. C,

Maximum response norm for all orthogonal conditions, in decreasing order. Grey dotted line corresponds to a

response norm that is 50% larger than the norm of the initial condition. Pink dashed line indicates the percentage of

initial conditions with maximum norm larger than 50% of the initial condition. D, Schematic of the same network

from panel A, but the inhibitory weights are scaled down by a factor of 40 (yielding an I/E ratio of 1), which could be

interpreted as the resulting effect of modulation of the inhibitory neurons (or synapses). E, The dynamical response

given the preferred initialisation; inset depicts the same dynamics on a different scale. F, Maximum response norm per

condition. The network is unable to amplify any inputs. The maximum norm of the dynamics is equal to the norm of

the initial condition (set to be 1) for all initialisations. The network is composed by 100 excitatory and 100 inhibitory

neurons sparsely connected and without self loops. The schematics (panels A and D) is adapted from ref. [8].

https://doi.org/10.1371/journal.pcbi.1010365.g008
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define WEI, WIE, WEE, and WII (all positive) as the mean connectivity strength of inhibitory-

to-excitatory (I-to-E), excitatory-to-inhibitory (E-to-I), excitatory-to-excitatory (E-to-E), and

inhibitory-to-inhibitory (I-to-I) groups, respectively. The eigenvalues are complex when the

condition 4WEIWIE > (WEE + WII)
2 is satisfied (see Methods for detailed calculation). Real

and imaginary parts of the two eigenvalues corresponding to the simplified matrix are thus

Re l1ð Þ ¼ Re l2ð Þ ¼
1

2
WEE � WIIð Þ and ð11Þ

Im l1;2

� �
¼ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4WEIWIE � ðWEE þWIIÞ
2

q

: ð12Þ

When inhibitory connections, WEI and WII, are optimised for stability [8], we are left with

excitatory connections to manipulate the imaginary diameter of the eigenspectrum. Weaken-

ing E-to-I, WIE, or strengthening E-to-E, WEE, should shrink the imaginary distribution

according to Eq 12.

To test the intuition from the mean-field analysis, we built networks with connectivity

matrices obeying Dale’s law and without self loops according to the Stability-Optimised Cir-

cuit (SOC) algorithm [8] with varying ratios WIE/WEE. For each network initialisation, we sys-

tematically increased the strength of E-to-I connections, WIE, while keeping the same strength

of E-to-E connections, WEE. We then optimised inhibitory connections (both WEI and WII)

with the SOC algorithm, and linearly scaled all weights to maintain the same Frobenius norm

Fig 9. The relationship between E-to-I and E-to-E connectivity strengths alters the imaginary distribution of

eigenspectra of Dalean networks. A, Schematics of the mean-field analysis of a network with a group of excitatory (E)

and a group of inhibitory (I) neurons. The mean weight from E-to-E, E-to-I, I-to-E, and I-to-I are represented by WEE,

WIE, WEI, and WII, respectively. B, Weight matrix of a simplified network from panel A [10]. Inhibitory connections

are optimised by the SOC algorithm [8]. C, Imaginary diameter of a network with 100 excitatory and 100 inhibitory

neurons as a function of the ratio E-to-I to E-to-E weights. D, Feedforward (orange) and spectrum (red) norm as a

function of the ratio E-to-I to E-to-E weights for the same networks from panel C. E, Maximum norm per initial

condition for different ratios E-to-I to E-to-E weights. Grey dotted line indicates response norm that is 50% larger than

the norm of the initial condition. Pink dashed lines indicate the maximum percentage of orthogonal initial conditions

that evoke response norm 50% larger than initial condition for WIE/WEE = 1.8 (lower percentage) and WIE/WEE = 0.4

(higher percentage).

https://doi.org/10.1371/journal.pcbi.1010365.g009
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of the connectivity matrix, kWBk, for all realisations. We found that, in line with Eq 12, the

imaginary diameter of the Dalean weight matrix enlarges with the increase of the ratio WIE/

WEE (Fig 9C). As a consequence, the spectrum norm increases as the feedforward norm

decreases with the strengthening of the E-to-I compared to E-to-E connections (Fig 9D). This

indicates that in a stabilised network with connectivity following Dale’s law, i.e., when inhibi-

tory connections are optimised for stability, changing the relationship between E-to-I and E-

to-E connectivity can influence the diameter of the imaginary distribution of eigenvalues. Due

to a decrease in the imaginary diameter, the max norm of dynamics evoked by the orthogonal

initial conditions are slightly larger when E-to-I are weaker than E-to-E weights (Fig 9E).

These results indicate that excitatory-to-inhibitory connections may play a role in shaping the

network’s dynamics through their effect on the imaginary distribution of the connectivity

matrix.

Discussion

In this article we used upper triangular matrices as abstract representations of the dynamical

properties of a connectivity matrix to control the quantities that are relevant for the neural

dynamics in the transient amplification regime. By by-passing, temporarily, the connectivity

matrix and focusing on a hypothetical Schur transformation, we found new dynamical regimes

of large amplification that translated into long transients in non-linear networks. We showed

that the amount of transient amplification that a network can produce may be controlled by

the ratio between the norms of the spectrum and hidden feedforward structure. Increasing the

feedforward norm or decreasing the eigenspectrum’s imaginary diameter resulted in larger

amplifying dynamics.

