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Hierarchical dynamic convolutional 
neural network for laryngeal 
disease classification
Shaoli Wang1,2, Yingying Chen1,2, Siying Chen1, Qionglei Zhong1* & Kaiyan Zhang1*

Laryngeal disease classification is a relatively hard task in medical image processing resulting from 
its complex structures and varying viewpoints in data collection. Some existing methods try to tackle 
this task via the convolutional neural network, but they more or less ignore the intrinsic difficulty 
differences among different input samples and suffer from high training complexity. In order to better 
resolve these problems, an end-to-end Hierarchical Dynamic Convolutional Network (HDCNet) is 
proposed, which can dynamically process the input samples based on their difficulty. For the easy-
classified samples, the HDCNet processes them with a smaller resolution and a relatively small 
network, while the difficult samples are passed to a large network with a larger resolution for more 
accurate classification results. Furthermore, a Feature Reuse Module (FRM) is designed to transfer 
the features learned by the small network to the corresponding block in the deep network to enhance 
the overall performance of some rather complicated samples. To validate the effectiveness of the 
proposed HDCNet, comprehensive experiments are conducted on the public available laryngeal 
disease classification dataset and HDCNet provides superior performances compared with other 
current state-of-the-art methods.

Laryngeal disease receives increasing attention as it is the third most prevalent disease only behind colds and 
coughs and occurs in all ages1. According to the China over-the-counter (OTC) Market and Media Research 
data, over 40% residents have more or less experienced sore throat or other throat diseases in 2009. Laryngos-
copy is a primary tool for diagnosing laryngeal disease. However, the diagnosis of the laryngeal disease is rather 
difficult even for an experienced endoscopist since lesion areas may be easily overlooked or misdiagnosis for the 
laryngeal images given limited image quality and the complex laryngeal structures2, leading to a wrong judg-
ment and even irredeemable damage to patients’ health. In addition, the experiences and subjective biases of the 
endoscopists also affect the diagnosis results3. Consequently, the computer-aided-diagnosis (CAD) system for 
laryngoscopy starts to gain wider popularity in order to aid doctors with more reliable and objective diagnosis 
results. Moreover, such a system is able to reduce the tremendous and cumbersome workload of endoscopist 
which significantly improve the diagnostic efficiency4.

Early methods for CAD include three stages: hand-craft feature extraction, feature selection, and 
classification5. These methods highly rely on the expertise of experienced experts and also are limited in perfor-
mance. More recently, inspired by the prosperity of deep learning methods in the general image classification 
task, the researcher of medical imaging communities have focused on designing end-to-end deep learning based 
methods to tackle the laryngeal image classification task. With resort powerful representation capacity, deep 
learning based methods exhibit astonishing performance and have dominated this field2.

For example, Xiong et al.2 propose a deep convolutional neural network (DCNN) for automatically detecting 
laryngeal cancer in laryngeal images. They train the network in a transfer learning scheme by initializing the 
network with the weights pre-trained on ImageNet7 to absorb extra information from external data for boost-
ing the model performance over the laryngeal data. Many other works also adopt the DCNN and the transfer 
learning scheme for laryngeal cancer classification8,9. Cho et al.3 conduct comparisons among four DCNNs on 
the task of common nine laryngeal diseases classification. According to their experiments, all trained DCNNs 
exhibit extraordinary performance, even better than visual assessments of human beings in discriminating seven 
of nine diseases. Recently, Yin et al.1 build a new public laryngeal image dataset named Laryngoscope8. They 
further propose a three-stage method and reach state-of-the-art performance in their proposed dataset. Despite 
the huge success of the above-mentioned methods, they more or less suffer from two major defects:
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(1) All images are processed by a single DCNN which ignores the differences in difficulty between input 
samples.

(2) They often need heavy computational costs. For instance, the method employed by1 requires three dif-
ferent training networks.

To solve these problems, we proposed a Hierarchical Dynamic Convolutional network (HDCNet) which not 
only dynamically processes input samples according to their classification difficulty, but also avoids the heavy 
computational overhead. In particular, the HDCNet adopts a dynamic two-stream network to process different 
samples with different paths according to the difficulty of input samples. Moreover, a Feature Reuse Module 
(FRM) is designed to incorporate preliminary features from the small stream into the large stream to further 
improve classification accuracy. We conduct experiments on the Laryngoscope8, a public laryngeal disease clas-
sification dataset, and HDCNet achieves the best result compared with all existing competitors. In summary, 
this letter has two contributions:

1.	 A novel HDCNet is proposed to solve laryngeal image classification in a more effective way.
2.	 The proposed HDCNet achieves higher performance compared with current SOTA methods.

