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Abstract: Adenosine is an adenine base purine with actions as a modulator of neurotransmission,
smooth muscle contraction, and immune response in several systems of the human body, including
the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A,
A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that
trigger their actions through several signaling pathways and present differential affinity requirements.
Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough
to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra
and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability
is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and
adenosine receptors’ activities are debated and a particular attention is given to the paramount
importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension.,
The integration of important functional aspects of individual adenosine receptor pharmacology (such
as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers)
in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for
modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine
physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some
of them have been patented as having promising therapeutic activities and some have been chosen to
undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead
to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or,
alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings
highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular
pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be
explored, creating new challenges to be addressed in future studies, particularly the development of
strategies able to circumvent the predicted side effects of these therapies.
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1. Introduction

Adenosine is an adenine nucleoside involved in nucleic acid assembly that results from ATP
degradation in both the intra- and extracellular environment by the action of specific enzymes, and
can act as a signaling molecule by interacting with integral membrane proteins, known as adenosine
receptors or purinergic P1-receptors [1]. To date four subtypes have been identified, the adenosine
A1, A2A, A2B and A3 receptors. It is established that the intracellular segment of each adenosine
receptor subtype interacts with the appropriate heterotrimeric guanine (G) nucleotide-binding protein
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(G-protein) with subsequent activation of an intracellular signal transduction mechanism. Adenosine
receptor subtypes have been grouped into two main categories: (i) subtypes that are coupled to
inhibitory G proteins, such as adenosine A1 and A3 receptors and (ii) subtypes which are coupled to
stimulatory G proteins, like the A2A and A2B receptors. Evidence has, however, demonstrated that
adenosine receptors are in fact pleiotropic since they may couple with several G proteins/transduction
mechanisms depending on their degree of activation or cellular/subcellular localization [2]. Adenosine
receptors when activated can lead to interactions with the α, β and γ subunits of the G-protein
triggering signaling events [3,4].

In addition to the occurrence of adenosine receptors, adenosine availability is also crucial to
discriminate which adenosine receptor subtype is activated. Interstitial levels of adenosine are elevated
under conditions of increased metabolic demand (such as exercise) and decreased energy supply
(such as ischemia), reaching physiologically relevant concentrations. Adenosine is released into the
extracellular space signaling to restore the balance between local energy requirements and energy
supply [5]. Released adenosine is quickly transported back into cells by an energy-dependent uptake
mechanism, which is part of a purine salvage pathway designed to maintain intracellular ATP levels.
Adenosine can be transported from inside to outside the cell and interstitial fluid or vice-versa
through specific proteins, the nucleoside transporters (NTs). NTs can, thus, modify extracellular
adenosine levels [6,7] since they may facilitate the movement of nucleosides and nucleobases across
cell membranes. Transport of adenosine across the cellular membrane is crucial since it contributes
to regulate extracellular adenosine levels, and subsequently, adenosine receptor subtype activation.
Currently, two types of nucleoside transporters have been identified [8,9]: Equilibrative Nucleoside
Transporters (ENT: ENT1, ENT2, ENT3 and ENT4) and Concentrative Transporters (CNT: CNT1,
CNT2 and CNT3) [10]. It has been speculated that an increase in the activities of ENT1 and CNT2
may reduce the availability of adenosine to its receptors, conditioning their effects. Thus, NTs act as
important players in adenosine function by controlling local levels of adenosine in the vicinity of the
adenosine receptors. The effectiveness of this adenosine transport system has been demonstrated to
be particularly active in humans, and is responsible for the extremely short half-life of adenosine in
human blood.

In addition, adenosine availability also results from ATP enzymatic breakdown of both intra- and
extracellular adenine nucleotides and intracellular S-adenosylhomocysteine. The reader is referred
to Zimmermann et al. [11], who provide an excellent overview on this complex regulatory system.
Briefly, ATP present in the cytosol can be sequentially dephosphorylated to ADP, AMP and then to
adenosine. Alternatively, ATP can be released from different types of cells (by exocytosis), and then,
metabolized by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1 or CD39) to form ADP,
AMP and, finally, by AMP hydrolysis to adenosine (via ecto-5′-nucleotidase, NT5E or CD73) [12] and
to inosine by adenosine deaminase.

Extracellular disposition of adenosine availability can also be regulated by the presence of
guanosine through an unknown mechanism [13], independent of NTs and ectonucleotidase activities.
Guanosine increases adenosine and inosine levels [14,15], and can, therefore, alter adenosinergic
system dynamics.

All these players—adenosine, adenosine receptors and nucleoside transporters—constitute
together the adenosinergic system that, due to the above features, can exert a “fine-tuning” modulation
in multiple physiological and pathophysiological processes.

2. Adenosine Receptor Ligands and Therapeutic Targets

2.1. Adenosine Receptor Structure and Binding “Pocket”

Adenosine receptor structure is crucial for the development of new ligands [16]. Briefly, adenosine
receptors present seven transmembrane hydrophobic amino acid domains—TM I-VII—connected by
three extracellular and three intracellular hydrophilic loops (with different sizes). These are highly
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conserved and their residues are crucial for ligand binding/specificity [17,18]. The C-terminal is
intracellularly located, on the cytoplasmatic side of the plasma membrane whereas the N-terminal is
extracellularly located. The ligand binding site is formed by 3D-arrangement of the transmembrane
domains, similar to a “pocket”. The critical interactions required for ligand recognition occur in TM
III, V, VI, VII, where two histidine residues are conserved at TM VI, position 52 among adenosine A1,
A2A and A2B receptors, and were described as crucial for ligand recognition [18–20] and contribute to
ligand specificity binding within the “pocket”; in adenosine A3 receptors, these two histidine residues
are lacking (TM VI: His52). Other amino acids residues can also be important for ligand recognition,
affinity or binding [19,21–23] such as glutamate in TM I of the human adenosine A2A receptor (critically
involved in agonist, but not in antagonist, recognition [24]). Adenosine receptors distal region of the
second extracellular loop are also involved in agonists and antagonists binding [17]. Indeed, residues
negatively charged in adenosine A2A receptor seem to be required for agonists and antagonists binding
to the A2A subtype. Additional residues of adenosine A2A receptors were identified in TM V, VI, VII
ligand binding [19]: mutation at histidine residues at TM VI, position 52 and TM VII, position 43 in
adenosine A2A receptor caused a dramatic loss of ligand affinity; in TM VII, position 43 a substitution
of histidine for other residues also decreased ligand affinity [20].