Different combinations of the eigenspectrum’s and feedforward norms resulted in regimes

of transient amplification that lay in subspaces with different dimensionalities and evolved

with distinct timescales for non-linear networks. Very short transient periods in non-linear

networks spanned the entire output space but only a few orthogonal conditions elicited large

amplification. Short transient periods in non-linear networks lay in a lower subspace, but

more orthogonal conditions elicited large amplification. Finally, long transient periods in

non-linear networks lay in the same low-dimensional subspace, but many orthogonal initial

conditions evoked large amplification. The real distribution could considerably change the

levels of amplification, but did not affect the relationship between amplification and spec-

trum or feedforward norms. When the majority of real parts were close to the upper bound

of stability, a zero trace condition had an interesting effect: the larger the negative outlier, the

closer the real parts were to the stability limit, thus creating larger amplification levels. More-

over, we found a trade-off between the number of orthogonal initial conditions that elicit

large amplifications (larger than 50% of initial condition) and the dimensionality of the

underlying neuronal dynamics. The source of amplification, i.e., the overlaps of the eigenvec-

tors, inevitably restricted the subspace in which the dynamical outputs evolve, indicating that

any noise added to the system is also amplified in the same subspace, giving rise to low

robustness to noise [6].

In biologically plausible networks that satisfy Dale’s law (i.e., with excitatory and inhibitory

neurons), we found that stronger global inhibitory dominance controlled the spectrum norm

due to its relationship with the eigenspectrum outlier and a non-uniform distribution of the

remaining eigenvalues. Additionally to global inhibition affecting the spectrum norm, we also

showed that excitatory-to-inhibitory connections, more specifically its relationship to excit-

atory-to-excitatory connections, can alter the eigenspectrum’s imaginary diameter. We could

therefore link the results from upper triangular matrices and biologically plausible networks

PLOS COMPUTATIONAL BIOLOGY Regimes and mechanisms of transient amplification in neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010365 August 15, 2022 17 / 32

https://doi.org/10.1371/journal.pcbi.1010365


via two properties related to specific connectivity patterns: global inhibition and excitatory-to-

inhibitory connectivity.

Our work complements previous studies relating manipulations of eigenspectrum and their

consequence to neuronal dynamics (e.g., [2, 6, 8, 10, 12, 14, 21, 30]), more specifically on the

topic of transient amplification (e.g., [6, 8, 10, 12, 21]). Transient amplification is a phenome-

non tightly linked to eigenspectrum and non-normality of a connectivity matrix. For the

dynamics to be transient, the network’s activity must eventually decay back to baseline, which

constrains the eigenspectrum’s real part to be less than unity—a stability constraint. For the

dynamics to amplify certain inputs, the connectivity matrix must be non-normal [6, 8, 10].

Neuronal networks with excitatory and inhibitory neurons are always non-normal, because of

the separation of positive and negative columns [10], but non-normality of a connectivity

matrix is not sufficient for a network to transiently amplify inputs [6]. A necessary condition

in, e.g., random matrices is that the symmetric (real) part of the connectivity matrix has eigen-

values greater than unity [6]. In networks with sparsely connected excitatory and inhibitory

neurons, amplification levels increase with the eigenspectrum radius and the connectivity

sparsity, which reflects the global strength of excitatory and inhibitory connections [12]. If the

radius is greater than the unity, the network’s dynamics are unstable, which can be stabilised

by iteratively adjusting inhibitory connections to decrease the spectral abscissa until its values

is less than one (and therefore stable) [8]. This algorithm, referred to as Stability-Optimised

Circuits (SOC), and used here to generate Dalean matrices, is able to optimise networks to

elicit largely amplified transients. Interestingly, after optimisation, the eigenspectrum retains a

similar imaginary diameter but the eigenspectrum’s real part accumulates near the stability

limit apart from the outlier [8]. We confirmed that in Dalean networks, the existence of a large

negative outlier imposes that the remaining of the eigenspectrum’s real elements be pushed

near the spectral abscissa in networks without autapses.

Any structure imposed to a connectivity matrix affects its eigenspectrum in a particular

way. Excitatory-inhibitory balance constrains the eigenspectrum to a well defined circle for

finite-sized networks, with a non-uniform distribution of eigenvalues inside the circle when

the distribution of excitatory and inhibitory weights differ [2]. Cyclic connectivity is reflected

by eigenvalues lying on a circle (as oppose to inside for random matrices) [14], and the combi-

nation of random matrix and a single feedforward chain with purely imaginary eigenvalues of

alternating sign results in an eigenspectrum with two centres at ±i, results in large amplifica-

tion of oscillatory inputs [21]. Complementary to these previous studies, our work explored

simple changes in the eigenspectrum of a connectivity matrix, such as the diameter of imagi-

nary distribution, real negative outlier, and zero trace condition. More importantly, we could

directly link these simple changes to properties of Dalean matrices, shining a light on how

such changes might be implemented in biologically plausible networks.