Methods
To better diagnose the laryngeal diseases from the input samples, a Hierarchical Dynamic Convolutional Net-
work (HDCNet) is proposed in an upstream manner. As shown in Fig. 1, the proposed HDCNet consists of two 
parts: (1) A dynamic two-stream network to process different samples with different computational graphs; (2) 
A Feature Reuse Module (FRM) to incorporate preliminary features from the small stream into the large stream 
for further enhancement in classification results. In the rest of this section, more details on these two parts are 
given to better illustrate the whole training and inference process.

Dynamic two‑stream network.  Previous methods only employ a single DCNN for all input samples. 
Suppose the input samples Xin ∈ R

C×H×W , where C denotes the number of input channels, H and W are the 
width and height, respectively. Conventional DCNNs usually contain several consecutive blocks blocki , each of 
which consists of several convolutional layers. Then, the prediction of the whole network with respect to the 
input samples can be denoted as,

p = softmax
(

f (blocki ⊙ blocki−1 ⊙ · · · ⊙ block1(Xin))
)

,

Figure 1.   The overall pipeline of the proposed HDCNet.
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where the ⊙ denotes applying the convolutional block blocki to its input, f (.) denotes the linear layer and softmax 
is the softmax function that normalizes its input into a probability distribution. p ∈ R

n×1 is the output possibil-
ity distribution, where pi denotes the possibility for ith disease, and n is the number of diseases. Although the 
conventional neural networks reach record-breaking performance in laryngeal disease classification, it ignores 
the intrinsic difficulty differences among input samples. For an easy-classified sample, a straightforward network 
with fewer convolutional layers is enough to make an accurate prediction, while the network needs to be deeper 
and wider in order to classify those hard-classified samples with ambiguous features. To overcome this problem, 
we design a two-stream classification network in an upstream manner.

As shown in Fig. 1, different from previous methods, the proposed HDCNet has two streams to process the 
input samples dynamically based on their difficulties. In the proposed HDCNet, all input samples are passed to a 
small network (i.e., the small stream) with a small input resolution first, whose convolutional block blocki contains 
fewer convolutional layers. The small stream can be viewed as the preliminary processing of the input samples, 
which can filter out easy-diagnosed samples and keep those difficult samples for further classification. Specifi-
cally, if the maximum of the output possibility p is larger than a threshold τ the classification result is believed 
to be valid enough and does not need to be further processed. As for those samples whose maximum possibility 
is smaller than the threshold τ , their classification results are believed to be invalid. Thus, a deeper and wider 
network (i.e., the large stream) that has more convolutional layers with more channels in each convolutional 
block blocki is adopted to process them. The input resolution of each sample also increases correspondingly to 
provide richer details for better classification performance.

By adopting the HDCNet, the intrinsic difficulty of input sample are taken into consideration, where the 
easy-classified samples can be processed with a small network and the hard-classified samples can be tacked 
by a larger network. Consequently, HDCNet is able to reduce the computational cost while reaching a higher 
overall performance. In order to leverage the knowledge from the small network, a Feature Reuse Module (FRM) 
is employed between each block of the small network and the corresponding block of the large network where 
the preliminary features learned by the small network are incorporated into the large network. More details of 
the FRM are given in the next section.

Feature reuse module.  Although the small stream of the proposed HDCNet can not provide reliable pre-
dictions for difficult samples, it still generates useful features which can be integrated into the large stream to 
help with further classification. It is worth noting that, to make a better feature transfer between the two streams, 
we ensure they have the identical number of blocks to make the second can easily use the Feature Reuse Module 
(FRM). The FRM is plugged between the blocks with the same index, e.g., blocki in the small stream and the large 
stream. The structure is presented in Fig. 2.

Denote fS,i ∈ R
C×H×W as the output feature map from the blocki of the small stream, it first is passed a 

upsample module to match the resolution of the feature map of the large stream. The output of this upsample 
module is denoted as f ′S,i ∈ R

C×H
′
×W

′

 , where H ′ and W ′ are the scaled width and height respectively. Then, 
an 1× 1 convolutional layer is used to accomplish feature domain alignment since the features generated by a 
different network may belong to different feature domains. The computation process of the 1× 1 convolutional 
layer is defined as:

Finally, f reuseS,i ∈ R
C×H

′
×W

′

 is incorporated into the large stream via the point-wise addition. Denote 
fL,i ∈ R

C×H
′
×W

′

 as the output feature map from the blocki of the large stream, ⊕ as the point-wise addition 
operation. The computation process is defined as:

f reuseS,i = Conv1×1

(

f
′

S,i

)

.

