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Abstract: Background: Classically the oxidative stress and more recently inflammatory processes have 
been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, 
but there is more information about the effects of oxidative stress on aging than regarding the con-
tribution of inflammation on it.  

Methods: In the intense research for methods to delay or mitigate the effects of aging, are interest-
ing polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and 
anti-inflammatory properties make them useful molecules in the prevention of aging. 

Results: The antiaging effects of polyphenols could be due to several related mechanisms, among 
which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via 
regulation of some signaling pathways, such as NF-κB.  

Conclusion: In this review, we describe the positive effects of polyphenols on the prevention of the 
changes that occur during aging in the brain and their consequences on cognition, emphasizing the 
possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism. 
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1. INTRODUCTION 

 The development of medicine and technology has helped 
to increase the proportion of the aging population world-
wide. This demographic context has created the need to bet-
ter understand the changes that occur in the brain during ag-
ing and to find strategies to prevent, delay, or mitigate their 
consequences. Regarding this, nowadays age-related cogni-
tive decline and development of dementia have been one of 
the most pressing health issues. Therefore in order to im-
prove senior citizens’ lives, a growing body of research is 
devoted to the identification of the mechanisms that both 
produce and moderate the aging process [1]. Molecular 
mechanisms involved in the aging process are not yet well 
known, but oxidative stress [2] and activation of inflamma-
tion [3, 4] have been identified as leading causes. In this re-
gard, polyphenols may be key molecules contributing to the 
prevention of brain aging due to their antioxidant [5, 6], and 
anti-inflammatory properties [7]. Polyphenols constitute one  
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of the most numerous and ubiquitously distributed group of 
plant secondary metabolites and are generally involved in 
defense against stress, such as ultraviolet radiation, aggres-
sion by pathogens, or draught [8-10]. They are present in all 
plants that are commonly consumed in a healthy balance diet 
as i.e. in the Mediterranean diet, including grains, legumes, 
fruits, vegetables, extra virgin olive oil, red wine and tea [9-
11]. Continuing research highlights the dynamic capacity of 
polyphenols to protect against age-associated disorders 
through a variety of important mechanisms. Numerous lines 
of evidence suggest that dietary polyphenols such as resvera-
trol and flavonoids have the capacity to mitigate age-
associated cellular damage due to their antioxidant capacity, 
their ability to activate the antioxidant defenses [5, 6], and 
their antiinflammatory capacity [12, 13]. The last includes 
the inhibition of signaling pathways related with the activation 
of inflammation such as nuclear factor-kappa B (NF-κB), 
the modulation of several cell survival/cell-cycle genes [14-
17], and activation of deacetylase enzymes like sirtuin 1 
(SIRT1) [18, 19]. However, more studies are needed to 
deeply understand the mechanism insight of the beneficial 
effects of polyphenols on brain aging. Accordingly, this re-
view will discuss the protective effects of polyphenols on the 
changes that occur during aging in the brain, analyzing the 
action mechanisms involved. 
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2. STRUCTURE, CLASSES AND FOOD SOURCES OF 
POLYPHENOLS 

 Several thousand molecules having a polyphenol struc-
ture (i.e., several hydroxyl groups on aromatic rings) have 
been identified in higher plants, and several hundred are 
found in edible plants [20]. All plant phenolic compounds 
arise from a common intermediate, phenylalanine, or a close 
precursor, shikimic acid. Primarily they occur in conjugated 
forms with one or more sugar residues linked to hydroxyl 
groups, although direct linkages of the sugar (polysaccharide 
or monosaccharide) to an aromatic carbon also exist. Asso-
ciation with other compounds, like carboxylic and organic 
acids, amines, lipids, and connection with other phenol is 
also common [21]. Depending on the number of their phenol 
rings and the structural elements that bind these rings to  
one another, polyphenols are classified into the following 
groups: stilbenes, flavonoids, phenolic acids, lignans and 
others [11, 22]. 