The third intracellular loop of the adenosine A2A receptor seems to be critical for its G-protein
selectivity [25]: the cysteine residues forming a disulfide bridge at the third extracellular loop are
conserved among the G-protein family and are required for receptor structural integrity and ligand
binding [26]. Also the occurrence of mutations in TM IV and of the extracellular loops (both the
C-terminal and the N-terminal) of adenosine receptors’ structure have ruled out the importance of this
transmembrane domain/ loops in ligand recognition/binding [17,18,27].

A structural feature that should also be considered regarding the development of new adenosine
receptor ligands is G-protein coupled receptor dimerization. Adenosine receptors have been described
to participate in homo- and/or heterodimerization, and also in oligomerization [28,29] phenomena
having a major impact on the pharmacological behavior of those ligands.

2.2. New Adenosine Ligands and Their Usefulness

Series of adenosine receptor ligands, both agonists and antagonists [30], have been developed by
structure-activity-relationship (SAR) or quantitative-structure-activity-relationship (QSAR) studies,
defining both structural and electrostatic requirements for differential ligand affinity of adenosine
receptor subtypes. Some of these ligands have been patented and, some are, currently, undergoing
clinical evaluation for different therapeutic applications. In Table 1, patents from the last five years
related to new adenosine analogues or adenosine receptor antagonists are listed with respective
descriptions of the most relevant claimed effects. It is also clear that a recent class of selective adenosine
receptor ligands is emerging, the A2B receptor agonists class. Since these selective ligands have become
available it has facilitated research on therapeutic applications and knowledge on adenosine receptors
modulation [30]. As shown in Table 1, wide therapeutic applications are presented related to several
types of pathological conditions and have involved all subtypes of adenosine receptors.

Another important aspect in the development of putative new selective adenosine receptor
ligands, particularly of those with specific clinical applications, relies on the widespread actions of
adenosine (due to the ubiquitous presence of adenosine and widespread distribution of adenosine
receptors in the body), which may contribute greatly to impair safety delivery and clinical effectiveness
of a particular compound. Also, the intricacy of adenosine signaling may explain the innumerable side
effects reported and, ultimately, the failure of some of the new compounds in phase I, II or III trials.
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Table 1. Patents on adenosine receptor ligands: examples from the last 5 years.

Ligands Claimed Therapeutic Activity Patent No. Ref.

Pyridine derivatives Treatment of stable and unstable angina pectoris and atrial fibrillation CA2442256C [31]

Imidazoquinoline derivatives Therapeutic and/ or preventive treatment of dysfunctions of the heart, kidney, respiratory
system, central nervous system. CA2505910C [32]

Treatment of B-cell proliferative disorders EP2178369A4 [33]

Imidazopyridine derivatives

Treatment, prevention or suppression of diseases and disorders known to be susceptible to
improvement by antagonism of the A2B adenosine receptor, such as asthma, chronic obstructive
pulmonary disorder, pulmonary fibrosis, emphysema, allergic diseases, inflammation,
reperfusion injury, myocardial ischemia, atherosclerosis, hypertension, retinopathy, diabetes
mellitus, inflammatory gastrointestinal tract disorders, and/or autoimmune diseases.

US7855202B2 [34]

Pyrazine derivatives

Treatment, prevention or suppression of diseases and disorders known to be susceptible to
improvement by antagonism of the A2B adenosine receptor, such as asthma, chronic obstructive
pulmonary disorder, pulmonary fibrosis, emphysema, allergic diseases, inflammation,
reperfusion injury, myocardial ischemia, atherosclerosis, hypertension, retinopathy, diabetes
mellitus, inflammatory gastrointestinal tract disorders, and/or autoimmune diseases.

US785520B2 [35]

Substituted 2-oxy-3,5-dicyano-
4aryl-6-aminopyridines

Prophylaxis and/or treatment of various disorders, in particular disorders of the cardiovascular
system (cardiovascular disorders), the substances preferably acting as adenosine-receptor
selective ligands.

US7855219B2 [36]

Methanocarbacycloakyl
nucleoside analogues

Treatment or prevention of various diseases including airway diseases (through A2B, A3, P2Y2
receptors), cancer (through A3, P2 receptors), cardiac arrhythmias (through A1 receptors),
cardiac ischemia (through A1, A3 receptors), epilepsy (through A1, P2X receptors), and
Huntington’s Disease (through A2A receptors).

CA2397366C [37]

Substituted 2-thio-3,5-dicyano-
4-phenyl-6-aminopyridines

Prophylaxis and/or treatment of various diseases such as, for example, diseases of the
cardiovascular system, in particular. Suitable active compounds for use in combination are, in
particular, active compounds for treating coronary heart diseases, for example nitrates,
betablockers, calcium antagonists and diuretics, in particular.

CA2453747C [38]

Substituted 2-thio-3,5-dicyano-
4-phenyl-6-aminopyridines

Treatment of various disorders, i.e., in particular, for example, disorders of the cardiovascular
system (cardiovascular disorders). Active compounds suitable for combinations are in particular
active compounds for treating coronary heart disease, such as, for example, in particular nitrates,
beta blockers, calcium antagonists or diuretics.

CA2469586C [39]
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Table 1. Cont.

Ligands Claimed Therapeutic Activity Patent No. Ref.

