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Abstract: Opioids are regarded as among the most effective analgesic drugs and their use for the
management of pain is considered standard of care. Despite their systematic administration in the
peri-operative period, their impact on tissue repair has been studied mainly in the context of scar
healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in
mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss
of tissue function, instead of the regenerative process that allows for recovery of both the morphology
and function of tissue. Here, we review recent studies that highlight how opioids may prevent a
regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect.
These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted
strategies for managing pain associated with tissue injury.

Keywords: opioids; opioid receptors; tissue repair; regeneration

1. Tissue Repair: Scar Healing Versus Regeneration

After massive tissue injury, two opposite processes of tissue repair can occur: scar
or regenerative healing. The former generally leads to an ongoing extracellular matrix
deposition and fibrosis, always associated with failure in the recovery of the initial mor-
phology of the damaged tissue and, at term, results in a decline of function [1]. In contrast,
the regenerative healing allows for recovery of functional tissue that is morphologically
similar to the original tissue. The regenerative capacity is heterogeneous between animal
phyla and appears to decline through the evolutionary tree. In hydra and planaria, the
entire organism can regenerate after section [2,3] and in non-mammalian vertebrates such
as salamander or zebrafish, appendages and organs are able to regenerate [4–8]. Adult
mammals mainly show scar healing, although some mammalian organs can really regen-
erate at embryonic and early postnatal stages [9–14]. These observations have led to the
hypothesis that inhibitory elements locking the regenerative process develop early after
birth. The identification of these blocking elements could provide attractive therapeutic
targets for reactivating latent regenerative responses in adulthood.

Among the inhibitory elements, opioids are prime candidates. They alleviate the pain
associated with injury through their release from the endogenous opioid system and their
administration as effective analgesic agents. They are also able to modify the inflammatory
response induced by injury. Although the role of opioids in tissue repair has been largely
investigated in scar healing, it is not the case for true regenerative healing. Most of the stud-
ies have considered different repair processes (wound closure, leucocyte infiltration into
the wound bed, angiogenesis and formation of the granulation tissue, re-epithelialization
by stimulated keratinocytes, etc.) as an outcome of injury without a clear and precise
distinction between scar healing versus regenerative healing and without considering the
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complete recovery of the initial architecture and function of the tissue. Moreover, neither
positive nor negative effects have been confirmed by rigorously controlled studies in hu-
mans. Therefore, a definitive conclusion on the role of opioids in tissue repair, including in
humans, is still under debate [15,16]. The first study on true regeneration was performed in
1973 in salamander and showed that opioid treatment after amputation inhibited hind limb
regeneration while treatment with the opioid receptor antagonist naloxone accelerated the
limb regeneration. This study thus suggests a deleterious effect of both medical treatments
with opioids and endogenous opioids on regeneration [17]. Another study dealt with the
regeneration of the pancreatic epithelium in induced pancreatitis in mice [18], showing that
morphine prevented epithelium regeneration. In addition, in 2018, we demonstrated that
opioid treatment inhibited both adult zebrafish caudal fin regeneration and subcutaneous
adipose tissue regeneration in the adult MRL mouse [19], which displays uncommon regen-
erative capacities [19–21]. Moreover, regeneration could be induced in non-regenerative
adult C57Bl6 mice by inhibiting opioid receptors with naloxone methiodide (NalM) [19].
This opioid receptor antagonist does not cross the blood–brain barrier and preferentially
antagonizes mu opioid receptors (MORs) at the concentration used, which suggests an
anti-regenerative effect of MOR activation outside of the central nervous system (CNS).

Taking into account that (1) rapid and necessary activation of both immune and
sensory nervous systems systematically follows tissue damage and (2) endogenous opioids
release or medical treatment with opioids after tissue injury can minimize activation of
both systems, this review provides evidence that immunosuppressive and analgesic effects
of opioids inhibit the regeneration process.

2. Opioids, Immune System, and Tissue Regeneration
2.1. Endogenous Opioids and Their Receptors

Endorphins, enkephalins, dynorphins, and nociceptins/orphanins represent the four
families of endogenous opioids [22,23]. They are peptides of varying length and are
mainly synthesized and released by well-identified neuronal sub-populations located in
the CNS [23]. In addition to this neuronal production, opioids can also be synthesized
and released by immune cells [24]. During the inflammatory response after tissue injury,
neutrophils are the first source of endogenous opioids [25]. Subsequently, monocytes,
macrophages, and then T and B lymphocytes may also secrete opioids [25]. These peripher-
ally produced opioids have an analgesic effect by their binding to opioid receptors located
on the peripheral terminals of sensory neurons, particularly those of nociceptive neurons
that transduce noxious stimuli.

