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ABSTRACT
The structure of mRNA in vivo is unwound to some extent in response to multiple factors involved in the
translation process, resulting in significant differences from the structure of the same mRNA in vitro. In
this study, we have proposed a novel application of deep neural networks, named DeepDRU, to predict
the degree of mRNA structure unwinding in vivo by fitting five quantifiable features that may affect
mRNA folding: ribosome density (RD), minimum folding free energy (MFE), GC content, translation
initiation ribosome density (INI) and mRNA structure position (POS). mRNA structures with adjustment
of the simulated structural features were designed and then fed into the trained DeepDRU model. We
found unique effect regions of these five features on mRNA structure in vivo. Strikingly, INI is the most
critical factor affecting the structure of mRNA in vivo, and structural sequence features, including MFE
and GC content, have relatively smaller effects. DeepDRU provides a new paradigm for predicting the
unwinding capability of mRNA structure in vivo. This improved knowledge about the mechanisms of
factors influencing the structural capability of mRNA to unwind will facilitate the design and functional
analysis of mRNA structure in vivo.
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Introduction

mRNA is a key component of the translation system. It not
only carries protein-coding information but also serves as an
essential vector for translation regulation information by fold-
ing into mRNA structures [1]. Notably, mRNA structures at
the 5ʹ UTR and ribosome binding site (RBS) regions have
a significant effect on translation efficiency [2,3]. Recent stu-
dies have shown that RNA structures in vivo are different
from that in vitro (as revealed by DMS probing [4,5], DMS-
MaPseq [6] and icSHAPE [7]). Some general conclusions have
been drawn: mRNA in vivo is less structured than mRNA
in vitro, and mRNA structures in highly expressed genes,
especially long-range base pairing structures, appear to be
destabilized by translation. However, further investigation of
these differences in the specific and accurate analysis of each
mRNA structure is a challenge owing to the influence of
multiple factors and the dynamic, unique nature of the
mRNA structure itself; that is, each mRNA structure has
a distinctive individual structure.

For the translation by the ribosome to proceed smoothly, the
mRNA structure must first be unwound, and complex interac-
tions between the translating ribosome and the mRNA structure
occur during translation. Translating ribosomes are among the
most critical factors that cause structural differences in vitro and
in vivo. Ribosome profiling is a method for determining the
exact position of ribosomes in the transcriptome during the
translation with a single-nucleotide resolution by deeply

sequencing ribosome-protected mRNA fragments [8,9]. The
precise ribosome density information demonstrated by this
method makes it possible to resolve the interactions between
translating ribosomes andmRNA structure in vivo. For example,
the mRNA structure in the CDS region influences cotransla-
tional protein folding by affecting the efficiency of ribosome
translation or, in more extreme cases, by causing ribosomal
pauses [10–12]. Additional factors that affect mRNA structural
stability in vivo can be primarily classified into several categories:
structural features, such as the GC content and minimum free
energy of structural subsequences, and other factors, such as the
location of mRNA structure within a gene.

Deep learning, or artificial neural networks, is a type of
machine learning that solves complex problems by learning
‘big data.’ The deep neural network (DNN), a type of deep
learning, has multiple hidden layers and units that can model
complex nonlinear relationships and is widely used in natural
language processing [13], speech recognition [14] and the
sensational AlphaGo [15]. Deep learning is currently being
applied to biological ‘big data,’ such as the detection of breast
cancer based on histological images [16], the analysis of ribo-
somal stalling sites based on ribosome profiling [17] and the
prediction of DNA- and RNA-binding proteins [18]. We have
proposed a novel application of the DNN model to fit mRNA
structure features and subsequently predict the structural state
in vivo, revealing the impact of these features on the in vivo
mRNA structural stability.
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Among experimental approaches to detecting RNA struc-
ture in vivo, DMS probing detected adenine and cytosine
bases in non-Watson–Crick conformations [4,5]. Thus, we
proposed identifying in vitro and in vivo mRNA structures
by this method and dividing them into two classes according
to the degree of unwinding. Then, five structural features of
each mRNA structure were obtained, and the DNN model for
binary classification was trained. After obtaining a precise
model to predict the degree of RNA structure unwinding
in vivo, we could mutate different features of these mRNA
structures and decipher the specific impact of these features
on mRNA structural stability (Figure 1).