Figure 2.   The overall pipeline of the proposed Feature Reuse Module.
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The f ′L,i is then used as the input of the next block (i.e., blocki+1 ) in the larger network.

Experiments
Experimental setting.  Datasets.  In this letter, Laryngoscope8, a publicly available dataset of laryngeal 
disease classification proposed by Yin et al.1, is adopted to evaluate the proposed HDCNet with current SOTA 
methods. The dataset contains 3057 images of 1950 patients. A total of 8 distinct labels (Edema, Cancer, Granu-
loma, Normal, Leukoplakia, Cyst, Nodules, Polyps) are given to each input sample to demonstrate its corre-
sponding disease. The laryngeal images were taken by two laryngoscope devices: Xion Matrix HD3 and Delon 
HD380B. The input images are preprocessed with several image enhancement methods, including horizontal 
flips, vertical flips, random cropping and image normalization. The input of the ResNet18 is 224 pixels in width 
and 224 pixels in height, following the settings in work1, while the resolution of the input for the ResNet34 is 
336× 336 since we find a larger resolution will not bring a convincing increasement in its performance com-
pared to the higher computational cost it brings.

Following Yin et al., we use 70% images as the training samples while the rest are regarded as the test samples 
to evaluate the performance of compared methods.

Evaluation metrics.  In particular, the AUC (area under the curve) of each category, the average AUC of all 
categories, and the overall classification accuracy are adopted as the evaluation metrics to demonstrate the out-
standing performance of the HDCNet. The accuracy is defined as:

The AUC (area under the curve) measures the area under the Receiver Operating Characteristic (ROC) curve. 
And the ROC curve can be obtained by plotting the true positive rate (TPR) against the false positive rate (FPR) 
at all classification thresholds. The average AUC is the average value of the AUC for each category.

Implementation details.  The proposed HDCNet is trained and evaluated on a single NVIDIA GeForce 1080ti 
GPU. ResNet186 and ResNet34 are adopted as the small stream and the large stream of the HDCNet, respectively. 
Note that both ResNet18 and ResNet34 have an identical number of blocks so that the FRM is easy to apply.

The training process includes two steps. In the first step, the two networks (i.e. two streams of the HDCNet) 
are trained independently for a total of 300 epochs. The input image resolution for the small stream (ResNet18) 
is set to be 224× 224 and a larger image resolution, 336× 336 , is used in the large stream since the images with 
a larger resolution are able to retain more details that are vital for better classification accuracy. After that, a small 
stream (ResNet18) and a large stream (ResNet34) are obtained. In the second step, the large stream (ResNet34) 
is fine-tuned with the FRM for 50 epochs to achieve better performance.

The learning rate of these two streams is set to be 0.0001 and the Adam optimizer is used to train the HDCNet. 
The batch size is set to be 16 and the threshold τ is set to be 0.8.

Laryngeal images classification results.  The comprehensive comparisons are presented in Table 1. As 
can be seen, the performance of the HDCNet outperforms current SOTA methods in the average AUC of all 
categories and the overall classification accuracy. Specifically, the average AUC of our HDCNet is 0.910, which 
is 0.017 higher than that of the previous SOTA method (i.e., Yin et  al.)1. As for the AUC of each category, 
our HDCNet obtains the best results in five of eight categories. The largest performance gain (0.043) occurs 
when classifying the ``Normal’’ category. Moreover, the overall classification accuracy of the proposed HDCNet 
achieves 2.27% performance gain (75.27% VS 73%) when compared with Yin et al..

It is worth noting that in the method of Yin et al., the input images are first processed by a localization model, 
i.e., Faster RCNN12, to find their critical regions. These critical regions are then sent to a classification model to 
obtain predicted labels of input images. In contrast to their method, HDCNet performs the whole classification 
in a uniform framework, which is more efficient.

f
′

L,i = fL,i ⊕ f reuseS,i .

Accuracy =

number of correct predicted samples

number of samples
.

Table 1.   The performance evaluation of different methods on the AUC and overall accuracy among all classes, 
the best results are highlighted in bold.