Our results in matrices following Dale’s law allowed us to find a potential role for changes

in global inhibition in neuronal networks. Quick changes in the efficacy of inhibitory synapses,

both inhibitory-to-inhibitory and inhibitory-to-excitatory, could act as a switch in the dynam-

ical state of the network, changing from amplifying to non amplifying by reducing all inhibi-

tory efficacies. This switch may be controlled by neuromodulators such as the neuropeptide

proctolin [31], acetylcholine [32], dopamine [33], or serotonin [34], as well as stereotypical

connectivity motifs [35, 36] that could influence inhibitory activity in a similar way to weaken-

ing or strengthening all inhibitory weights. A modulatory increase in the global levels of inhi-

bition could be thus allowing the system to amplify inputs, facilitating signal processing in the

brain. This effect resembles the paradoxical decrease in inhibitory activity as a result of an

increase of external (excitatory) input onto inhibitory neurons [37]. We did not implement

any external input, and thus the counter-intuitive (or paradoxical) effect originates from
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scaling all inhibitory weights up or down. Intuitively, one would expect that by increasing

inhibitory weights, the amplitude of the network activity should decrease, and vice-versa.

However, we counter-intuitively found the opposite to be true.

The dynamics of real biological neuronal networks, assessed from large-scale recordings of

neural activity, has been shown to typically lie in a low-dimensional space [38], i.e., the number

of dimensions necessary to explain the majority of the data variance is much smaller than the

number of neurons recorded. The low-dimensional dynamics seen in experiments are well

described by, e.g., non-liner rate networks (such as the one used in our work), when connec-

tions are optimised for either the experiment’s task [7] or recorded neuronal activity [39].

Complementary to large-scale recordings of neuronal dynamics, recent technological

improvements have allowed researchers to build connectivity maps of large-scale brain regions

[40]. Finding the relationship between connectivity and dynamics is thus crucial to understand

the function of brain circuitry. The rank of the weight matrix carries information about the

dimensionality of the underlying dynamics generated by the network, but it does not necessar-

ily indicate the dimensionality of the subspace in which the dynamics lie. When, e.g., a weight

matrix is constructed as a sum of a unit-rank (generated from two independent vectors) and a

random (zero mean) matrix, the underlying dynamics evolves along the direction of the vector

used to generate the unit-rank matrix [22]. These vectors are the eigenvectors of the unit-rank

matrix [22], and because of the construction of the weight matrix, both weight and eigenvector

matrices will share the same effective rank. We have shown a more general case in which the

effective rank of the eigenvector matrix can carry information about the dimensionality of the

dynamics, even when the weight matrix itself has a high effective rank.

We limited our exploration in upper triangular matrices to the effects of simple changes in

the spectrum and feedforward structures, by controlling their range and norm. In networks

that satisfy Dale’s law, excitatory weights were sparsely connected with the same connection

strength for all non-zero entries, changing only the ratio between excitatory-to-inhibitory (E-

to-I) and excitatory-to-excitatory (E-to-E) connections. In reality, synapses are constantly

changing, following stereotypical synaptic plasticity rules that allow learning of memories [5,

41–43] or additional types of computation such as dynamical switch [44] and input categorisa-

tion [45]. Most computational models typically explore learning as a process involving changes

in excitatory-to-excitatory (E-to-E) connections accompanied by modifications in inhibitory-

to-excitatory (I-to-E) connections for stability [41, 42]. Typically, excitatory-to-inhibitory (E-

to-I) connections are randomly initialised and kept fixed throughout the simulations (but see

ref. [46]). Our results linking E-to-I connections to the eigenspectrum’s imaginary distribu-

tion, and consequently, amplification levels, suggest a role for such connection type. Future

theoretical and experimental work would be thus necessary to design and measure potential

plasticity rules for E-to-I connections that, in synergy with E-to-E [47] and I-to-E plasticity

[44], may, e.g., generate new classes of activity patterns.

Our work opens the door for the exploration of new questions related to neuronal dynam-

ics, such as how the structure—besides the norm—of the feedforward part as well as how non-

uniform imaginary distributions affect the dynamics of biologically plausible networks.

Methods

Details for upper triangular matrix setup

To construct the upper triangular matrices we take inspiration from the real Schur transforma-

tion of real matrices. In this form, the matrix is upper triangular with some 2 × 2 blocks on the

diagonal. These blocks have real entries and their eigenvalues are the complex eigenvalues of

the initial matrix (a pair of conjugates). We fix the triangular part that is not involved in the
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eigenvalue blocks (more details on this below) and assign to it the norm that we wish by scaling

its entries. For the manipulation of the spectrum we construct our distributions as follows. To

have the pair of complex eigenvalues α ± βi in the spectrum, we add the block

a � b

b a

 !

along the diagonal. For real eigenvalues, we add the corresponding real value on the diagonal.

The resulting matrix is as follows (example of a 5-by-5 upper triangular matrix with 4 complex

eigenvalues and 1 real eigenvalue):

fW ¼

a1 � b1 �1 �2 �3

b1 a1 �4 �5 �6

0 0 a2 � b2 �7

0 0 b2 a2 �8

0 0 0 0 g

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ð13Þ

The eigenvalues are λ1,2 = α1 ± iβ1, λ3,4 = α2 ± iβ2, and λ5 = γ, while the feedforward structure

is defined by {ϕi}, i = 1, . . ., 8. Note that all elements offW are purely real. For consistency, we

chose to keep the percentage of purely real eigenvalues to 3%, i.e., 6 out of the 200 eigenvalues

are purely real, and 194 are complex.

Real distributions. The real distributions we use in this work are the following:

• A single valued distribution: all real parts are the same and equal to a fixed value. We use

Re(λk) = 0, 8k in Fig 3A (light pink) and Fig 3B, as well as S2 Fig (pink) and S6(B) and S6(E)

Fig; Re(λk) = −0.5, 8k in Fig 3A (dark pink) and S2 Fig (dark pink); and Re(λk) = 0.5, 8k in

S2(A) Fig (light pink).