Results

Constructing a deep learning model with five mRNA
structure features

We proposed a DNN model that fits mRNA structure differ-
entiation in vitro and in vivo with quantifiable elements that
may influence structural stability, thereby realizing the ability
to predict the degree of unwinding of mRNA structure in vivo
(Figure 1). Unlike previous mRNA structure prediction mod-
els that aimed at constructing RNA structures [19], this deep
learning model is mainly used to predict whether the mRNA
structure has strong or weak unwinding capability in vivo.
DMS profiling [4] can be used to provide a global feature
describing in vivo and in vitro mRNA structures by measuring
the Gini index of DMS signal of structure region. A higher
Gini index corresponds to a highly structured region and
a lower index corresponds to a weakly structured region.
Typically, due to a variety of factors, such as translating
ribosomes, the in vitro structure is usually more stable than

that in vivo [4]. The ‘structural disappearance trend’ (DIS),
which is equal to the Gini index of mRNA structures in vitro
minus that in vivo, was used to measure the unwinding cap-
ability of mRNA structure in vivo. In this study, the in vitro
mRNA structures of Saccharomyces cerevisiae were all divided
into two classes by DIS. Class 1 contained structures beyond
the mean plus standard deviation (SD), which represented
structures with a high degree of unwinding in vivo, named
HUS; class 0 contained structures below the mean minus SD,
which represented structures with a low degree of unwinding
in vivo, named LUS (Figure 1). HUS and LUS mRNA struc-
tures could appear on the same gene, and several differences
in structural features might be interpreted as corresponding to
the existence of these two states (Figure 2(a)).

In addition to sequence composition, previous studies found
that translation efficiency could affect mRNA structure in vivo,
especially the mRNA structure in the ribosomal binding region
[2,20]. We chose five quantitative features for modelling: gene
features, including the translation initiation ribosome density
(INI), calculated from ribosome profiling data [8]; subsequence
structure features, including the minimum free energy (MFE)
[21] and GC content (GC), which reflect mRNA structure sta-
bility; and other features, including the relative position of the
structure in the gene (POS) and the ribosome density of the
structure region (RD). Notably, the RD and INI values in this
project were averaged from five different studies of ribosome
profiling data in wild-type yeast aiming to obtain more general
in vivo ribosome profiling data [22–26].

By directly calculating the correlations between these five
structural features and DIS values, the general influence of
these five features on mRNA structure could be obtained
(Figure 2(b)). Notably, the correlation between ribosome
density and DIS was the strongest (with a correlation

Figure 1. Schematic overview of DeepDRU model and the prediction pipeline. The Gini index was calculated to measure the stability of the mRNA structure. The difference
between the Gini index values in vitro and in vivowas used to classify themRNA structures into class 0 and class 1. Then, the two classes were fed into the DNNmodel for training.
After the model was trained, various feature adjustments to the mRNA structures were designed, and the model was used to predict the degree of structure unwinding.
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coefficient of 0.19). After the dataset was divided into HUS
and LUS classes, the five features differ between the two
groups of mRNA structures (p-value <2.2 × 10–16), but it
was difficult to explain the contributions of these five
features to the mRNA structure (Figure 2(c)). Therefore,
we adopted DNN modelling to decipher the relationships
between mRNA structure and these complex regulatory
features.

We established the DNN sequential model using the
TensorFlow deep learning framework [27], named
DeepDRU (using a deep learning approach to predict the
degree of mRNA structure unwinding in vivo.). The
DeepDRU model consisted of fully connected layers, acti-
vation layers and normalization layers; the activation func-
tions adopted were ReLU [28] and Sigmoid; the Adam
optimization function [29] was adopted to accelerate the

Figure 2. High and low degrees of mRNA structure unwinding with various structural features. (a) LUS and HUS structures with different structural features in the
YDR346C gene. (b) Pearson correlation coefficients between the five structural features. (c) Distribution of the five features between the two classes.
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training process; and optimization techniques, batch nor-
malization [30] and early stopping [31] were added to
prevent overfitting of the model (Figure 3(a)). To obtain
the best model structure, we traversed the model structure
from 1 to 10 layers, 16 units to 512 units per layer (60
different models) and finally determined the best DeepDRU
model structure to be eight layers of 512 units by 10-fold
cross-validation (Figure 3(b), Table S1). The accuracy of the
DeepDRU model of the whole dataset classification reached
99.53%. Thus, a DNN model that can accurately predict the
degree of in vivo mRNA structure unwinding from struc-
tural features was established.