Four isoforms of opioid receptors have been identified. They are currently called
MORs, delta opioid receptors, kappa opioid receptor, and opioid-receptor-like 1 recep-
tors. Their endogenous ligands are β-endorphin, dynorphin, met-enkephalin, and noci-
ceptin, respectively, although these peptides show significant cross-affinity for all opioid
receptors [22,23,26,27]. All these receptors belong to the super family of 7-domain trans-
membrane receptors and are predominantly coupled to G proteins of the αi or α0 type.
Although several signaling pathways can be initiated by activation of opioid receptors and
take part in the cellular effects of opioids, ligand binding to these receptors mainly leads
to inhibiting adenylate cyclase, thus preventing cAMP production and protein kinase A
activation [28,29].

2.2. Opioid Effects on the Immune System

Several studies, both in vitro and in vivo, report that opioids modulate immune
responses mainly in the context of infection [30–32]. In 1979, Wybran et al., reported for
the first time an immunosuppressive effect of opioids, showing that the administration of
morphine inhibited the formation of “immune rosettes” (an association between human T
lymphocytes and sheep red blood cells previously incubated with antigens), which reflects
the inability of lymphocytes to produce antibodies [33]. This inhibition of “rosetting”
was also observed with met-enkephalin and disappeared with naloxone administration.
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Since this initial study, the list of immunosuppressive effects of opioids has increased,
showing direct and indirect effects on innate and adaptive immune cells. Concerning
innate immunity, several studies demonstrated that opioids significantly decreased the
ability of peritoneal macrophages to engulf and kill pathogens such as Candida albicans
or Streptococcus pneumonia by the activation of MORs and delta opioid receptors [34–36].
This suppression of phagocytosis or microbicidal activity is mediated by the inhibition
of reactive oxygen species (ROS) production [37,38] associated with a strong decrease
in production of pro-inflammatory cytokines by macrophages [35]. In addition, opioids
impair immune cell recruitment at the site of injury by (1) inhibiting leukocytes sticking
to and rolling along blood vessels [39] and (2) disturbing chemotaxis by downregulating
chemoattracting factors and cross-desensitization of chemokine receptors [30,31,40]. Thus,
opioids dampen inflammation by their effects on both the number and activity of immune
cells, an effect that is blocked by MOR antagonists or genetic deletion of the MOR [32].

2.3. Opioid Effects on Regeneration via Immune Cells

The immune system plays a major role in tissue regeneration after injury. Several
studies have focused on the oxidative burst that characterizes the inflammation observed
early after tissue injury. This early and transient production of ROS after injury is required
for the regeneration process because pharmacological blockage of this production can
inhibit tissue regeneration [6,19,41–43]. This observation was confirmed in mammals:
treating non-regenerative C57Bl6 mice with NalM induced a rapid and significant increase
in ROS production, essential for the NalM-induced adipose tissue regeneration, whereas
control mice that received vehicle injection showed neither elevated ROS levels nor tissue
regeneration. In addition, we demonstrated that this NalM-induced ROS production results
from activating NADPH oxidase in neutrophils [19] (Rabiller et al., NPJ Regen Med, in
press). Because NalM is a competitive antagonist of opioids, these results suggest that
in control C57Bl6 mice, neutrophil ROS production is normally inhibited by endogenous
opioids released at the injury site. Although the molecular mechanisms have not been
investigated, opioids binding to MORs may directly modulate the addressing of NADPH
oxidase at the plasma membrane [37]. This huge amount of ROS released by neutrophils
likely allows for cleaning the injury site.

Because macrophages are also involved in the early steps of the immune response,
their involvement in regeneration has been widely investigated. Their pharmacological
depletion systematically led to regeneration failure in zebrafish, salamander, and the
post-natal mouse, which demonstrates a pivotal role for macrophages in the regeneration
process [14,44–49]. Using the adipose tissue regeneration model, we showed that NalM-
induced tissue regeneration depends on efficient phagocytosis of apoptotic neutrophils
by resident macrophages, thus leading to a fast resolution of inflammation (Rabiller et al.,
NPJ Regen Med, in press). As in other studies on different animal models, the precise
mechanisms driving the shift from inflammatory macrophages to a “reparative” phenotype
are still under investigation [47,50,51].