8-Pyrazolylxanthine derivatives

Treatment of conditions and diseases mediated by the adenosine A2B receptor activity. Such
conditions include, but are not limited to, chronic and acute inflammatory diseases involving
degranulation of mast cells, e.g., asthma, allergic rhinitis and allergic dermatitis; impaired
sensitivity to insulin, e.g., type 2 diabetes, pre-diabetic state, and impaired glucose tolerance;
diseases in which angiogenesis is a key component of pathogenesis, e.g., solid tumors and
angiogenic retinopathies; apnea of preterm infants; etc.

EP2032797A4 [40]

Prevention, treatment, or amelioration of cancer, inflammation, auto-immune disease,
ischemia-reperfusion injury, epilepsy, sepsis, septic shock, neurodegeneration (including
Alzheimer’s Disease), muscle fatigue or muscle cramp (particularly athletes’ cramp).

US20110166093 [41]

(N)-Methanocarbaadenine nucleosides
Treatment a number of diseases, for example, inflammation, cardiac ischemia, stroke, asthma,
diabetes, and cardiac arrhythmias. The invention also provides compounds that are agonists of
both A1 and A3 adenosine receptors for use in cardioprotection

CN101056879B [42]

Prodrug derivatives of 2-amino-6-
(13sulfanyl)-4-(4-{[
2,3-dihydroxypropyl]oxy}
phenyl)pyridine-3,5-dicarbonitriles

Treatment and/or prophylaxis of diseases, especially of cardiovascular disorders. EP2379539A1 [43]

Treating mammals for various disease states, such as gastrointestinal disorders, immunological
disorders, hypersensitivity disorders, neurological disorders, and cardiovascular diseases due to
both cellular hyperproliferation and apoptosis

US8143249 [44]

Substituted 2-thio-3,5-dicyano-4-
aryl-6-aminopyridines

Prophylaxis and/or treatment of various disorders, in particular disorders of the
cardiovascular system CA2440218C [45]

Xanthine derivatives
Treating mammals for various disease states, such as gastrointestinal disorders, immunological
disorders, neurological disorders, and cardiovascular diseases due to both cellular
hyperproliferation and apoptosis

CA2524778C [46]

Treating asthma, inflammatory gastrointestinal tract disorders, cardiovascular diseases,
neurological disorders, and diseases related to undesirable angiogenesis US20130123280 [47]

Treating or preventing a cardiovascular disease, a neurological disorder, an ischemic condition, a
reperfusion injury, obesity, or wasting disease, or diabetes US8609833 [48]

Substituted pyrrolopyridine,
pyrazolopyridine and
isoxazolopyridine derivatives

Treatment and/or prevention of diseases and to their use for preparing medicaments for the
treatment and/or prevention of diseases, preferably for the treatment and/or prevention of
cardiovascular disorders.

US8609686 [49]
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Table 1. Cont.

Ligands Claimed Therapeutic Activity Patent No. Ref.

2,4-Disubstituted quinoline derivatives Treatment of a condition which is treatable by adenosine or an A3 agonist EP2323661B1 [50]

(N)-Methanocarbaadenine nucleosides Treatment a number of diseases, for example, inflammation, cardiac ischemia, stroke, asthma,
diabetes, and cardiac arrhythmias US8518957 [51]

Preventing, treating, or ameliorating one or more symptoms of glaucoma or ocular hypertension EP2611502A1 [52]

4-Cycloalkyl- and 4-heterocycloalkyl-3,
5-dicyano-2-thio-pyridine derivatives

Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
hypertension and other cardiovascular disorders. EP2099788B1 [53]

Therapeutic method Diagnosis and determining effectiveness of treatment of inflammation and in particular to use
therefore of biological markers associated with inflammatory states. US20130345163 [54]

Heteroaryl-substituted dicyanopyridines Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
cardiovascular disorders. US8426602 [55]

1H-Imidazo-[4,5-c ]quinolin-4-amine
derivatives Treatment modulation of A3 adenosine receptor US20130197025A1 [56]

Phenylaminothiazole derivatives Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
hypertension and other cardiovascular disorders. US8691850 [57]

Substituted
4-amino-3,5-dicyano-2-thiopyridine
derivatives

Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
hypertension and other cardiovascular disorders. US8703934 [58]

Substituted fused pyrimidine

Treating conditions and diseases that are mediated by adenosine receptor activity such as
asthma, chronic obstructive pulmonary disorder, angiogenesis, pulmonary fibrosis, emphysema,
allergic diseases, inflammation, reperfusion injury, myocardial ischemia, atherosclerosis,
hypertension, congestive heart failure, retinopathy, diabetes mellitus, obesity, inflammatory
gastrointestinal tract disorders, and/or autoimmune diseases

US8796290B2 [59]

Fused pyrimidine compounds

Treating conditions and diseases that are mediated by adenosine receptor activity. These
compounds are useful in the treatment, prevention or suppression of diseases and disorders that
may be susceptible to improvement by antagonism of the adenosine receptor, such as asthma,
chronic obstructive pulmonary disorder, angiogenesis, pulmonary fibrosis, emphysema, allergic
diseases, inflammation, reperfusion injury, myocardial ischemia, atherosclerosis, hypertension,
congestive heart failure, retinopathy, diabetes mellitus, obesity, inflammatory gastrointestinal
tract disorders, and/or autoimmune diseases

CA2718983C [60]
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Table 1. Cont.

Ligands Claimed Therapeutic Activity Patent No. Ref.