High ribosome density caused mRNA structure in vivo to
be unwound

Translating ribosomes are a critical factor that affects mRNA
structural stability. Previous studies have demonstrated
a negative correlation between ribosomal translation effi-
ciency and in vivo mRNA structure stability; that is, high
translation efficiency corresponds to low structural stability
in a region [2,5,20,32]. We performed single-factor gradient
adjustment in silico on the ribosome density (RD) of the
mRNA structures. By predicting the state of the adjusted
mRNA structures using DeepDRU, a clear correlation
between the RD and the average structural transformation
ratio was shown (Figure 6(b)). mRNA structures belonging
to the LUS class tended to change into HUS when the RD of
the structural region was increased, and when the RD of
structures belonging to HUS was decreased, these structures
tended to transform to the LUS class. A similar trend was
shown in datasets that were filtered using more stringent
thresholds (10HUS and 10LUS). This correlation was most
pronounced for intervals greater than −2.0 (corresponding to
0.48 before normalization) and less than 3.0 (corresponding to
4.07 before normalization). Due to the steric hindrance of the

translating ribosome, if the RD of the mRNA structural region
was high, the ribosome would occupy the folding space of the
structural region, preventing the formation of the mRNA
structure.

The 5‘- and 3‘-end mRNA structures were much easier to
maintain in vivo

We sought to establish the relationship between mRNA struc-
ture and its relative position in the gene CDS region. Previous
studies have shown that the mRNA structure in the transla-
tion initiation region plays an important role in translation
regulation, which is related to the regulation of translation
efficiency and cotranslational protein folding [3,33–35].
Moreover, the mRNA structure at the 3‘ end of the mRNA
is related to RNA localization and mRNA half-life [36,37]. We
changed the relative position (POS) of the mRNA structure
on the gene by gradient adjustment and found that 89.02% of
originally HUS structures transformed to LUS after being
transferred downstream of the initiation AUG codon. The
mRNA structure of the middle part of the gene remained
unchanged, and the structural transformation trend at the 3ʹ
end (approximately beyond 0.8) revealed a trend toward LUS,
especially for originally HUS structures. We believe that this
finding reflected the rules of in vivo mRNA structure learned
by the model, that is, the 5‘ and 3‘ ends of the mRNA were
more likely to maintain their structure. Second, these two
regions themselves might be more likely to maintain in vivo
mRNA structure, for example, to stall ribosomes at the AUG
codon for assembly to allow time for downstream mRNA
structure formation. Furthermore, to eliminate the interfer-
ence of high RD at the 5ʹ end region, the POS and RD were
simultaneously changed to the value of the first structure at
the 5‘ end of mRNA, and similar results were obtained (Figure
6(e)).

Figure 3. Schematic illustration of the DeepDRU model. (a) The DeepDRU model used in this study is a sequential DNN model of multiple dense layers. After careful
verification of the number of dense layers and units per layer, we used a sequential model of eight dense layers of 512 units. More details can be found in the
description of the method. (b) Tenfold cross-validation was performed on models constructed with different numbers of layers and different numbers of units.
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High translation initiation ribosome density weakened
the capability of structure unwinding

Translation initiation is the rate-limiting step in the translation
process and is regulated by a variety of factors, including the
mRNA structure [38]. The mRNA structural feature INI, which
is the sum of the normalized RDs relative to the start codon,
could reflect the inverse of the translation initiation rate. Single-
factor gradient adjustment showed that the effect of INI on the
mRNA structure, especially in regions with intermediate INI
value (approximately between −1 and 1), fluctuated greatly
(Figure 6(d)). However, high-INI regions, that is, genes with
high INI and a low translation initiation rate, corresponding to
a low degree of unwinding. A low translation initiation rate was
prone to form a slow “ramp” at the translation initiation region,
which could reduce ribosome traffic jams and increase the ribo-
some spacing during translation elongation, which might allow
local mRNA structure to refold [35,39]. Meanwhile, in low-INI
regions (approximately less than −2), the degree of unwinding
tended to increase, perhaps due to the rapid degradation of
mRNA with low translation efficiency [40].