• A distribution with a negative outlier: in this construction we add a purely real negative

outlier, λout, at a specific point in the complex plane. In Fig 6A–6C and S6(C) Fig, a number

M = λout/αmax = 2λout of eigenvalues are equal to αmax = 0.5 and the rest is equal to zero so

that the zero trace condition is satisfied. The value of the outlier is indicated in the figure leg-

ends. In S7 Fig the real part of all other eigenvalues is equal to zero, and thus the zero trace

condition is not satisfied.

• A uniform distribution on the interval (−0.5, 0.5): all real parts, except for the last one, are

distributed uniformly between the values −0.5 and 0.5. As before, because of the zero trace

condition, we have to add a small outlier (the last real eigenvalue) to complement for the

non-zero sum of the rest of the values. We use this type of distribution in Figs 3A (light

green), 4 and 5, as well as S1, S3, S4, S5, S6(A), S6(D) and S6(F) and S9 Figs.

• A uniform distribution on the interval (0.5 − dre, 0.5): all real parts are distributed uni-

formly between the values 0.5 − dre and 0.5, creating a uniform distribution with diameter

dre and a maximum value of 0.5. We use this type of distribution in Fig 3A (dark green) with

dre = 10 and S2(C) Fig with dre = {0, 0.1, 1, 10, 100}.

In all cases, the pairings of the real parts with the corresponding imaginary parts are ran-

dom—except for forcing the conjugacy of eigenvalues, that is, we make sure that the same real

part is paired with conjugate imaginary parts. All simulations are run for 200 realisations
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(except where noted), with respect to the randomness of the imaginary distribution, and final

quantities are averaged across all realisations for plotting.

Feedforward structures. In the simulations shown in Fig 2, S2(A) and S2(B) Fig (pink),

and S6(D)–S6(F) Fig, the feedforward structure of the upper triangular matrix is taken to be

equal to the upper triangular part of the Schur transform of a fixed Stability-Optimised Circuit

(SOC) [8] with I/E = 3 (explained below). The SOC is a matrix known to create strong non-

normal amplification and its corresponding feedforward structure is not random, but finely

tuned to create amplification. In the simulations shown in Figs 3–6, as well as S1, S2(B)

(yellow), S3, S4, S5, S6(A)–S6(C), S7 and S9 Figs, the upper triangular part of the matrix is

drawn from a uniform distribution on the interval (−0.5, 0.5) and scaled accordingly to match

a specific Frobenius norm.

Imaginary clustering at different points. To understand whether the surprising effect

that arises from shrinking the imaginary spectrum is due to the clustering of the eigenvalues,

we checked what happens when the imaginary parts of the eigenvalues are not uniformly dis-

tributed around zero, but clustered around symmetrically displaced points on the imaginary

axis (S1(A) Fig inset). In this case the linear responses exhibit an interesting phenomenon,

resembling the beats in acoustics (S1(A) Fig). Because the frequencies are close to each other

(due to the clustering), the amplitudes of the different neuronal responses are superimposed

when phased, creating a response of very high amplitude (which by our definition would

count as amplification). Moreover, the differences in the frequencies create an envelope that is

modulating this amplitude over time. The nonlinear responses fail to capture most of the inter-

esting dynamics seen linearly and do not amplify to the same extent (S1(B) Fig). The very high

frequency makes it impossible for any potentially amplifying mode to drive the rest of the

modes and create a large amplified response. Because of this discrepancy between linear and

nonlinear behaviour, we do not consider these regimes as amplifying for the purposes of this

manuscript. It is worth noting that similar behaviour to the ±100 example is seen when cluster-

ing the imaginary spectrum at different nonzero values (S1(C) Fig).

Eigenvector overlaps

Recall that the eigenvectors are, in general, complex, in conjugate pairs and that in order to

compute the overlap between the eigenvectors we need to consider their inner product. The

inner product of two complex vectors is defined as

ha; bi ¼
X

i

aibi ð14Þ

and the angle, θ, between two complex vectors is given by

cosðyÞ ¼
Reðha; biÞ
kakkbk

ð15Þ

Therefore, to compute the angles between the eigenvectors we use Eq 15. In particular, we nor-

malise the eigenvectors to unit norm and compute all pairwise angles. Finally, since cos(π − θ)

= −cos(θ), when computing the percentage of small eigenvector overlaps (i.e., less than 45˚),

we consider as angle the minimum angle between θ and π − θ. We would like to note here that

non-normality depends on the complex inner product between eigenvectors, and not only its

real part. However, we have chosen to compute this more intuitive version of an angle between

two complex vectors (which is commonly used in the literature) as a characterisation of the

amplification dynamics. We compare these results with an alternative computation of the

eigenvector overlap in S9 Fig.
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Dimensionality of dynamics—Effective rank of eigenvector matrix

Here we briefly explain the intuition behind the effective rank of the eigenvector matrix V.

This is understood as the number of significant dimensions in the range of a matrix. For

example, if the effective rank is equal to κ, then a trajectory evoked by a random initial condi-

tion in the range of V is sufficiently approximated by κ dimensions (see section 3 of ref.