 Table 1 shows different polyphenols which have been 
found to have beneficial effects in aging; most of them be-
long to flavonoid class which are the most abundant poly-
phenols in foods [20]. Although the most studied and con-
sidered as prototypical polyphenol with anti-aging effects is 
resveratrol, which belongs to stilbenes class. Stilbenes con-
tain two phenyl moieties connected by a two-carbon methyl-
ene bridge. The resveratrol is found largely in grapes and red 
fruits [8, 23]. A product of grapes, the red wine also, con-
tains significant amount of resveratrol [20]. Resveratrol has 
been studied as a possible treatment for several age related 
diseases such as the Alzheimer’s disease since a few years 
[24, 25], in the prevention of aging process, and to prolong 
lifespan [26, 27]. Flavonoids comprise the most abundant 
group of polyphenols in foods, although each of them are 
generally present at relatively low concentrations [20]. This 
group has a common basic structure consisting of a 15-
carbon skeleton that is organized in two aromatic rings inter-
linked by a third carbon chain [8]. Among the most common 
flavonoids with antiaging effects are quercetin, naringenin, 
catechins and kaempferol, present in onions, citrics, and 
vegetables in general [20, 28-30]. Several reports support the 
concept that flavonoid intake inhibits certain biochemical 
processes of brain aging, and might thus prevent to some 
extent the decline of cognitive functions during aging, as 
well as the development of neurodegenerative diseases [31]. 
Silymarin is a flavolignan which possesses wide range of 
mechanisms as antioxidant and anti-inflammatory, elevating 

some neurotransmitters concentration in brain and having 
antidepressant effect in animal models [32]. It is abundant in 
milk thistle (extract from Cardus marianum) where other 
lignans are also present [33]. Lignans are diphenolic com-
pounds that contain a 2,3-dibenzylbutane structure that is 
formed by the dimerization of two cinnamic acid residues. 
Lignans show a huge structural diversity and are also found 
in flax, sesame, many grains [29], roots, rhizomes, stems, 
leaves, seeds, and fruits [34], in olive oil [35], among others. 
Phenolic acids are found abundantly in foods (wine, red 
fruits, onions, black radish, and coffee, among others) and 
divided into two classes: derivatives of benzoic acid and 
derivatives of cinnamic acid. The more common consist of 
p-coumaric, caffeic, ferulic and sinapic acids [36], which 
have been pointed out to have neurotherapeutic effects [37]. 

3. BIOAVAILABILITY AND EFFECTS OF POLYPHE-
NOLS ON BRAIN 

 Although, most polyphenols seem to present really low 
bioavailability from oral administration, many evidences 
show beneficial health effect through this administration 
route. The main problem explaining this low bioavailability 
seems to be its rapid metabolism, although a still controver-
sial aspect is whether their metabolites maintain the thera-
peutic properties. In addition, it has been reported that some 
polyphenols are retained in neural tissue, reaching higher 
concentration than in plasma (for review see [38, 39]). Much 
of the relevance of polyphenols in protecting the brain aging 
is due to their ability to cross the blood brain barrier, due to 
their lipophilic nature [40-44]. Polyphenols affect a wide 
range of mechanisms in the brain, that help to protect against 
aging, improving cognition, exploratory behavior, spatial 
learning and memory [19, 45-47]. Therefore, polyphenols 
contribute to maintain mental health, as long as they reduce 
the risk of dementia [48] and prevent the onset from neu-
rodegenerative diseases [9, 10, 49]. Polyphenols help to 
maintain the cerebral mass [50] and mitochondrial integrity 
as it was demonstrated after the oral administration of res-
veratrol for 28 days in rats [51]. It was also described that 
chronic treatment with polyphenols prevents the descent in 
the major neurotransmitters (serotonin, dopamine and 
noradrenalin), that occurs normally as a consequence of ag-
ing; this is the case of the polyphenol resveratrol [19, 47]. 
Moreover, flavonoids like quercetin inhibit enzymes such as 
monoamine oxidase (MAO), having antidepressant effects 
[52]. Polyphenols also favor the activation of some antiaging 
proteins, as it is the case of SIRT1 [53] which affects synap-

Table 1. Main groups of polyphenols that have been pointed out for exercising antiaging effects, and some examples of representa-
tive compounds of each group. Polyphenols are structurally characterized by having several aromatic rings connected to 
hydroxyl groups. 