Substituted 2,4′- and
3,4′-bipyridine derivatives

Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
hypertension and other cardiovascular disorders CA2662728C [61]

2-Alkoxy-substituted dicyanopyridines Treatment and/or prophylaxis of diseases, preferably for the treatment and/or prevention of
cardiovascular disorders. US9205077 [62]

2-amino-6-({[2-(4-chlorophenyl)-1,
3-oxazol-4-yl]methyl}sulfanyl)-4-
(4-{[2,3-dihydroxypropyl]oxy}
phenyl)pyridine-3,5-dicarbonitrile

Treatment and/or prophylaxis of diseases, and their use for the manufacture of medicaments for
the treatment and/or prophylaxis of diseases, especially of cardiovascular disorders. US8741834 [63]

2-Amino-6-({[2-(4-chlorophenyl)-1,
3-thiazol-4-yl]methyl}thio)-4-
[4-(2-hydroxyethoxy)
phenyl]pyridine-3,5-dicarbonitrile

Treatment and/or prophylaxis of diseases, and their use for the manufacture of medicaments for
the treatment and/or prophylaxis of diseases, especially of cardiovascular disorders. CA2695036C [64]

Substituted aryloxazole derivatives Treatment and/or prophylaxis of diseases, and their use for the manufacture of medicaments for
the treatment and/or prophylaxis of diseases, especially of cardiovascular disorders. US9095582 [65]

Substituted
8-[6-carbonylamino-3-pyridyl] xanthines

Therapeutic methods are provided herein for treating a pathological condition or symptom in a
mammal, such as a human, wherein the activity, e.g., over- activity, of adenosine a2b receptors is
implicated in one or more symptoms of the pathology and antagonism (i.e., blocking) is desired
to ameliorate such symptoms.

WO2011005871A1 [66]

2-Chloro-N6-
(3-iodobenzyl)-adenosine-5′-N-
methyluronamide (Cl-IB-MECA)

Treatment of hepatocellular carcinoma US20150018299 [67]

Substituted fused pyrimidine
compounds

Treatment, prevention or suppression of diseases and disorders that may be susceptible to
improvement by antagonism of the adenosine receptor, such as asthma, chronic obstructive
pulmonary disorder, angiogenesis, pulmonary fibrosis, emphysema, allergic diseases,
inflammation, reperfusion injury, myocardial ischemia, atherosclerosis, hypertension, congestive
heart failure, retinopathy, diabetes mellitus, obesity, inflammatory gastrointestinal tract
disorders, and/or autoimmune diseases

US9284316 [68]

Treating conditions and diseases that are mediated by thereof as A2B adenosine
receptor antagonists CN103261200B [69]
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For example, the compound GW493838, an A1 receptor agonist, was tested for its analgesic
effect in peripheral nerve injury or neuralgia, and also for its benefic effects on glaucoma and ocular
hypertension, but was discontinued. Other similar examples of clinical trials discontinuation have
occurred with the adenosine A1 antagonists BG9928 and KW-3902 [12], all due to their reported
side-effects. Another example is illustrated by the recommendation of the U.S. Food and Drug
Administration that the use of regadenoson (CVT-3146, Lexiscan) for cardiac nuclear stress tests
of patients with signs or symptoms of unstable angina or cardiovascular instability should be
avoided because the drug may increase the risk of a fatal heart attack. Nevertheless, and based
on growing scientific evidence, several new adenosine receptor ligands are expected to be approved
for clinical use and, hopefully, significantly improve the life style and outcome of patients. In Table 2,
examples of ongoing or recently completed clinical trials of adenosine receptor ligands are described.
Several clinical applications are reported for the cardiovascular system such as cardiac ischemia,
chronic heart failure, atrial fibrillation etc. Nevertheless, in the vasculature few clinical studies
have been carried out, “Regadenoson Blood Flow in Type 1 Diabetes” is an example, but further
physiological/pharmacological studies in this field are needed to clarify the putative use of adenosine
ligands as a therapeutic strategy in the treatment of vascular diseases.

2.3. Ligands as Pharmacological Tools

The adenosinergic system has been implicated in several processes such as modulation
of neurotransmission, smooth muscle contraction, immune response, both in physiological
and pathophysiological conditions. Our knowledge concerning adenosine/adenosine receptor
actions/triggering events has improved with the development of ligands, both agonist or antagonists,
with individual selectivity for adenosine receptor subtypes. According to the International Union of
Pharmacology (IUPHAR), adenosine receptors ligands can be divided into agonists and antagonists
depending on their respective adenosine receptor subtype, however there are some studies where
some compounds, classified as antagonists, have been described as inverse agonists: caffeine [70] and
ZM 241385 [71] as A2A inverse agonists and MRS 1706 [72] as an A2B inverse agonist. A brief summary
of the pharmacological ligands currently used for classification of adenosine receptors is presented in
Table 3.

Pharmacological studies have revealed that adenosine A1 and A2A receptors are high affinity
receptors for adenosine although presenting different Kd (A2A receptors require higher concentrations
(1–20 nM) than A1 receptors (0.3–3 nM) [73]). By contrast, adenosine A2B and A3 receptors are low
affinity receptors (higher amounts of adenosine are required to activate these subtypes: >1 µM) [74].
An increase in the levels of endogenous adenosine (as a result of NT activity) nearby a specific
adenosine receptor subtype can occur leading to its activation. Therefore, the NT may constitute a new
target for a different therapeutic approach. Indeed, adenosine mechanisms are the target of commonly
used drugs acting by blockade of adenosine reuptake, thus potentiating its actions or antagonizing
adenosine receptors. Unfortunately few studies have been carried out and this field of work requires
further studies. An approach of an indirect receptor targeting can occur by inhibition of nucleoside
transporters. Indeed, nucleoside transporters are a crucial player in adenosine mediated effects by
controlling adenosine bioavailability, and subsequently the activation of adenosine receptors [9,75,76].
Evidence also demonstrated that several physiological and pathophysiological conditions [9,75,77–79]
and hypoxia can also reduce adenosine uptake [80,81] changing adenosine levels nearby adenosine
receptors, therefore, conditioning its activation.

Another example of indirect receptor targeting can be achieved by increasing the activity of
enzymes responsible for ATP breakdown. Evidence shows that conditions such as inflammation,
hypoxia, and stress lead to an increase in ectonucleotidases expression. Moreover, hypoxia can
ultimately stimulate CD73 [82–85], and CD39 [86–89] and, therefore, increase the ability of the tissue
to produce adenosine.
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Table 2. Clinical trials of adenosine receptor ligands: example of recently completed or ongoing studies.