Effects of mRNA structure subsequence composition on its
structure in vivo

The minimum free energy (MFE) and GC content were used to
evaluate the stability of the mRNA structure in vitro based on its
sequence composition [39,41–43]. MFE was significantly nega-
tively correlated with GC, with a Pearson correlation of −0.45
(Figure 2(b)). Compared to mutations in the other features dis-
cussed previously, the results of single-factor gradient adjust-
ment of both MFE and GC exhibited a very distinctive trend
(Figure 4(a, b)). The transformedmRNA structure curve showed
a V-shaped trendwith amean value as the demarcation point. As

the changes in the normalized MFE value moved in both direc-
tions from the mean value 0, both HUS and LUS structures
would shift toward the opposite state. At the MFE and GC
mean points, the lowest point of the structural transformed
rate, that is, the mRNA structure at the mean, can more easily
maintain its original state. To reduce the impact of other struc-
tural factors, we selected two from all the mRNA structures for
which all five structural features were close to themean. Random
mutations of the structural sequence weremade, and eight muta-
tions in which the absolute value of the MFE and GC was
simultaneously increased or decreased were selected. When the
effects of other structural features were attenuated, an increase in
the MFE and a decrease in the GC content corresponded to
a reduction in the number of mRNA structure pairs and the
pairing probability, so that the prediction result was changed
from HUS to LUS (Figure 4(c)). Thus, when the interference of
other factors is removed, the sequence composition of themRNA
structure directly affects the stability of its structure in vivo.

The contribution of five structural features to mRNA
structure in vivo

The structural ribosomal density (RD), the structural minimum
free energy (MFE), the translation initiation ribosome density
(INI), the GC content of the structural region sequence (GC)
and the relative position of the mRNA structure in the gene
(POS) is five essential factors that might affect the structural
stability in vivo. By retraining the DeepDRU model with the
data for one feature missing, the impact factors of the five struc-
tural features could be obtained to evaluate the contribution of
each feature to the model. The INI has the most significant
impact, followed by the POS of the mRNA structure and the RD
of the structure region (Figure 5(a)). The in vitro characteristics of

Figure 4. The effects of MFE and GC on the mRNA structure in vivo. (a, b) Single-factor gradient adjustment of MFE and GC in mRNA structure. (c) The detailed
process of two mRNA structural mutations and structural state transitions. MFE increased and GC decreased from left to right. The value in the circle was generated
by DeepDRU model prediction. Less than 0.5 could be classified as LUS structure, and more than 0.5 was classified as HUS structure. In vitro mRNA, structure is shown
with different colours representing pairing probability.
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the mRNA structure, includingMFE and GC, contributed least to
the model. When considering the impact of two features, any two
of RD, INI and POS have themost significant impact ratio (Figure
5(b)). Initially, the impact ratio ofMFEwas lower than that of GC.
However, when combined with INI, INI-MFE’s influence was
higher than that of INI and GC. As expected, the combination
of GC and MFE naturally has the lowest impact.

mRNAs were partitioned according to the degree of
unwinding

The degree of unwinding of mRNA regions varied due to the
factors discussed above, including RD, INI and POS. In other
words, regardless of the sequence composition, the mRNA region
itself has characteristics that determine whether it is prone to form
a structure. By simulating the change in MFE value of the mRNA
region from the minimum value to the maximum, the DeepDRU
model was used to predict the classification. If the HUS ratio was
greater than 0.9, it was considered mRNA structure with a stable
high degree of unwinding (sHUS); If the HUS ratio was less than

0.1, it was considered mRNA structure with a stable low degree of
unwinding (sLUS). SHUS and sLUS were special cases of HUS
and LUS, accounting for 18.00% and 25.04%, respectively (Figure
5(e)). The locations of sHUS and sLUS onmRNAwere not evenly
distributed, as each presented advantage in different mRNAs;
thus, the mRNA could be clustered into sHUS rich mRNAs or
sLUS rich mRNAs (Figure 5(c), Table S2). This clear difference
between the two types of mRNA might be explained by the INI
value of mRNA, i.e., mRNA with a dominant sHUS region has
a higher INI value (Figure 5(d)). In addition, the relative position
of sLUS on the mRNA was consistent with the previous conclu-
sion that sLUS was more concentrated at the 5‘ and 3‘ ends.