STILBENES Resveratrol	
   (3,4′,5-Trihydroxy-trans-stilbene, 5-((1E)-2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol)	
  

FLAVONOIDS Quercetin	
   (2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, 3,3′,4′,5,6-Pentahydroxyflavone, Quercetin-3-O-rhamnoside)	
  

Naringenin	
   ((±)-Naringenin, (±)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 4′,5,7-Trihydroxyflavanone)	
  

FLAVOLIGNAN  
Silymarin	
  

((2R,3S)-3,5,7-Trihydroxy-2-((2R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl)-2,3-
dihydro-4H-chromen-4-one)	
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tic plasticity and memory (see below). The mechanism in-
side this set of brain effects can be related with the antioxi-
dant and anti-inflammatory properties of polyphenols. As 
antioxidants, polyphenols protect lipids, proteins, carbohy-
drates and DNA from oxidative damage [6, 54, 55], and they 
also induce increased levels of antioxidant defense systems 
such as the enzyme glutathione peroxidase, ascorbic acid 
and, superoxide dismutase [56, 57]. On the other hand, poly-
phenols also have the ability to suppress neuroinflammation 
[58]. It has been shown in a series of studies in vitro and in 
vivo that polyphenols have potential to inhibit neuroinflam-
mation through attenuating the activation of intracellular 
signaling pathways like MAPK and NF-kB [59-63]. 

4. EFFECTS OF POLYPHENOLS ON OXIDATIVE 
STRESS IN BRAIN AGING 

 The accumulation of diverse detrimental changes in the 
cells and tissues in ageing results in a progressive loss of 
physiological integrity, leading to impaired function and 
increased vulnerability to death. This deterioration is the 
primary risk factor for major human age-related diseases, as 
it is the case of some neurodegenerative diseases. There are 
10 hallmarks that represent common denominators of aging 
in different organisms, with special emphasis on mammalian 
aging. These hallmarks are: genomic instability, telomere 
attrition, epigenetic alterations, loss of proteostasis, deregu-
lated nutrient sensing, mitochondrial dysfunction, cellular 
senescence, stem cell exhaustion, and altered intercellular 
communication [64]. However, among many theories pur-
posed for explaining the mechanism insight aging, free radi-
cal/oxidative stress theory is one of the most accepted [2]. A 
certain amount of oxidative damage takes place even under 
normal conditions; however, the rate of this damage in-
creases during the aging process as the efficiency of antioxi-
dative and repair mechanisms decreases [65, 66]. In this 
way, the process of brain aging has been associated with a 
progressive imbalance between antioxidant defense and the 
concentration of intracellular reactive oxygen species (ROS) 
[67, 68]. Consequently, the cognitive decline associated with 
aging correlates with a decrease in concentration of antioxi-
dants in serum [69] and brain [70]. 

 An antioxidant compound may be defined as any sub-
stance that retards, prevents, or eliminates oxidative damage 
caused by ROS in a target molecule [5]. Oxidative stress 
theory postulation has led to an increased research on the 
antioxidants’ role in the prevention of aging. Although there 
is no consensus about the antioxidants effectiveness in vivo 
and much less about their mechanism of action during aging 
in the body; for example, there are studies indicating that 
dietary antioxidants reduce cognitive impairment preventing 
oxidative damage in the brain of aged rats [71], but also they 
could suppress the expression of some genes related with 
brain aging in mice [72]. In any case, several studies suggest 
that antioxidants such as vitamin B, E, the ω-3 fatty acids 
[73] and polyphenols can prevent the cognitive and motor 
decline, reducing the risk of neurodegenerative diseases [19, 
47, 74-76]. 

 Interestingly, in comparison with other antioxidants, 
polyphenols have the ability to exert numerous ROS-
scavenging independent actions. In this sense, polyphenols 