Target Ligands Clinical Trials: Study C. T. Identifier Code Ref.

All adenosine receptor subtypes Agonist: adenosine Prophylactic Intra-coronary Adenosine to Prevent Post Coronary Artery
Stenting Myonecrosis NCT00612521 [90]

Circulating Adenosine Levels Before and After Intravenous (IV) Persantine NCT00760708 [91]

All adenosine receptor subtypes Antagonist: caffeine Caffeine for Motor Manifestations of Parkinson’s Disease NCT01190735 [92]

Caffeine for Excessive Daytime Somnolence in Parkinson’s Disease NCT00459420 [93]

The Impact of Caffeine on Brachial Endothelial Function in Healthy Subjects and
in Patients With Ischemic Heart Disease NCT00564824 [94]

Caffeine as a Therapy for Parkinson’s Disease NCT01738178 [95]

Adenosine A1 receptor Agonist: BAY1067197 Multiple Dose Study in Heart Failure of BAY 1067197 (PARSiFAL) NCT02040233 [96]

Study to Assess the Safety of BAY1067197 in Stable Heart Failure Patients on
Standard Therapy Including ß-blocker NCT01945606 [97]

A Trial to Study Neladenoson Bialanate Over 20 Weeks in Patients With Chronic
Heart Failure With Reduced Ejection Fraction (PANTHEON) NCT02992288 [98]

Adenosine A1 receptor Agonist: tecadenoson Safety Study of Tecadenoson to Treat Atrial Fibrillation NCT00713401 [99]

Adenosine A1 receptor Antagonist: PBF-680 “First-in-human” Study To Assess the Safety and Tolerability of PBF-680 in Male
Healthy Volunteers NCT01845181 [100]

A Study to Assess the Efficacy of a 5-day, 10-mg PBF-680 Oral Administration on
Late Asthmatic Responses (LAR) in Mild to Moderate Asthmatic Patients. NCT02635945 [101]

Study to Assess the Efficacy of a Single PBF-680 Oral Administration to
Attenuate Adenosine 5′-Monophosphate Challenge-induced Airway
Hyperresponsiveness in Mild-to-moderate Asthmatics

NCT01939587 [102]

Adenosine A2A receptor Agonist: regadenoson Adenosine 2A Agonist Lexiscan in Children and Adults With Sickle Cell Disease NCT01085201 [103]
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Table 2. Cont.

Target Ligands Clinical Trials: Study C. T. Identifier Code Ref.

ADVANCE MPI 2: Study of Regadenoson Versus Adenoscan® in Patients
Undergoing Myocardial Perfusion Imaging (MPI)

NCT00208312 [104]

Myocardial Perfusion Magnetic Resonance Imaging Using Regadenoson NCT00881218 [105]

Regadenoson Blood Flow in Type 1 Diabetes (RABIT1D) (RABIT1D) NCT01019486 [106]

A Phase II Trial of Regadenoson in Sickle Cell Anemia NCT01788631 [107]

Adenosine A2A receptor Agonist: binodenoson Efficacy and Safety Study of Binodenoson in Assessing Cardiac
Ischemia (VISION-305) NCT00944970 [108]

Adenosine A2A receptor Agonist: MRE0094 Safety and Efficacy Study of MRE0094 to Treat Chronic, Neuropathic, Diabetic
Foot Ulcers NCT00312364 [109]

Adenosine A2A receptor Antagonist: preladenant A Study to Assess Pharmacokinetics of Preladenant in Participants With Chronic
Hepatic Impairment (P06513) NCT01465412 [110]

Placebo Controlled Study of Preladenant in Participants With Moderate to
Severe Parkinson’s Disease (P07037) NCT01227265 [111]

A Dose Finding Study of Preladenant (SCH 420814) for the Treatment of
Parkinson’s Disease (PD) in Japanese Patients (P06402) NCT01294800 [112]

Study of Preladenant for the Treatment of Antipsychotic Induced Movement
Disorders in Participants With Schizophrenia (Study P04628) NCT00686699 [113]

Study of Preladenant for the Treatment of Neuroleptic Induced Akathisia (Study
P05145AM1) (COMPLETE) NCT00693472 [114]

A Placebo- and Active-Controlled Study of Preladenant in Early Parkinson′s
Disease (PD) (P05664) (PARADYSE) NCT01155479 [115]

Adenosine A2A receptor Antagonist: istradefylline Effect of Mild Hepatic Impairment on the Pharmacokinetics of Istradefylline NCT02256033 [116]
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Table 2. Cont.

Target Ligands Clinical Trials: Study C. T. Identifier Code Ref.

A 12-week Randomized Study to Evaluate Oral Istradefylline in Subjects With
Moderate to Severe Parkinson′s Disease (KW-6002) NCT01968031 [117]

Long Term Study of Istradefylline in Subjects With Moderate to Severe
Parkinson′s Disease NCT02610231 [118]

Study of Istradefylline (KW-6002) for the Treatment of Restless Legs Syndrome NCT00199446 [119]

Adenosine A3 receptor Agonist: CF101 Trial of CF101 to Treat Patients With Psoriasis NCT00428974 [120]

Oral CF101 Tablets and Methotrexate Treatment in Rheumatoid
Arthritis Patients NCT00556894 [121]

Safety and Efficacy of Daily CF101 Administered Orally in Subjects With
Elevated Intraocular Pressure NCT01033422 [122]

Trial of CF101 to Treat Patients With Dry Eye Disease NCT01235234 [123]

Safety and Efficacy Study of CF101 to Treat Keratoconjunctivitis Sicca NCT00349466 [124]

Adenosine A3 receptor Agonist: CF102 A Phase 1–2 Study of CF102 in Patients With Advanced
Hepatocellular Carcinoma NCT00790218 [125]

A Phase 1/2 Study of CF102 in Patients With Chronic Hepatitis C Genotype 1 NCT00790673 [126]

Phase 2, Randomized, Double-Blind, Placebo-Controlled of the Efficacy and
Safety of CF102 in Hepatocellular Carcinoma (HCC) NCT02128958 [127]

Adenosine A3 receptor Antagonist: PBF-677 “First-in-human” Study To Assess the Safety and Tolerability of PBF-677 in
Healthy Volunteers NCT02639975 [128]
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Table 3. Ligands currently used for adenosine receptors classification.