In conclusion, all these data suggest that (1) intense but time-controlled inflammation
is required to guide tissue repair toward regeneration and (2) opioids, via their immuno-
suppressive effects, prevent the regeneration process.

3. Opioids, Nervous System, and Tissue Regeneration
3.1. Nervous System Organization and Tissue Injury

One of the fundamental aspects of organ or tissue regeneration is the ability of the
body to integrate information about the location and intensity of the damage (“where
and what is missing?”) to decide what exactly must be repaired. The nervous system,
including the CNS and the peripheral nervous system (PNS), is optimally organized to
ensure the body’s vital functions. In a constantly changing environment, the PNS allows
for the perception of both internal and external information with the afferent pathways
known as “sensory” pathways, allowing for feedback of information from the periphery to
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the CNS. Thereafter, the “motor” efferent pathways convey the adapted responses of the
CNS to the target tissues in the periphery. The complementarity between the afferent and
efferent PNS allows the organism to adapt to internal and external stimuli and function
optimally under changing conditions.

3.2. Innervation and Regeneration

The importance of innervation in the regeneration process was first described in the
salamander, in 1823 [4]. Tweedy John Todd reported that after surgical denervation of the
sciatic nerve in the salamander, the hind limb failed to regenerate. After this key discovery,
several studies have shown the requirement of the nervous system to ensure regeneration
in the hydra, planaria, zebrafish, salamander, and the MRL mouse [21,52–55]. Most of
these studies have indeed identified several neural cues able to control the formation of
the blastema (where regenerative progenitor cells accumulate) and to mediate position
signals [7,56,57].

Although the involvement of the nervous system in regeneration is not surprising,
the precise identification of the nervous fibers required for regeneration remains poorly
investigated. Two studies have addressed this issue in zebrafish [5,58]. Mahmoud et al.
showed that, after partial amputation of the ventricle, cholinergic signaling is required
for cardiomyocyte proliferation during heart regeneration. The authors obtained similar
results in 1-day old neonatal mice after left vagotomy. These data suggest an involvement
of the parasympathetic efferent fibers in heart regeneration, but this effect seems to be
indirect via a downregulation of the inflammatory response [5]. One year later, Vriz et al.,
showed in zebrafish that surgical denervation of the caudal fin before its amputation led
to loss of spontaneous regeneration [58]. Because the amputation site was exclusively
innervated by sensory nerve fibers, the authors suggested that these fibers were the only
ones required for caudal fin regeneration.

3.3. Opioids and Nociceptors

Among all types of sensory fibers, nociceptive neurons have drawn attention. In-
deed, severe injury generates mechanical noxious stimuli that activate these specialized
sensory neurons. In addition, the injured cells and the immune cells at the origin of the
inflammatory response release multiple chemical mediators that can act on the peripheral
nerve endings of the nociceptors. All these molecules constitute an acidic mixture what is
commonly called the “inflammatory soup” and includes DAMPs (for damaged associated
molecules pattern), ROS, histamine, serotonin, bradykinin, arachidonic acid derived lipid
mediators such as prostaglandins or leukotrienes, cytokines, adenosine, ATP, protons, or
growth factors such as NGF (nerve growth factor) [59]. Some of these products directly
induce action potentials in nociceptive neurons, while others increase their sensitivity to
harmful signals [60–62]. Therefore, the inflammatory response after tissue injury potenti-
ates nociceptive neurons activation, increased neurotransmitter release in the spinal cord
and activation of nociceptive ascending pathways, ultimately leading to pain perception.
This unpleasant feeling or even “suffering” is normally circumscribed by endogenous
opioids. Activation of opioid receptors in the spinal cord or the brainstem inhibits the
transmission of nociceptive messages at a higher level [61,62]. Moreover, endogenous
opioids released by immune cells during the inflammatory response exert their analgesic
effect via the opioid receptors located on the peripheral endings of nociceptive neurons [63].
Indeed, inhibition of the cAMP/protein kinase A pathway after the binding of opioids to
their receptors on nociceptive neurons endings leads to the closure of voltage-dependent
calcium channels and/or the opening of G protein-regulated inward-rectifying potassium
channels, inducing, in both cases, hyperpolarization of the nociceptive terminals [64]. This
results in decreased or even cessation of action potential discharge. In addition, as primary
afferent fibers, nociceptive neurons have both central and peripheral axons emanating from
the cell body in the dorsal root ganglia, so that opioid inhibition of these neurons decreases
the release of neurotransmitter at their central and peripheral endings [64–68].
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3.4. Nociceptors and Regeneration