can act as antioxidants by directly inhibiting or quenching 
ROS due to the presence of benzene ring-bound hydroxyl 
groups that are capable of donating either one hydrogen 
atom or a single electron to the reactive species [77, 78]. A 
phenoxyl radical is generated which in turn can react with a 
second radical, forming a stable quinone structure [78]. Be-
sides, some polyphenols are also able to reduce ROS levels 
by directly inhibiting the major ROS-forming enzymes in-
cluding monoamine oxidase or xanthine oxidase [77]. Poly-
phenols have additional abilities, they can also chelate iron 
and copper ions rendering them inactive to participate in free 
radical generating reactions [8], with important conse-
quences on the prevention of neurodegenerative diseases. 
Regarding this, it has been found that polyphenols prevent 
metal deposition, regulate redox metal homeostasis, and pre-
vent neurotoxicity, acting as potential therapeutic agents for 
dementia, Alzheimer’s [79], and Parkinson’s diseases [80]. 
On the other hand, polyphenols can act as antioxidants indi-
rectly, by modulating several signaling cascades including 
the Nrf2 and NF-κB or via modulation of the expression of 
microRNAs; leading to an induction of the expression of the 
antioxidant and detoxifying enzymes, but also elevating the 
intracellular glutathion levels [81-83]. Moreover, polyphe-
nols are now recognized as molecules able to modulate 
pathways that regulate mitochondrial biogenesis (i.e., induc-
ing SIRT1), mitochondrial membrane potential (i.e., mito-
chondrial permeability transition pore opening and uncou-
pling effects), the components of mitochondrial electron 
transport chain (i.e., modulating complexes I to V activity) 
and ATP synthesis [77]. It has also been demonstrated that 
polyphenols modulate the intra-mitochondrial oxidative 
status (i.e., inhibiting/inducing ROS formation/removal en-
zymes), and ultimately mitochondrially-triggered cell death 
(i.e., modulating intrinsic-apoptosis) [77]. 

5. EFFECTS OF POLYPHENOLS ON INFLAMMAG-
ING: THE ROLE OF SIRT1 

 The word “inflammaging” was coined by Franceschi in 
2000 [84], which refers to an exaggerated response of the 
immune system against inflammatory stimuli in brain during 
aging. Inflammaging has been postulated lately as one of the 
main characteristics of the brain aging process [3, 4]. Neu-
roinflammation associated with aging can result from many 
causes; some of them are: the accumulation of damage in 
tissues (due in part to oxidative damage) [85, 86]; the exag-
gerated response of both the innate and adaptive immune 
system against pathogens and dysfunctional cells [87]; the 
tendency of senescent cells to secrete proinflammatory cyto-
kines [3,4]; and deregulation of autophagy immune system, 
through over activation of mTOR, which in turn generates 
defective proteins accumulation [88, 89]. These alterations 
cause activation of the inflammasome and other proinflam-
matory signaling pathways such as the MAPK [61, 90-92], and 
the NF-kB signaling pathways [92]; but also PI3K/Akt/mTOR 
pathway, which besides regulating autophagy, interacts with 
the cited proinflammatory pathways [93, 94]. Once these 
pathways are activated, cytokines production increases such 
as IL-1β, TNF-α, interferons and prostaglandins [3, 4]. All 
these components contribute significantly to cognitive and 
motor decline in brain aging [95]. The prolongation of this 
state has many brain consequences such as structural 



Polyphenols Effects on SIRT1 During Brain Aging Current Neuropharmacology, 2018, Vol. 16, No. 2    129 

changes in front and temporal areas [96, 97], impaired syn-
thesis of catecholamines and serotonin [19, 47, 76, 98-101], 
and synaptic deterioration [102], among others. Accordingly, 
it has been observed in young rats that overproduction of 
cytokines in key brain regions like the hippocampus causes 
premature aging and impaired memory [86]. Thus, the set of 
changes that occur during inflammatory processes in brain 
contribute to aging process and additionally can contribute to 
the development of neurodegenerative diseases such as Alz-
heimer [103], schizophrenia [104], Parkinson's, and multiple 
sclerosis, among others [105, 106]. 

 Considering neuroinflammation as a key factor in the 
process of brain aging, many of the anti-aging strategies are 
oriented towards the prevention or attenuation of this proin-
flammatory state. In this sense, it has been pointed out that 
polyphenols exercising anti-aging effects also modulate the 
brain’s immune system [92]. For example, it has been found 
that diets enriched with resveratrol or flavonoids reduce neu-
roinflammation, by decreasing cytokines production (such as 
IL-1β in the hippocampus of older rodents) with an impact 
on cognitive processes improvement [92, 107-109]. Regard-
ing this, the modulation of NF-κB (which in turn can be me-
diated by the SIRT1, among other mechanisms) has been 
postulated as important molecular mechanism in the preven-
tion of the aging effects by polyphenols [110, 111] (Fig. 1). 