Ligand Type Abbrev. Ligand Adenosine Receptor Subtype

AGONIST

ADO Adenosine A1, A2A, A2B, A3
NECA 5′-N-Ethylcarboxamidoadenosine A1, A2A, A2B, A3
CPA N6-Cyclopentyladenosine A1
CCPA 2-Chloro-CPA A1
CGS 21680 2-p-(2-Carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride A2A
IB-MECA 1-Deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-b-D-ribofuranuronamide A3
2Cl-IB-MECA 2-Chloro-N6-(3-iodobenzyl)-5′-(N-methylcarbamoyl)adenosine A3

ANTAGONIST

Teophylline 3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione A1, A2A, A2B, A3
Caffeine 1,3,7-Trimethylpurine-2,6-dione A1, A2A
DPCPX 1,3-Dipropyl-8-cyclopentylxanthine A1
SCH 58261 5-Amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine A2A
ZM 241385 4-(2-[7-Amino-2-[2-furyl]-[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol A2A
MRS 1754 N-(4-Cyanophenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]acetamide A2B
MRS 1706 N-(4-Acetylphenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide A2B
MRS 1220 N-[9-Chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]benzene acetamide A3
MRS 1523 2,3-Diethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate A3
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Indirect receptor targeting can be, therefore, an alternative therapeutic strategy using enzymes
involved in adenosine production or compounds that modify nucleoside transporter activity as
promising therapeutic targets in the cardiovascular disorders. Thus, clinical application of nucleoside
transporters can be extended, as at present they have been used successfully in anticancer and antiviral
therapy [77,78,129,130].

3. Adenosinergic System in the Vasculature

A considerable body of evidence has been gathered in the past years concerning the actions of
adenosine in several systems including the cardiovascular system. Indeed, intense research in this field
revealed some favorable conditions in which adenosine actions are more relevant. Pathophysiological
or hypoxic/ischemic conditions are examples of such, since they favor an augmentation of extracellular
adenosine levels with subsequent activation of adenosine receptors.

3.1. Vascular Smooth Muscle

Adenosine is able to regulate cardiac functions such as heart rate, contractility and can
also influence the coronary flow. Cardiac electrophysiological effects mediated by adenosine
occur mostly through direct activation of adenosine A1 receptor or, indirectly, by opposing
the β-adrenoceptor-mediated effects. A2A receptors have been considered the main receptor
subtype involved in coronary blood flow regulation, causing vasodilation in coronary arteries (see
reviews [131,132] for further details). Indeed, in vascular tissues, adenosine is known to induce
vasodilation, an effect classically ascribed to A2 receptors on vascular smooth muscle cells, leading
to an increase in blood flow and oxygenation [133]. Nevertheless, evidence has also demonstrated
that adenosine A2 receptor subtype can mediate vasodilation [134] in an endothelium- and nitric
oxide-dependent [131] fashion. Indeed, in more recent studies, it was demonstrated that A1 and A2A

receptor activation in endothelial cells promotes NO production and, consequently, NO-mediated
vasodilation. Adenosine A2B receptors have been described to be involved in the inhibition of vascular
smooth muscle cell proliferation and vasodilation in vessels such as aorta and saphenous vein [135–140].
On the other hand, A3 receptor activation has also been linked to producing relaxation/vasodilation of
blood vessels [141].

A broad number of studies reported antimitogenic effects to adenosine, via activation of adenosine
A2B receptors in pulmonary [142], aorta [135,143] and glomerular [136] artery smooth muscle cells.
Vascular smooth muscle proliferation can be inhibited after adenosine A2B receptor activation through
cAMP/Epac (exchange protein directly activated by cAMP) pathway [138]. More recently and, by
contrast, adenosine A1 receptor was found to promote coronary smooth muscle cells proliferation [139].
These opposite effects ascribed to adenosine in the media layer of arteries, mediated by different
adenosine receptor subtypes, evidence the importance of adenosine levels, a crucial factor determining
the protective or promoter role of adenosine. Therefore, depending on the subtype of adenosine
receptor that is activated, inhibition or stimulation of smooth muscle cells hypertrophy may occur.

3.2. Vascular Endothelium

Adenosine may not only promote cell proliferation but can also selectively influence vascular
cell death, in a process involving endothelial apoptosis. This process is inhibited by A2A [144] and A1

receptor pathways [145]. In addition to endothelial apoptosis, smooth muscle cell apoptosis can also
occur due to the action of adenosine via activation of A2B receptor dependent pathways [146].

It is well established that endothelium may influence vascular responsiveness by producing
vasoactive substances such as NO, ROS, endothelins and adenosine. For example, in endothelium,
it has been described that adenosine induces NO production through adenosine A1 and A2A receptor
activation pathway which ends with activation of endothelial nitric oxide synthase [147]. Therefore,
adenosine can stimulate endothelial NO synthase activity, which in turn, generates higher amounts
of NO, a well-known vasodilator [148,149]. Adenosine A2B receptor subtype, in endothelial cells,
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was implicated in cell proliferation, [150] suggesting that pharmacological or molecular activation of
this receptor subtype may be useful in modulating vascular remodeling. Adenosine A2B receptor is,
therefore, a protective effector against hyperplasia. Moreover, adenosine A2B receptors were found to be
highly expressed in macrophages and vascular smooth muscle cells presenting an important role in the
regulation of inflammation and vascular adhesion: deficiency in adenosine A2B receptors was shown
to promote lesions or thickness of the neointima after vascular injury [151] revealing its protective role
in atherosclerosis. Some studies also identified adenosine A2A [152] and A3 [153] receptors as being
protective against endothelial injury induced by the inflammatory processes. In vascular tissues, recent
studies concerning the role of endothelium in hypertension, had suggested that the main mechanism
regulating extracellular adenosine levels involves nucleoside uptake to endothelial cells with the
subsequent impairment of adenosine A1 receptor activation [154].