In this context, we can postulate that (1) nociceptive neurons are required for re-
generation processes and (2) opioids are anti-regenerative molecules by inhibiting noci-
ceptive neuron activity. According to the first part of the hypothesis, Wei et al., recently
demonstrated in adult C57Bl6 mice that pharmacological activation of the transient re-
ceptor potential A1 (TRPA1) positive cation channels, expressed in certain nociceptive
neurons [69–71], promotes regeneration in the ear hole closure model [69]. In general,
after making a hole in the center of the outer ear pinna with a mechanical punch, the
wound heals with a scar and remains open. In this study, topical application of imiquimod
cream promoted complete closure of a 2 mm diameter punch, an effect that disappeared in
TRPA1 knock-out mice [69]. Moreover, histological investigation revealed normal tissue
architecture with hair follicles, sebaceous glands, and subcutaneous fat, without tissue
fibrosis and scar formation [69]. The same results have also been obtained in a dorsal skin
excision model. We confirmed the involvement of nociceptive nerves in the adipose tissue
regeneration model using capsaicin treatment [72]. Indeed, this pharmacological depletion
of TRPV1-positive nociceptive neurons, including TRPA1-positive neurons [70], prevented
NalM-induced regeneration of adipose tissue in C57Bl6 mice (personal data). Finally, some
nociceptive nerves release neuropeptides such as calcitonin gene-related peptide (CGRP)
and/or substance P [61,62,70]. The peripheral release of these neuropeptides is responsible
for the vasodilator and pro-inflammatory effects of nociceptive neurons [73,74]. Because the
inflammatory response is required for regeneration (see first part of this review), activation
of opioid receptors located on nociceptive nerve endings may contribute to an altered
regeneration process by decreasing the peripheral release of these neuropeptides. Adipose
tissue is innervated by CGRP- and substance P-positive fibers [75]. As CGRP is able to
facilitate the migration of mesenchymal cells to a site of lesion [76] and as mesenchymal
cells are adipocytes progenitors (i.e., mandatory cells for ontogeny and adipose tissue
expansion) [77], the effect of this peptide on adipose tissue regeneration was investigated.
Pretreatment of C57Bl6 mice with a selective CGRP receptor antagonist suppressed NalM-
induced regeneration, whereas injection of CGRP alone (without NalM) was able to induce
adipose tissue regeneration (personal data). These results suggest the involvement of
CGRP signaling in the regenerative effect of opioid-receptor inhibition. Since (i) substance
P is released after injury by the same subtype of nociceptive fibers as CGRP [70], (ii) this
release is also inhibited by morphine [66], and (iii) substance P exerts similar effects as
CGRP on local blood flow and immune cells attraction [78], substance P is likely able to
drive the outcome of tissue repair to regeneration [79]. Nevertheless, to our knowledge,
there are no studies showing the involvement of substance P in tissue regeneration even
though its beneficial role in accelerating wound closure has been well demonstrated in the
context of skin healing [80,81].

All these data support that (1) pain-sensing neurons must be activated to promote
regeneration and (2) opioids prevent regeneration by silencing these neurons.

3.5. Nociception and Opioid System Development

Consistent data in the literature support a gradual decrease in regenerative poten-
tial during evolution and development associated with the acquisition of an increasingly
complex immune system [8,82–84]. Therefore, the vestigial regenerative activity observed
in fetal or young mammals would be due to a still immature immune system. The same
hypothesis can be proposed with the nociceptive and opioid systems that undergo strong
maturation at the postnatal stage. Although the last afferent sensory fibers to appear,
nociceptive neurons are present and functional at birth. They express all the proteins
involved in nociception, such as neurotransmitters, channels, or receptors. At this develop-
mental stage, different inflammatory chemicals can sensitize them [85] and short as well as
long hyperalgesia can be observed [86,87]. Nevertheless, at early postnatal ages, noxious
stimulation often results in a prolonged electrical activity that lasts beyond the end of the
stimulus. This effect decreases in amplitude and duration with age [88]. The thresholds for
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withdrawal from heat stimuli are also lower in younger animals, and sensitivity to formalin
is 10-fold higher than in adults [86,89]. These exaggerated and sometimes inappropriate
responses to noxious stimuli [90] disappear with the maturation of the nociceptive circuitry
at the spinal and supra-spinal level that takes place between birth and weaning in rodents.
The shaping of this complex sensory network results from decreased excitatory inputs in fa-
vor of more efficient inhibitory activity in the superficial laminae of the dorsal horn [91,92]
in parallel with the progressive activation of the inhibitory descending pathways from the
brainstem [93–95].