 SIRT1 are histone and non-histone deacetylase enzymes 
responsible for regulating physiological and metabolic re-
sponses to stress signals, playing a critical role in cell sur-
vival [112-114]. SIRT1 also participates in the conservation 
of the cellular glucose homeostasis [115-117], which alto-
gether favors the longevity of the organism [18, 118] and 
protects against aging [119, 120]. Even more, SIRT1 directly 
protect against oxidative stress and modulate inflammatory 
responses (see Fig. 1), preventing the onset of neurological 
diseases [121-125]. Moreover, it has been demonstrated that 
SIRT1 levels are reduced in hippocampus of old rats which 
contributes to brain ageing [126], progression of many in-
flammatory diseases [127], and cognitive impairment [128]. 
In addition, SIRT1 also appear to contribute to the develop-
ment of neurodegenerative diseases as Alzheimer's or Park-
inson [119, 120, 129, 130]. Therefore, these constitute a pos-
sible target for treating these diseases. Therefore, molecules 
that modulate the SIRT1 expression may represent a promise 
in preventing hallmarks of aging [131]. The mechanisms 
responsible for the decline of SIRT1 associated with aging 
are still unknown, although one of the main causes could be 
oxidative damage [128]. It has been reported that polyphe-
nols can activate SIRT1 through an allosteric mechanism 
common to chemically diverse SIRT1 activators, but this 
effect has been only demonstrated in vitro [132, 133]. Poly-
phenols also induce SIRT1 overexpression contributing to 
protect cells against oxidative stress [53, 134-136]. The rea-
son why polyphenols increase SIRT1 level in vivo is not well 
known, but could be related to their antioxidant effect, since 
oxidative stress reduces SIRT1 mRNA level [137]. Cysteine 
residues from SIRT1 are vulnerable to oxidation which af-
fects both the activity of SIRT1 and its degradation by the 
proteosomes [138, 139]. Furthermore, SIRT1 overexpression 
is directly involved in the modulation of neuroinflammation 
in aging process by deacetylating non-histone proteins [140]. 

It has been demonstrated that SIRT1 deacetylated lysine 310 
of RelA/p65 subunit of NF-kB, a critical subunit for activa-
tion of transcription of proinflammatory genes, triggers in-
flammatory processes [110]. This NF-kB signaling pathway 
is the prototypical one involved in inflammaging [3, 4, 110, 
141]. In the brain, this process is mainly related to glia cells, 
where the expression of cytokines is promoted [142, 143]; 
but also synaptic plasticity in neurons is affected, contribut-
ing to memory process [107, 144,  145]. NF-κB consists of a 
heterodimeric complex of p50/p52 and p65 proteins. In the 
cytoplasm, NF-κB heterodimer joins the inhibitory protein 
IκB and thus the entire complex is inactive [146]. ROS and 
other proinflammatory molecules activate protein kinase that 
phosphorylates IkB, which releases the complex of p50/p65 
[147], allowing it to translocate to the nucleus where it can 
act as a transcription factor to bind DNA at specific promoter 
regions [148, 149]. The transcriptional activation domain of 
NF-κB is in the p65 subunit [142, 150, 151]. This p65 
subunit is also modulated by posttranslational modifications 
such as phosphorylation at serines (276, 311, 529 and 536) 
and acetylation at lysines 310 [110, 151], 122, 123, 218 and 
221 [149, 152, 153]. The over activation of this NF-κB sig-
naling pathway is one of the transcriptional signs of aging 
process [141, 154]. In this way, it has been demonstrated that 
the conditional expression of an inhibitor of NF-κB in aged 
skin of transgenic mice causes phenotypic rejuvenation of 
this tissue [141]. Similarly, genetic and pharmacological 
inhibition of NF-κB signaling pathway prevents age associ-
ated characteristics in different models of accelerated aging 
mice [155, 156]. It has also been pointed out that the acetyla-
tion of lysine 310 of RelA/p65 NF-κB subunit increases the 
duration and effectiveness of the NF-κB activation, generat-
ing increased inflammation [151] (Fig. 1). Yeung et al., in 
2004 [110] showed that SIRT1 deacetylase enzyme can in-
teract with RelA/p65 protein complex NF-κB, deacetylating 
lysine 310 of RelA/p65 NF-kB subunit, and inhibiting tran-
scription of proinflammatory genes [92, 110, 140, 141, 157-
159]. Additionally, other study reinforced the idea that 
SIRT1 deacetylate NF-κB, since during HIV-1 studies, 
Kwon et al., 2008 [157] demonstrated that the viral protein 
Tat binds to SIRT1, inhibiting its activity, thereby preventing 
NF-κB deacetylation; thus triggering the immune system 
activation. Together these observations support the idea that 
inflammatory responses and aging processes can be aggra-
vated by enhancing the activation of NF-κB, suggesting that 
SIRT1 could promote longevity by inhibiting activation of 
NF-κB [110, 141]. In this way, old rats fed diet rich in poly-
phenol also showed reduced expression of NF-κB in the hip-
pocampus, striatum and frontal cortex together with an im-
provement in cognitive abilities [160]. In this regard, longev-
ity factors, such as SIRT1 and their activators (i.e polyphe-
nols) could regulate the efficiency of NF-κB signaling [3, 4]. 
Similar results have been shown in cancer studies, where 
resveratrol has been shown to exert antitumor actions through 
NF-κB inhibition [161-163]. Not only resveratrol, but also 
different flavonoid mixtures have been shown to induce 
SIRT1-mediated NF-κB inhibition even in brain after oral 
administration [164-167]. Similarly, reductions have been 
described in NF-κB levels by naringenin, silybin, or quer-
cetin, even in vivo after oral administration [168-172]. As it 
is schematized in Fig. (1), polyphenols can activate SIRT1, 
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Fig. (1). Scheme of the effect of polyphenols on SIRT1 and NF-κB signaling pathway involved in neuroinflammation. Stress signals as 
cytokines and ROS activate astrocytes and microglia, stimulating NF-κB signaling pathway, which leads to transcription of proinflammatory 
genes. This cascade of intracellular events results in increased cytokine production, ROS generation, inflammation, tissue damage and aging. 
Polyphenols (i.e resveratrol) can reduce the level of stress signals such as ROS, by avoiding oxidative stress, and citokines by activating and 
protecting SIRT1, which in turns cause a suppression of inflammation. SIRT1 directly inhibits NF-κB (by deacetylating the RelA/p65 subunit 
at lysine 310); preventing transcription activation of proinflammatory genes. 