3.3. Vascular Adventitia

In addition to the adenosine mediated effects, ascribed to receptors/signaling pathways located
in smooth muscle cells or endothelium, adenosine actions on sympathetic nerves (or even at central
nucleus of the brain) are also of paramount importance in the regulation of vascular tonus. Animal
and human studies have demonstrated sustained increases in sympathetic activation and, as a
consequence, a direct induction of vascular remodeling. Indeed, sympathetic activation leads to
systemic vasoconstriction, increases blood pressure and improves the perfusion pressure. This systemic
vasoconstriction could be deleterious to the ischemic organ if not for the simultaneous local inhibitory
actions of adenosine, which produces vasodilation and inhibition of noradrenaline release. These
actions are, for the most part, circumscribed to the local ischemic tissue so that it is protected from
sympathetically mediated vasoconstriction while it benefits from the improved perfusion pressure.
Thus, adenosine seems to provide a link between local mechanisms of blood flow autoregulation and
systemic mechanisms of autonomic cardiovascular regulation.

Several studies described the occurrence of a neuromodulatory role ascribed to adenosine receptor
subtypes activation in sympathetic nerve fibers located in the adventitia layer of pulmonary [155],
mesenteric [156–158], aorta [159], tail [3,4,154,160–162] and renal [163,164] arteries as well as
in veins such as mesenteric veins [165–167]. For example, adenosine A2 receptors, known
to facilitate noradrenaline release, may have a profound impact in vascular remodeling, by
enhancing noradrenaline levels in the synaptic cleft. On the other hand, the idea that endothelium
could influence neurotransmission [155] was recently supported by findings where endogenous
adenosine (derived from endothelium) altered neurotransmission (mesenteric and tail arteries) [161].
Endothelium-derived adenosine was also described to activate prejunctional adenosine receptors,
mainly A1 and A2A, which modulate neurotransmission influencing vascular tonus [154]. Taken
together, correlated morphological and functional data allowed advances into the insights of
neurovascular sympathetic modulation mediated by adenosine receptors, particularly in pathological
conditions such as hypertension.

Many studies report greater circulating levels of noradrenaline in patients with hypertension
than in normotensive control subjects. In normotensive subjects, increased levels of circulating
noradrenaline generally induce a down-regulation of noradrenergic receptors. However, in subjects
with hypertension, such down-regulation appears to be missing, resulting in an enhanced sensitivity
to noradrenaline. The combination of enhanced sensitivity to and increased circulating levels
of noradrenaline likely contributes significantly to sympathetic nervous system activity-related
hypertension. In fact, some studies have demonstrated that in hypertensive arteries and veins
there are impairment in the neuromodulatory effects mediated by adenosine A1 receptors, while
the adenosine A2A receptor-mediated facilitation of noradrenaline release is preserved [166–169].
Adenosine A2B and A3 receptors in vessels seem to have an important role in conditions where the
amounts of adenosine are higher, i.e., in pathological conditions such as in hypertension [158,170] and
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diabetes [171–173]. Additionally, adenosine A2B receptors increase noradrenaline release [162] while
adenosine A3 receptors have the opposite effect, inhibiting the release of this neurotransmitter.

An important effect mediated by adenosine in the adventitia layer of vessels is also related with the
role of adenosine receptors in inflammation. Indeed, adventitial tissue present several cells involved
in inflammatory processes: macrophages, lymphocytes, fibrocytes, cells where adenosine receptor
subtypes were found mediating anti or pro-inflammatory effects [174–176]. Other type of insights is the
interplay between adenosine receptors and signaling molecules involved in inflammation and oxidative
stress such as reactive oxygen species (ROS) and NO. Indeed, data indicates that adenosine receptor
(A2A subtype) activation promote the increase of ROS generation [177] having a role in oxidative
stress and, consequently, in a large number of pathologies where oxidative stress/inflammation is a
promotor of the disease. Moreover, adenosine receptors (adenosine A1 or A2A receptors) may also
activate eNOS leading to an increase of NO production [147], which may impair the deleterious effects
mediated by ROS and oxidative stress.

3.4. Adenosine Receptors and Angiogenesis

Multiple mechanisms mediated by adenosine lead to the promotion of vessel growth, through
stimulation of vascular endothelial cell proliferation, migration and tube formation [178,179].
Adenosine can, thus contribute to angiogenesis and vasculogenesis. The reader is referred to a
Carmeliet and Jain article [180] that provides an excellent overview of the angiogenesis process.
Numerous studies have shown that adenosine or nucleoside transporter inhibitors can stimulate
blood vessel growth [178,181]. Indeed, elevated levels of adenosine can promote the production of
pro-angiogenic factors (particularly, vascular endothelial growth factor, VEGF, angiopoietin-1, ANG-1,
etc.), key factors to stimulate angiogenesis initiation in several type of cells including endothelial and
mesenchymal cells such as monocytes/macrophages. Adenosine has a mitogenic effect on endothelial
cells through activation of A1, A2A and A2B subtypes [150,179,182]. Hypoxia increases adenosine levels
favoring activation of A2A and A2B receptors [183] in parenchymal cells and of A1 receptors located in
circulating monocytes [184,185], lead to VEGF production. VEGF is, then, able to activate VEGFR2
receptors located in endothelial cells (Tip cell) promoting endothelial cell proliferation, migration and
tube formation (key steps of angiogenesis). Additionally, in hypoxic conditions, the expression of
adenosine receptor subtypes, A2A and A2B is upregulated, contributing for a favorable environment
to the angiogenic process [180]. It is important to notice, however, that adenosine can also modulate
the production of anti-angiogenic substances in vascular and immune cells. Adenosine can mediate
opposite effects in angiogenesis, by promoting pro-angiogenic or anti-angiogenic factors production.
Adenosine can stimulate the release of pro-angiogenic factors such as IL-8, and VEGF, by A2B receptor
activation, or can inhibit thrombospondin-1 (anti-angiogenic factor) release by involving A2A receptor
subtype dependent pathways [186,187].