Discussion

Since the invention of large-scale, high-throughput methods
for in vivo mRNA structure determination, previous studies
have statistically derived general conclusions regarding in vivo
and in vitro mRNA structural differences, such as that the
mRNA structure in vitro tends to be unwound in the cell and
that the structural differences between in vivo and in vitro

Figure 5. The DeepDRU model addressed the impact ratio of structural features. (a) Impact ratio of five structural features on structural unwinding capability. (b)
Impact ratio of the pairwise combination of structural features on structural unwinding capability. (c) The mRNA was partitioned according to the degree of
unwinding. Only the sHUS (red) and sLUS (blue) regions were identified for each mRNA. “Ave“ is the average HUS ratio of each column. ”INI” is the INI value of each
mRNA. (d) INI values of mRNAs with dominant sHUS or sLUS regions. (e) The proportions of several types of mRNA structures.
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mRNA are mainly caused by ribosome translation [2,4–7].
Because multiple factors cause differences in vivo and
in vitro structures, however, it was difficult to perform
a further accurate or ‘personalized analysis’ of mRNA struc-
tures in previous studies.

In this study, we used a novel deep learning application to
accurately model labelled mRNA structures in yeast with five
quantitative structural features (RD of structure regions, MFE
and GC content of subsequences, INI and POS). Through
extensive model selection and optimization, we obtained the
DeepDRU model with high accuracy, which best predicted the
degree of mRNA structure unwinding in vivo. The rules
explaining the effects of these five features on mRNA struc-
tural stability were then resolved by performing in silico
gradient adjustment for these five features and subsequent
prediction by the DeepDRU model. We found that increasing
RD increased the degree of mRNA structure unwinding and
vice versa. The relative position of the mRNA structure on the
gene also affects its unwinding capability; that is, the in vivo
mRNA structure near the 5ʹ end (POS< 20%) in particular
and the 3ʹ end (POS>80%) tends to have a low degree of
unwinding. The INI of mRNA is the most critical factor
among the five features affecting unwinding capability. The

sequence of the mRNA structural region determines the
strength of its in vitro mRNA structure through the MFE
algorithm or GC content but has limited effects on its struc-
ture in vivo. In particular, mRNA that maintains a stable high
or low degree of unwinding regions (sHUS or sLUS) could be
identified by simulation and prediction by DeepDRU.

This study is the first to use a deep learning approach to
deconstruct mRNA structure differentiation in vitro and
in vivo. DNNs were proven to be usable for solving complex
regulatory issues in mRNA structure. The DeepDRU model
accurately predicted the degree of in vivo mRNA structure
unwinding and resolved the range of influence of five
structural features on structural unwinding capability.
However, some limitations are worth noting. Previous stu-
dies have shown that codon bias and tRNA abundance
could affect the ribosome translation rate and thus influence
the structural stability of mRNA in vivo [12,39,44]. Codon
bias and tRNA abundance were not considered separately in
our model, because the RD data already carried the ribo-
some translation information on these two factors. Our
results are encouraging and should be validated in a larger
number of mutant yeast species. Future works should,
therefore, focus on the following points. Codon biases and

Figure 6. The effects of RD, POS, and INI on the mRNA structure in vivo. (a) ROC curve of DeepDRU model by different datasets (more details can be found in the
materials and methods). (b, c, d) Single-factor gradient adjustment of RD, POS, and INI. The ordinate was the ratio of transformed structure to the total. When the
ratio of transformed structures reached 1, all structures had transformed to the opposite of their original class. HUS and LUS belong to the dataset 1. Ten HUS and
10LUS belong to the dataset 10. (e) Transformation ratios of LUS and HUS structures after co-mutation of the POS and RD.
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tRNA abundance should be used as separate features instead
of RD to make the DNN model more universal and to
perform an impact analysis of the mRNA structural stabi-
lity. Additionally, more species, such as Arabidopsis and
mice, as well as more detection methods, such as SHAPE-
MaP and icSHAPE, should be considered in the state pre-
diction of mRNA structure in vivo.