The opioid system also undergoes a postnatal maturation at the level of both en-
dogenous peptides and their receptors. By postnatal day 21, the rat dorsal horn showed
increased immunoreactivity to enkephalin [94], and several studies reported postnatal
changes in subcellular location, density, and isoforms of opioid receptors expression in
different brain areas [96–99]. Moreover, the coupling of MORs to G protein increases during
postnatal development, which suggests that although these receptors are present at birth,
their binding to opioids may not necessarily be associated with intracellular signaling
activation [100]. This finding may account for the lower analgesic potency of morphine on
noxious thermal stimulation in addition to the reorganization of the spinal connectivity
that occurs over this time [101,102].

Collectively, these data suggest that the higher activity of the nociceptive network
associated with an immature opioid system may be involved in the increased regenerative
capacity of newborn and postnatal mammals.

4. What Is Known in Human-Being?

Although there is, to our knowledge, no clinical data available on the effects of opioids
on regeneration per se, several reports have shown that these peptides are associated with
impaired fracture healing and nonunion risk in human [103,104] as well as impaired wound
healing [105]. Nevertheless, two studies report beneficial or neutral effects of opioids on
painful skin lesions [106,107]. Therefore, the small number and the disparity of these
studies (opioid subtype, concentration, application route, and time course of disease) make
difficult to draw a conclusion [15,16,108].

Finally, the anti-regenerative effect of opioids described in this review is in line with
the rethinking around the use of opioids during peri-operative period by anesthesiologists.
In order to reduce, or even abolish, the well-known and deleterious side effects of opioids
(respiratory depression, hyperalgesia, risk of dependence and chronic use, immunosup-
pression), opioid-sparing strategies, or strategies dealing with total suppression of opioids
(also called opioid-free anesthesia) have emerged [109–112]. Opioid-sparing strategies con-
sist in a non-opioid based multimodal pain management associating drugs with different
mechanisms of action such as loco-regional techniques (peripheral nerve blocks, epidural
analgesia), associated with paracetamol, NSAIDs (non-steroidal anti-inflammatory drugs),
α2-agonists, ketamine, magnesium sulfate, intravenous lidocaine, etc., whose aim is to
use the lowest effective opioid dose while providing satisfactory analgesia. This saving
becomes total in the OFA (opioid free anesthesia) with a complete elimination of opioid
usage. Drastically reducing the doses and adapting the analgesia to the real needs of each
patient [109] should be beneficial to true tissue regeneration after the surgical act.

5. Conclusions

After severe tissue injury, both the inflammatory response and nociceptive pathway
activation collectively guide the outcome of tissue repair towards regeneration. However,
endogenous opioids or opioids provided by post-operative medical treatment counteract
the combined beneficial effects of inflammation and nociception on regeneration and
instead promote scar healing. These opioid effects are mainly mediated by binding to
MORs located on immune cells and nociceptive neurons, although the involvement of
other opioid receptor subtypes cannot be excluded. Figure 1 provides a schematic overview
of the opioid anti-regenerative effects. Although clinical studies questioning the role of
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opioids on regeneration are obviously lacking, opioids and their receptors could be strategic
targets in regenerative medicine. The challenge is now to promote tissue regeneration
rather than scar healing, while preventing the pain associated with tissue damage, with
new analgesic treatments.

Figure 1. Schematic diagram illustrating the anti-regenerative effects of opioids during tissue repair.

After tissue damage, both sensory nerve fibers and the immune system are activated.
Inflammation occurs via the recruitment of reactive oxygen species-producing neutrophils,
the activation of macrophages, and the expression/secretion of pro-inflammatory cytokines.
Simultaneously, activation of sensory nerve fibers leads to (1) the generation of an ascending
nociceptive message that is interpreted by the central nervous system as pain and (2) the
peripheral release of neuropeptides (calcitonin gene-related peptide and/or substance
P) that actively promotes the inflammatory response. Fine-tuning the amplitude and
temporal pattern of inflammation controls the outcome of tissue repair. By silencing
nociceptive neurons and preventing immune cell activation via binding to mu opioid
receptors, opioids lead to an attenuated but sustained inflammation that does not allow for
tissue regeneration.
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