[24]). The fact that the effective rank of the eigenvector matrix is small indicates that there

are a few prevalent directions in the space spanned by the eigenvectors, which indicates that

dynamical trajectories will be biased towards a small subspace of the entire eigenvector space.

This is further explored and verified with the computation of the dynamical matrix P defined

below.

Construction of the matrix P. We construct the matrix P to understand how correlated

the dynamics of the network are, given different initial conditions. This matrix represents the

prevalent directions of the dynamics, given different initialisations. This is done as follows:

after having identified the optimal orthogonal basis of initial conditions IB, we initialise the

network at each of the vectors in this basis, one at a time. For each such vector, if the induced

dynamics are amplified, i.e., if the norm of the rate vector is at some point in time larger than

1.5 (the initialisation vectors have always unit norm), then we perform Principal Component

Analysis on the dynamics. More specifically, we compute the eigenvectors of the covariance

matrix of the neuronal dynamics for each of these simulations. We only consider the eigenvec-

tor corresponding to the largest eigenvalue and store it as a column in the matrix P. Once we

have initialised the network at all vectors in IB we are left with a N × M matrix P. The number

M is the same as the number of conditions that lead to an amplified response and provides a

maximum bound for the effective rank of matrix P.

The effective rank of P thus gives us the effective dimensionality of the space spanned by

the columns of P. If the effective rank is less than the number of columns, we can deduce that

orthogonal initial conditions have first principal components that are closely aligned to each

other in state-space. This implies that the initial network amplifies orthogonal initial condi-

tions along the same low dimensional subspace.

In S3 Fig we also compare the effective rank of the matrix P when the number of principal

components stored as columns (for each amplified initialisation) is such that the total vari-

ance captured is greater than 85%. In that case, the matrix P has size N �K. Here,

K ¼
PM

i¼1
ki, where κi is the number of principal components needed to explain at least 85%

of the variance of the neuronal response, when initialised at the ith (amplified) condition of

IB. We find similar results, i.e., in the long transient regime there is a big discrepancy

between the total number of columns (K) and the effective rank of the dynamical matrix P.

It is worth mentioning that the effective rank is bounded by the number of neurons N. The

fact that even though the number of columns is much larger than N in the long transient, but

the effective rank still fails to reach its bound, verifies the intuition obtained by the main

results in Fig 4.

Construction of recurrent networks satisfying Dale’s law

The recurrent networks satisfying Dale’s law are constructed following the Stability-Optimised

Circuit (SOC) algorithm [8]. In our simulations, 50% of the neurons are excitatory and 50%

inhibitory, so that the first half columns of WB are strictly positive and the second half strictly

negative. The connections are initially generated at random from a uniform distribution with

probability of connection p = 0.1 and individual weights given by: wE ¼ w0=
ffiffiffiffi
N
p

for excitatory

and wI ¼ �
I
E

� �
w0=

ffiffiffiffi
N
p

for inhibitory, where I
E

� �
is the ratio between inhibition and excitation,
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and N is the size of the network. The initial weight, w0, is defined as

w0 ¼
Routerffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 � pÞ
2

1þ
I
E

� �2
" #v

u
u
t

;

ð16Þ

where Router = 10 is the radius of the eigenspectrum distribution. After the initialisation of a

matrix, we implement the SOC optimisation algorithm, which modifies only inhibitory

weights to enforce that the spectral abscissa is less than 0.5 (maxλRe(λ) = αmax = 0.5). In this

process, both zero and non-zero inhibitory connections are modified. Thus, to maintain a cer-

tain level of sparsity in inhibitory connections, we keep the density of inhibitory connections

lower than 0.4. Additionally, we keep the absence of self loops and the same I/E ratio by line-

arly scaling all non-zero inhibitory weights. We impose different conditions to connections

depending on which aspect of the connectivity we explore, as define below.

Varying I/E ratios. In Fig 7 and S8 Fig we pre-define the ratio I/E and then optimise the

inhibitory connections. In Figs 6D and 8 we optimise the connectivity for I/E = 40. We linearly

scale all inhibitory weights and calculate the resulting outlier in Fig 6D for I/E = 30, 20, 10, 5, 3.

We linearly scale all inhibitory weights by the fraction 1/40 to get a resulting weight matrix

with I/E = 1 in Fig 8.

Varying the E-to-I and E-to-E connections. In Fig 9 we implement the SOC algorithm

with different combinations of the E-to-I and E-to-E connectivity strengths. We define our

“standard” network, i.e., with the same E-to-I and E-to-E connectivity strengths (WIE/WEE =

1) as described above, optimised using I/E = 3. For each ratio E-to-I to E-to-E, WIE/WEE =

{0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8}, we start with a new matrix with weights defined as above and

then linearly scale all E-to-I non-zero weights by WIE/WEE. After scaling E-to-I weights, we

run the SOC algorithm, as described above, keeping I/E = 3. Finally, after optimisation we line-

arly scale all weights so that the Frobenius norm of the resulting WB is the same as the standard

weight matrix, which has WIE/WEE = 1.