Materials and methods

Raw data preprocessing

Saccharomyces cerevisiae RNA structure data were obtained
from a DMS profiling experiment (containing in vivo, in vitro
and denatured datasets in WIG format) published in the
NCBI GEO database, accession number GSE45803 [4]. Gene
sequences were retrieved from SGD database assembly R62.
DMS signal data in WIG format were mapped to genes and
filtered with thresholds of 1, 10, 20 and 50 thresholds, produ-
cing four datasets named as the thresholds (Figure 6(a)). The
specific gene screening strategy is as follows:P

i DMS signali
Lgene length

� Threshold
> 0;Keep

< 0;Trimmed

�

where ‘i’ is each site of the gene. Datasets 1, 10, 20 and 50
correspond to 3657 and 1801, 1019 and 398 genes. WIG data
were mapped to genes, and genes were screened by DMS
signal per gene per nt using Perl scripts. We trimmed G/T
sites in the gene sequence and then used sliding windows of
50 nt (i.e., the 50 nt sequence after the deletion of G and
T sites, where the full-length sequence was approximately 100
nt) to divide the trimmed genes into regions. Multiple sets of
ribosome profiling (RP) data were combined to approach the
true S. cerevisiae ribosome occupancy. The RP data of wild-
type yeast were based on the following studies: Zinshteyn and
Gilbert et al. 2013 [22], Lareau et al. 2014 [23], Albert et al.
2014 [24] (BY and RM samples), Young et al. 2016 [25] and
Nissley et al. 2016 [26] (Rep1 and Rep2 samples). The RNA-
Seq data were from Albert et al. 2014 (BY and RM samples)
[24]. Then, the RP and RNA-Seq data were trimmed and
mapped to the yeast genome (assembly R62) by Bowtie and
normalized by the RPKM of the RNA-Seq data [45]. For the
yeast fragments, an offset of 15 nucleotides from the 5ʹ end
represented the P-site of the ribosome position [46].
Therefore, ribosome occupancy at nucleotide resolution was
given by the location of the genome position of the 15th
nucleotide of ribosomal fragments.

Classification of mRNA structures by DMS probe data

We defined the mRNA structure by two metrics: Pearson’s
correlation coefficient (r < 0.55) and the Gini coefficient
(Gini < 0.14), as described [4]. To more reasonably analyse
the trend of the disappearance of an RNA structure, we propose
an index that reflected the difference between in vivo and
in vitro mRNA structures, named DIS, which was equivalent
to subtracting the in vitro and in vivo Gini coefficients of the
structural region (G). For an mRNA structural region of length

n, the DMS signal per site is Si, and its DIS and Gini coefficient
are as follows:

DIS ¼ Gvitro � Gvivo

G ¼
Pn

i¼1

Pn
j¼1 Si � Sj

�� ��
2n

Pn
i¼1 Si

Calculation and standardization of five features of mRNA
structures

We chose five structural features as measures of mRNA struc-
ture. The feature RD was the ribosome density of the structural
region [47]. MFE was the minimum free energy of a local sub-
sequence, calculated by the Vienna (v.2.1.9) package RNAfold
[21] function and visualized by RNAstructure [48]. INI reflected
the translation efficiency at the beginning of the gene region
(+15 nt). GC represented the GC content of the sequence of the
structural region. Finally, POS was the relative position of the
structure region in the gene, which was obtained by dividing the
sequence length by the central position of the structure region.
Two features, RD and INI, were exponentially distributed, so the
logarithm was used. Before deep learning training, the para-
meters (except POS and GC) were normalized ((x-μ)/σ2) to
make the model more accurate.

Establishment of a deep neural network model

We established a DNN model named DeepDRU (using a deep
learning approach to predict the degree of mRNA structure
unwinding in vivo). By labelling known-state structures and
evaluating a sequence using these five features, a prediction
model can be generated. DIS was used to evaluate the degree of
RNA structural unwinding in vivo, and its distribution was
similar to a normal distribution. To ensure a sufficient number
of training sets and development sets (Train/Dev set), we decided
to use μ ± σ as the threshold value. Class 1 was defined as DIS
greater than μ + σ, meaning that such structures in vitro have
a high degree of unwinding, and named HUS; class 0 was tagged
as DIS less than μ-σ, indicating that such structures in vitro have
a weak degree of unwinding in vivo, and named LUS. Therefore,
the question became a binary classification problem. In this
project, we used TensorFlow [27] to construct a DNN model
solving the complex problem of RNA structural state prediction
in vivo. After model training, we determined 0.5 as the classifica-
tion threshold from the ROC curve (Figure 6(a)). During the
training of the model, the high threshold of datasets 20 and 50
might introduce bias to the meta-properties of RNA structural
pattern and cause the fluctuation of the predicted result of the
DeepDRU model; therefore, these two datasets were deleted.