 



Polyphenols Effects on SIRT1 During Brain Aging Current Neuropharmacology, 2018, Vol. 16, No. 2    131 

 
since they may protect SIRT1 against oxidative stress ef-
fects, helping to avoid neurodegeneration and cognitive im-
pairment associated with ageing [173]. This is very impor-
tant in the brain since it has been shown that SIRT1 regulate 
energy metabolism, axonal growth, dendrite formation, neu-
ronal plasticity, neuronal survival against stress, and sup-
press inflammation by NF-κB modulation [18, 92, 174], as 
has been pointed out in models of chronic inflammatory dis-
eases [19, 110, 175-178]. Therefore, the activation of SIRT1 
by polyphenol treatments may be helpful in the prevention of 
brain aging. However, many questions regarding doses, 
safety, tolerance and efficacy of polyphenol treatments in 
elderly health people are still unanswered due to the lack in 
clinical studies on conditions of normal aging. 

CONCLUSION 

 In summary, brain aging is a physiological process which 
is caused by a set of mechanisms, with a predominant impor-
tance of oxidative stress and neuroinflammation, which in 
turn influence each other and generate a general state that 
contributes to cognitive impairment. Nowadays, research is 
going on to explore novel antiaging molecules including 
polyphenols which are expected to be useful as adjuvant 
therapy against aging symptoms by their neuroprotective 
properties. The available literature seems to suggest that 
polyphenols, found in fruits and vegetables, may be useful in 
providing protection against aging due to their antioxidant 
and anti-inflammatory properties. Polyphenols protect 
SIRT1 against oxidative damage which in turn modulates the 
activation of NF-κB signaling pathway in brain regions criti-
cal for accurate functionality of cognitive processes. In vitro 
and in vivo studies have open the doors to the consideration 
of polyphenols as antiaging molecules. However, open ques-
tions hamper the clinical use of these natural compounds in 
normal aging process, because there is a lack in clinical stud-
ies in conditions of normal aging; and also low bioavailabil-
ity is reported for polyphenols in general, mainly through 
oral administration. Moreover, studies for the risk assess-
ment and safety evaluation to determine undesirable effects 
of polyphenols should also be necessary. Therefore, further 
research focusing on human clinical trials of individual 
polyphenols and their combinations should be carried out in 
order to clarify the specific role of these compounds as anti-
aging brain molecules. 
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