Analysis of a 3-by-3 upper triangular weight matrix

To get an intuition for the role of the eigenspectrum, feedforward norm, and outlier, we ana-

lyse a simplified 3-by-3 upper triangular matrix,

fW ¼

a b �2

� b a �1

0 0 g

0

B
B
B
@

1

C
C
C
A
: ð17Þ

This matrix has three eigenvalues, λk, given by

l1 ¼ g

l2 ¼ a � ib

l3 ¼ aþ ib;

8
>>><

>>>:

ð18Þ

where α, β, and γ can be interpreted as the average of the real part of the eigenspectrum distri-

bution, the eigenspectrum’s imaginary diameter, and the outlier. The other two non-zero

entries, ϕ1 and ϕ2, represent the feedforward structure with norm �norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2

1
þ �

2

2

q

.
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The eigenvectors associated with λk are

v1 ¼

a1

b1

c1

0

B
B
B
@

1

C
C
C
A
¼

� a�2 þ g�2 þ b�1

ða � gÞ
2
þ b

2

� a�1 þ g�1 � b�2

ða � gÞ
2
þ b

2

1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

c1; ð19Þ

v2 ¼

a2

b2

c2

0

B
B
B
@

1

C
C
C
A
¼

i

1

0

0

B
B
B
@

1

C
C
C
A

b2; ð20Þ

and

v3 ¼

a3

b3

c3

0

B
B
B
@

1

C
C
C
A
¼

� i

1

0

0

B
B
B
@

1

C
C
C
A

b3: ð21Þ

We can thus calculate the normalised inner product of the vectors,

hv2; v3i

kv2kkv3k
¼ 0 ð22Þ

and

Z �
hv1; v2i

kv1kkv2k
¼
hv1; v3i

kv1kkv3k

¼
� ½�1ða � gÞ þ b�2� þ i½�2ða � gÞ � b�1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f½�2ða � gÞ � b�1�
2
þ ½�1ða � gÞ þ b�2�

2
þ ½ða � gÞ

2
þ b

2
�
2
g

q

¼
� ½�1ða � gÞ þ b�2� þ i½�2ða � gÞ � b�1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½�
2

1
þ �

2

2
þ ða � gÞ

2
þ b

2
�½ða � gÞ

2
þ b

2
�

q :

ð23Þ

From Eq 23 we can calculate the absolute value of the normalised inner product of the non-

orthogonal eigenvectors (Eq 4 in the main text),

jZj ¼
ffiffiffiffiffiffi
ZZ
p

¼
�normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½�
2

norm þ ða � gÞ
2
þ b

2
�

q : ð24Þ

We plot |η| (from Eq 24) as a function of β in Fig 3C and as a function of ϕnorm in Fig 3D (val-

ues of α and γ are described in the caption). We also plot |η| (Eq 24) as a function of β and

ϕnorm representing the spectrum’s imaginary diameter and feedforward norm, respectively, in

S6(G)–S6(I) Fig.
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Mean-field analysis of a 2-by-2 weight matrix with excitatory and

inhibitory neuronal populations

To get an intuition for the role of the real and imaginary distributions of a Dalean weight

matrix, we analyse a 2-by-2 matrix

WB ¼
WEE � WEI

WIE � WII

 !

; ð25Þ

where WEE, WEI, WIE, and WII correspond to the mean excitatory-to-excitatory (E-to-E),

inhibitory-to-excitatory (I-to-E), excitatory-to-inhibitory (E-to-I), and inhibitory-to-inhibi-

tory (I-to-I) connections, respectively. The eigenvalues of this connectivity matrix are

l1 ¼
1

2
WEE � WII þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWEE þWIIÞ
2
� 4WEIWIE

q� �

l2 ¼
1

2
WEE � WII �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWEE þWIIÞ
2
� 4WEIWIE

q� �

:

8
>>>><

>>>>:

ð26Þ

The eigenvalues are complex when

4WEIWIE > ðWEE þWIIÞ
2
; ð27Þ

with real part Reðl1Þ ¼ Reðl2Þ ¼
1

2
ðWEE � WIIÞ and imaginary part Imðl1Þ ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4WEIWIE � ðWEE þWIIÞ
2

q

and Imðl2Þ ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4WEIWIE � ðWEE þWIIÞ
2

q

. The imaginary

part of both eigenvalues is small when the two quantities from Eq 27 are similar,

4WEIWIE �
> ðWEE þWIIÞ

2
; ð28Þ

and large when the inter-group connections are much greater than the intra-group connec-

tions,

4WEIWIE � ðWEE þWIIÞ
2
: ð29Þ

Therefore, in realistic Dalean networks with excitatory and inhibitory neurons, the imaginary

diameter can be controlled by the inter-group connectivity strength, with small imaginary

diameters by enforcing the relationship between mean weights according to Eq 28.

Relationship between negative outlier and inhibition-to-excitation ratio

To find the relationship between the negative outlier and the inhibition-to-excitation ratio,

I/E, we consider a special case in which the sum of all rows of a biological weight matrix, WB,

are equal to γ,

XN

j¼1

wB
ij ¼ g; 8i; ð30Þ

where N is the number of neurons. Additionally, we consider that the sum of excitatory and

inhibitory weights in each row is the same,

XN=2

j¼1

wB
ij ¼ E;

XN

j¼N
2
þ1

wB
ij ¼ � I; and E � I ¼ g; 8i: ð31Þ
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In this particular case the outlier is

g ¼ E � I ¼ E 1 �
I
E

� �

: ð32Þ

We extrapolate this to a random weight matrix with structured inhibition as

g / 1 �
I
E

� �

; ð33Þ

which is confirmed in Fig 6D.