Ten-fold cross-validation

Ten-fold cross-validation (10CV) method was used to evaluate
the generalization capabilities of different DeepDRU models.
All mRNA structural data were first randomly shuffled and
then divided into 10 groups, each with nine groups as the
training set (Train) and one group as the development set
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(Dev). This process was repeated 10 times until each group was
used in the development set once. Each model was subsequently
trained on a training set and validated on the development set.
To select the most suitable model, we performed a 10CV on 60
models with multiple dense layers (1 to 10 layers) and multiple
units per layer (16, 32, 64, 128, 256 and 512 units). The preci-
sion, recall, area under the ROC curve (AUC) and F1 score (F1)
in 10CV were averaged (Table S1). Rank in Table S1 represents
the index after sorting the data according to the predicted value.
The model with eight fully connected layers of 512 units was
chosen as the DeepDRU model. Among the 60 models, the
AUC, precision and F1 score values of this model structure
are the highest among the 60 models; that is, the rank value is 1,
and the rank value of recall is 3. The average accuracy of this
model was 99.59% in the training set, 96.27% in the develop-
ment set and 3.32% in the difference. The training data, main
Python and Perl scripts, and model files used in this project can
be obtained in the Github repository (https://github.com/atlas
bioinfo/DeepDRU). Among them, the Python scripts are
mainly used for deep learning model training and prediction,
and the Perl scripts are used for data processing and prelimin-
ary analysis.

Single-factor gradient adjustment and predictions

We performed single-factor gradient adjustment in silico on the
five features of mRNA structure to test the effects of these
features on the unwinding capability. Single-factor gradient
adjustment is a method in which only one structural feature is
gradient adjusted while the other features remain unchanged.
A gradient of 100 aliquots was designed between the mean plus
or minus 3 SD of the structural features, and gradient adjust-
ment was performed from small to large. It should be noted that
the significance of the simulated feature adjustment in silico was
to analyse multiple factor effects on the retention of mRNA
structures in vivo more accurately than with the original data
statistics. First, the feature adjustment in silico can design a large
number of previously unobservable mRNA structures and pre-
dict their unwinding degree in vivo, enriching the amount of
data. Second, in the process of gradient mutation, the tolerance
of each structure to different feature changes can be accurately
obtained, which is not possible by traditional statistical analyses.
The transformation of mRNA structure was defined as a change
in mRNA structure state (i.e., reclassification into another
group) after the adjustment. In addition, since we used two
datasets in the single-factor gradient adjustment (dataset 1 and
10), results of HUS, LUS, 10HUS and 10LUS were generated
correspondingly.

Impact ratios of the structural features

We retrained the model with the data from each structural
feature missing and calculated the impact ratio of each feature
from the F1 score of the trained model.

ratioi ¼ F1DeepRDS � 1
10

X
s

F1s;i

Impact ratioi ¼ ratioi
Max ratioð Þ þmin ratioið Þ

The ratio is the F1 score of the DeepDRU model minus the
average F1 score of the 10-fold cross-validation (s = 10). The
impact ratio of single structural feature is the result of ratio
normalization, where the Max (ratio) is 0.5 because the mod-
elling accuracy of random features should be 0.5.

mRNA partition by unwinding degree

MFE values of all mRNA regions were changed 11 times by
gradient (−3 to 3 of normalized ln(MFE)), and then the
DeepDRU model was used to predict the in vivo mRNA
structure state after the change. The numbers of HUS in 11
predictions divided by 11 are ‘HUS ratio’. If the HUS ratio is
greater than 0.9 or less than 0.1, the mRNA region is con-
sidered to be a stable HUS or LUS region, named sHUS or
sLUS (Figure 5(c), Table S2). The sHUS and sLUS regions
were labelled on the mRNA and clustered by Ward’s hier-
archical agglomerative clustering method [49].
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