Methods Edema Cancer Granuloma Normal Leukoplakia Cyst Nodules Polyps average AUC​ Accuracy

CheXNet10 0.798 0.822 0.979 0.900 0.876 0.685 0.825 0.853 0.843 71%

AG-CNN11 0.805 0.879 0.972 0.895 0.896 0.658 0.828 0.838 0.847 71%

Xiong et al.2 0.857 0.866 0.978 0.911 0.894 0.705 0.857 0.886 0.870 71%

Yin et al 0.900 0.936 0.965 0.878 0.853 0.849 0.886 0.871 0.893 73%

HDCNet 0.908 0.921 0.953 0.921 0.930 0.835 0.908 0.905 0.910 75.27%



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13914  | https://doi.org/10.1038/s41598-022-18217-5

www.nature.com/scientificreports/

Ablation study.  Effectiveness of components.  In Fig. 3, the effectiveness of the proposed components is 
evaluated. In particular, a single ResNet18 network provides 70.95% accuracy and 0.869 average AUC. It can not 
achieve satisfactory classification accuracy since the small network is lack representative capacity to label the 
input images correctly. On the contrary, with a higher representative capacity, the large network, i.e., ResNet34, 
achieves better accuracy than ResNet18 (73.58% vs 70.95%). Nevertheless, the large network is over-complex 
and may perform poorly on some simple images resulting from the over-fitting problem. As a result, by simply 
combining these two networks, i.e., ’’simple combination’’, the performance increases from 73.58 to 74.54%. The 
cascading of the two networks provides better performance than applying ResNet18 and ResNet34 solely. How-
ever, the simple cascading of these two networks ignores the useful knowledge learned by the small network. 
Thus, by further applying the FRM to transfer the knowledge from the small network to the large network, i.e., 
the proposed HDCNet, higher classification accuracy, and average AUC can be achieved. To be more specific, 
the accuracy increases from 74.54 to 75.27% and the average AUC increases from 0.902 to 0.910 compared with 
the simple combination.

Efficiency of the HDCNet.  To demonstrate the efficiency of the proposed HDCNet, we provide the average 
FLOPs (floating-point per seconds) of different methods with their inference accuracy as following.

As shown in Table 2, the HDCNet realize a better balance between the classification accuracy and compu-
tational cost. Although MobileNetv3 and EfficientNetb0 has fewer FLOPs, the performance degrades abruptly 
compared with other network structures. Furthermore, the purposed HDCNet reaches a rather convincing 
classification accuracy, i.e. 75.27%, using only 1.73G FLOPs. Using a larger network to substitute the combina-
tion of ResNet18 and ResNet34 doesn’t show obvious enhancement in the accuracy regarding the higher FLOPs 
they acquire.

Visualization of examples.  To demonstrate the effectiveness of the proposed HDCNet, we provide examples 
that can not be classified appropriately in the solo network but are correctly classified by the proposed HDCNet. 
As shown in Fig. 4, the lesions in these two input images are relatively small and thus hard to identify by the solo 
network that possesses only limited representative capacity. However, the proposed HDCNet is able to correctly 
predict their categories.

Selection of the threshold τ . The threshold τ is used to determine whether a sample is only classified by the 
small network or needs further processing by the large network in the HDCNet. Normally speaking, a smaller 
τ means more samples are only fed to the small network while a large τ means more samples are fed to the large 

Figure 3.   Comparison between different methods.

Table 2.   Comparison of different methods with the proposed HDCNet according to the Accuracy and FLOPs.

Model (resolution) Accuracy (FLOPs)

Single model

MobileNetv3_large_w1 (224) 52.52% (0.12G)

EfficientNet_b0 (224) 54.17% (0.21G)

ResNet18 (224) 70.95% (0.91G)

ResNet34 (336) 73.58% (4.21G)

ResNet50 (336) 74.15% (4.73G)

HDCNet (combination)

ResNet18 (224) + ResNet34 (336) 75.27% (1.74G)

ResNet18 (224) + ResNet50 (336) 75.57% (1.87G)

ResNet34 (224) + ResNet50 (336) 75.90% (2.56G)
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(a)

(b)
Figure 4.   (a) and (b) are input images that cannot be classified correctly by ResNet18 but can be correctly 
diagnosed by the proposed HDCNet.

Figure 5.   The performance with respect to different thresholds τ . The accuracy is used as the metric for 
selecting the best τ.
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network for more accurate classification. The experiments of different τ are shown in Fig. 5. As can be seen, the 
highest performance of the HDCNet is obtained when τ is selected to be 0.8.

Conclusion
In this letter, we have proposed a novel framework, named Hierarchical Dynamic Convolutional Network 
(HDCNet), to accomplish the Laryngeal disease classification task. By cascading two different networks with 
several Feature Reuse Modules, HDCNet classifies different samples dynamically based on their difficulties. The 
easy-classified samples are classified by a small network with a small resolution, while samples, which cannot 
be predicted accurately, are passed to a large network for better classification results. The proposed HDCNet 
has surpassed current SOTA methods with a large margin on the public Laryngoscope8 dataset. In the future, a 
more dedicated Hierarchical network is intended to be proposed to reach higher classification accuracy on the 
Laryngeal disease classification task.

Data availability
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