For Dalean matrices we used the SOC algorithm, with non-negative excitatory weights

equal to w0=
ffiffiffiffi
N
p

and inhibitory weights equal to � I
E

� �
w0=

ffiffiffiffi
N
p

. Non-negative connections were

randomly assigned with probability p from a uniform distribution, and thus the total excitatory

(E) and inhibitory (I) input weights per neuron are

Ei ¼
XN=2

j¼1

wB
ij � E ¼

Npw0

2
ffiffiffiffi
N
p ; and Ii ¼ �

XN

j¼N
2
þ1

wB
ij � I ¼ �

I
E

� �
Npw0

2
ffiffiffiffi
N
p : ð34Þ

The initial weight, w0, is based on the eigenspectrum’s radius, Router (Eq 16), which results in

the outlier being given by

g �
pw0

ffiffiffiffi
N
p

2
1 �

I
E

� �� �

¼

Routerp 1 �
I
E

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1 � pÞ
N

1þ
I
E

� �2
" #v

u
u
t

:
ð35Þ

Relationship between the eigenspectrum and inhibition-to-excitation ratio

In the networks with excitatory and inhibitory neurons, we enforce that inhibition dominates

over excitation. This means that the variance of the weight distributions are different. In this

case, the eigenvalues lie inside the circle of radius [2]

Router �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
2
s2

E þ s
2

I

� �
r

¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1 � pÞ
2

1þ
I
E

� �2
" #v

u
u
t ; ð36Þ

where s2
E and s2

I are the variance of the excitatory and inhibitory weight distributions, respec-

tively. Non-zero excitatory and inhibitory weights are equal to w0=
ffiffiffiffi
N
p

and � I
E

� �
w0=

ffiffiffiffi
N
p

,

respectively, and randomly chosen with probability p drawn from a uniform distribution.

The distribution of eigenvalues is not uniform when the variance of excitatory and inhibi-

tory weight distributions are different [2]. In this case there is an accumulation of eigenvalues

inside an inner circle of radius given by Rinner �
ffiffiffiffi
N
p

smin, where σmin = min(σE, σI). When inhi-

bition is stronger than excitation, the distribution with smaller variance is the excitatory one,
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and thus s2
min ¼ s

2
E ¼ w2

0
pð1 � pÞ=N, resulting in an inner radius given by

Rinner �
ffiffiffiffi
N
p

smin ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

p
¼

Routerffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
1þ

I
E

� �2
" #v

u
u
t

:

ð37Þ

Supporting information

S1 Text. Supplemental text. Sections “Why upper triangular?”, “Alternative feedforward

structures”, and “Biologically plausible network dynamics with strictly positive rates”.

(PDF)

S1 Fig. Imaginary clustering at different points. Dynamical responses of a spectrum that is

clustered around the points 100 and −100 with respect to the imaginary axis. The imaginary

radius around these points is 0.5. The real distribution is uniform on the interval (−0.5, 0.5). A,

Linear dynamical response; the network shows an amplified response, effectively due to super-

position of almost identical frequencies. Inset: eigenspectrum distribution. B, Nonlinear

responses are not amplifying; the very high frequency together with the saturation point pre-

vents the network’s modes from driving each other in order to create an amplifying response.

C, Clustering at other finite points, {±10, ±30, ±50, ±70, ±90}, shows the same discrepancy

between the linear and nonlinear behaviour, as measured by the percentage of amplified

responses.

(EPS)

S2 Fig. Varying the real and feedforward distributions. A, Exploring the single valued real

distribution. We compare results for three real values: −0.5, 0 and 0.5. Top: maximum

response norm for preferred initial condition. Naturally a larger real part leads to more ampli-

fication as the decay envelope becomes slower. Middle: % of amplified conditions that are

amplified by at least 50%; this is also affected by the value of the real part, indicating that the

amplification landscape changes its shape in a uniform way. Bottom: the percentage of pair-

wise eigenvector angles is independent of the real value, i.e., the increased amount of amplifi-

cation is mainly a result of the slower decay times. Results in all cases are qualitatively similar

in their dependence on the imaginary radius. B, Comparing results for two different feed-for-

ward structures. One is the feedforward structure taken from the corresponding feedforward

part of a matrix constructed using the Stability-Optimised algorithm [8] (pink). The other has

a uniform feedforward entry distribution, with overall feedforward norm equal to the stability-

optimised one (yellow). In both cases the spectra are identical and correspond to the spectral

distribution of the pink curve from A, i.e., single real value at zero, varying imaginary range

represented on the x-axis. C, Same as panel A but the real part of the eigenspectrum is uni-

formly distributed between (0.5 − dre, 0.5). Values of dre are indicated in the figure (colour

coded).

(EPS)

S3 Fig. Effective rank of matrix P for a larger number of principal components. A, Com-

parison of the number of columns and effective rank of the dynamical matrix P as a function

of the imaginary diameter. The feedforward structure is random from a uniform distribution,

and scaled to have Frobenius norm equal to 75. Number of neurons, N = 200. B, Number of

columns and effective rank of P as a function of the feedforward norm. The imaginary diame-

ter is fixed and equal to 20. Number of neurons, N = 200. The matrix P is constructed such

that for each amplified initial condition ai in IB, there are κi principal components stored as

columns in the matrix P. The number κi is the number of principal components that are
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needed to capture at least 85% of the total variance of the dynamical response given condition

ai. The large discrepancy between the number of columns and the effective rank in the long

transient regimes verifies the results shown in the manuscript.