3.5. Distribution Profile of Adenosine Receptors and NT

The presence of adenosine receptors/nucleoside transporters is, therefore, crucial to predict the
impact of adenosinergic system modulation in a particular location. The presence of adenosine receptor
subtypes in vascular beds (intima, media and adventitia), both in arteries [3,4,156,161,162,168,169,188–
196] and veins [197–199] has been documented. From immunohistochemical studies it was possible to
identify the presence of adenosine A1 (tail artery [159], mesenteric artery and vein [166–168]), A2A and
A2B (tail and mesenteric artery and vein [162,166] and A3 (mesenteric artery and vein [166]) receptors.
Recent studies allowed the visualization of adenosine receptor subtypes (A1, A2A, A2B and A3) in
sympathetic nerve fibers [167–169]. In the endothelium of several arteries such as tail artery [159,162]
and aorta [153,159] identification of all adenosine receptors (A1, A2A, A2B and A3) was carried out.
Nevertheless, few studies have characterized the presence of adenosine receptors in veins [197–199].

Nucleoside transporters presence is also relevant to predict and understand adenosinergic
dynamics. Evidence have revealed that CNTs are most likely expressed in a tissue-specific fashion
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with CNT transport process occurring primarily in specialized epithelia while ENTs present a wide
distribution, possibly in all cell types [200]. Nevertheless, studies demonstrated that ENT1 and ENT2,
can be found in cell basolateral membranes. ENT2 are also abundantly found in skeletal muscle. ENT3
and ENT4 are widely distributed, but in the heart ENT3 is the most abundant ENT while in the vessels,
particularly in endothelium, evidence indicates ENT4 as the most relevant ENT.

In the vasculature, studies on the role of endothelium in hypertension have raised the possibility
that the main mechanism regulating extracellular adenosine levels is related with adenosine uptake to
endothelial cells, thus, causing a subsequent impairment of adenosine A1 receptor activation [161].

The possibility that an increase in the activities of ENT1 and CNT2 may reduce the availability
of adenosine to its receptors, conditioning adenosine-mediated effects, have been raised by
several authors: For example, King and co-workers [201] have described that ENTs can modulate
adenosine-mediated effects in the sinoatrial node of the heart, since dipyridamole potentiates
A1 receptor-mediated chronotropic effects (via inhibition of adenosine uptake [75]; ENT1/ENT2
modulated adenosine-mediated effects of K+ channels and also of the cystic fibrosis transmembrane
conductance regulator (CFTR). Other evidence was described in Slc29a1-null mice studies where
authors revealed an important role of ENT1 in anxiety-related behavior [202,203] in ethanol preference
and consumption [76,204,205] as well as in cardioprotection during ischemia [206]. The later alterations
can be ascribed by altered ENT1-mediated modulation of adenosine levels with a subsequently
differential adenosine receptor activation and signaling. Consistent with this possibility was the
evidence that Slc29a1-null mice have elevated plasma levels of adenosine 131.

Nucleoside transporters are relevant players in adenosine functions since they regulate by
“fine-tuning” local levels of adenosine in the vicinity of adenosine receptors.

3.6. Adenosine Receptors Interaction with P2 Receptors

Evidence has clearly demonstrated that interactions between GPCRs can modulate their activity,
by inhibiting or facilitating it. It was also demonstrated that this type of interactions can occur due
to receptor dimerization (formation of a physical complex), or due to the occurrence of cross-talk,
when second messengers integrate coincident signals from multiple receptors [207,208]. In this regard,
purinergic receptors (both P1 and P2) evidence interactions, such as duration, magnitude, and/or
direction of the signals triggered by purines or pyrimidines. For instance, adenosine A1, A2A receptors
or P2X1,3,4,7, or P2Y1,2,4,6,12 subtypes are receptors where such interactions have been reported
in several organs (brain [209], kidney [210], oviduct [211], epididymis [212]). In addition, reciprocal
influences can also be critical for the effect that each single ligand has on a variety of short- and long
term physiological functions [213].

In vascular beds few studies have been done to address the putative interaction between P1 and P2
receptors. For example, regulation of vascular smooth muscle and endothelial cell proliferation by A2

receptors and P2Y1 and P2Y2 receptors acting by triggering MAPK pathways has been described [214];
P2X7 and P1 receptors have been linked to apoptosis [215,216]; facilitation of noradrenaline release
mediated by A2A receptors is favored by activation of release inhibitory receptors such as P2 but also
α2-adrenoceptors and A1 receptors in tail artery [160]. In arteries and veins, future studies are needed
to completely understand the interactions occurring between P1 and P2 receptors, particularly of
receptors present in the different vascular layers and of their impact on vascular pathologies.

4. Conclusions

In the past years intense research on adenosinergic system dynamics has occurred, enhancing
our current knowledge about the interplay between adenosine, adenosine receptors, nucleoside
transporters and other signaling molecules and heteroreceptors. The way these interactions are
orchestrated in the vasculature, particularly under conditions such as inflammation or oxidative stress,
has highlighted the putative role of adenosinergic players as attractive therapeutic targets for several
cardiovascular pathologies, namely hypertension, heart failure, stroke, etc.
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A renewed interest in this field has led to the development of new adenosine receptor ligands,
which is reflected by an increased number of recent patents related to the adenosinergic system. As a
consequence, at present several clinical trials are underway, reviewing the potential pharmacotherapy
of adenosinergic ligands. In this respect, particularly relevant is the knowledge concerning the
presence of adenosine receptors/nucleoside transporters in specific tissue locations since it creates new
challenges that can be explored in future studies, namely by elaborating strategies able to circumvent
the predicted side effects of these ligands by, for instance, regarding the putative implementation of
site/target specific therapies.
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