(EPS)

S4 Fig. Comparison between upper triangular and recurrent matrices. A, Effective rank of

the eigenvector matrix, V, for an upper triangular matrix (dashed cyan line) and a recurrent

matrix (pink solid line) as a function of the imaginary diameter (left) and feedforward norm

(right). The recurrent weight matrix, Wrec, is the upper triangular matrix,fW, rotated with an

orthonormal basis U: Wrec ¼ UfWUy. B, Same as panel A, but the effective rank is calculated

for the weight matrix. C, Amplified directions and effective rank of the matrix P in the linear

and nonlinear cases for the recurrent matrix in panels A and B as a function of the imaginary

diameter (left) and the feedforward norm (right). The feedforward structure is random from a

uniform distribution, and the real distribution is uniform on (−0.5, 0.5). In all cases the net-

work size is N = 200. The feedforward Frobenius norm is fixed at 75 for the plot varying the

imaginary diameter. The imaginary diameter is fixed at 20 for the plot with varying feedfor-

ward norm.

(EPS)

S5 Fig. Timescale of the transient dynamics as a function of the eigenspectrum’s imaginary

diameter (left) and the feedforward norm (right) of an upper triangular matrix. Timescale

is defined as the period, Δt, for which kr(t)k � 1 for the nonlinear network. The feedforward

structure is random from a uniform distribution, and the real distribution is uniform on (−0.5,

0.5). The network size is N = 200, and the feedforward Frobenius norm is fixed at 75 for the

plot varying the eigenspectrum’s imaginary diameter (left). The imaginary diameter is fixed at

20 for the plot with varying feedforward norm (right).

(EPS)

S6 Fig. Regimes of transient amplification for distinct eigenspectra and feedforward struc-

tures from simulations (A-F) and analytics (G-I). A-F, Timescale of response (time for

which ||r(t)k � 1) for distinct eigenspectra and feedforward structures (specified below) from

simulations with N = 200 neurons. A, Random uniform eigenspectrum distribution and ran-

dom uniform feedforward distribution. Same plot as in Fig 5B. B, Eigenspectrum’s real part

fixed at zero, random uniform distribution of the eigenspectrum’s imaginary part, and random

uniform feedforward distribution. C, Inhibitory dominance in the eigenspectrum and random

uniform feedforward distribution. D, Random uniform eigenspectrum distribution and feed-

forward distribution from stability-optimised circuit (SOC). E, Eigenspectrum’s real part fixed

at zero, random uniform distribution of the eigenspectrum’s imaginary part, and feedforward

distribution from SOC. F, Purely real eigenspectrum with inhibitory dominance and feedfor-

ward distribution from SOC. G-I, Normalised inner product of two eigenvectors from a 3-by-

3 upper triangular matrix (Eq 4) as a function of feedforward norm and imaginary diameter

for α − γ = 0 (G), α − γ = 128 (H), and α − γ = 1024 (I).

(EPS)

S7 Fig. Effect of varying the outlier in the upper triangular setting without the zero trace

condition. Maximum response norm for the preferred initial condition (left), percentage of

directions whose norm is amplified more than 50% (middle), and percentage of angles,

between pairs of eigenvectors, that are less than 45˚ (right) as a function of the imaginary

diameter. In all cases the network size is N = 200 and the Frobenius norm of all matrices is nor-

malised to 100. Different colours correspond to four different outlier values (colour coded).
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The rest of the eigenspectrum’s real distribution is the same: uniformly distributed between

−0.5 and 0.5.

(EPS)

S8 Fig. Feedforward (left) and spectrum (right) norms as a function of excitatory weights

and I/E ratio in Dalean matrices without self loops. All matrices were generated with the

SOC algorithm [8]. The y-axis corresponds to the value of individual excitatory weights, which

are sparsely connected with probability 0.1 (see Methods). The x-axis corresponds to the I/E
ratio, set to be constant by the SOC algorithm. In all cases the network size is N = 200 (100

excitatory and 100 inhibitory neurons), and the Frobenius norm of all matrices is normalised

to 100.

(EPS)

S9 Fig. Eigenvector overlap comparison. We compare the eigenvector overlap statistics as a

function of the imaginary diameter. On one hand we compute the percentage of pairs that

form angles < 45˚. This is defined using the real part of the inner product, i.e., cos(θ) = Re(hα,

βi), for the complex eigenvectors α, β (green). Alternatively, we can compute the percentage of

pairs for which the magnitude of the complex–valued inner product |hα, βi| is larger than 0.7

(pink). Both yield similar results qualitatively.

(EPS)

S10 Fig. Comparing different feedforward structures. Maximum response norm for the pre-

ferred initial condition (left), percentage of directions whose norm is amplified more than 50%

(middle), and effective rank of the eigenvector matrix (right), as a function of the imaginary

diameter. Three feedforward structures are compared. Green: uniform distribution as in Fig

3A of manuscript. Purple: a feedforward structure limited to chains of length 2, i.e., each Schur

unit only connects directly to the next unit. Yellow: a sparse feedforward structure with proba-

bility of connection equal to 0.1. For normalisation reasons, the Frobenius norm of all feedfor-

ward structures is set to be equal to 75. Moreover, the real distributions of the sparse and

2-chain matrices do not satisfy the zero–trace condition. Inset in panel A shows the uniform

and sparse networks again on a more appropriate scale for their values.

(EPS)
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