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Abstract
Objectives  Latent class trajectory modelling (LCTM) is a 
relatively new methodology in epidemiology to describe 
life-course exposures, which simplifies heterogeneous 
populations into homogeneous patterns or classes. 
However, for a given dataset, it is possible to derive scores 
of different models based on number of classes, model 
structure and trajectory property. Here, we rationalise a 
systematic framework to derive a ‘core’ favoured model.
Methods  We developed an eight-step framework: step 1: 
a scoping model; step 2: refining the number of classes; 
step 3: refining model structure (from fixed-effects through 
to a flexible random-effect specification); step 4: model 
adequacy assessment; step 5: graphical presentations; 
step 6: use of additional discrimination tools (‘degree of 
separation’; Elsensohn’s envelope of residual plots); step 
7: clinical characterisation and plausibility; and step 8: 
sensitivity analysis. We illustrated these steps using data 
from the NIH-AARP cohort of repeated determinations of 
body mass index (BMI) at baseline (mean age: 62.5 years), 
and BMI derived by weight recall at ages 18, 35 and 50 
years.
Results  From 288 993 participants, we derived a five-
class model for each gender (men: 177 455; women: 111 
538). From seven model structures, the favoured model 
was a proportional random quadratic structure (model F). 
Favourable properties were also noted for the unrestricted 
random quadratic structure (model G). However, class 
proportions varied considerably by model structure—
concordance between models F and G were moderate 
(Cohen κ: men, 0.57; women, 0.65) but poor with other 
models. Model adequacy assessments, evaluations using 
discrimination tools, clinical plausibility and sensitivity 
analyses supported our model selection.
Conclusion  We propose a framework to construct and 
select a ‘core’ LCTM, which will facilitate generalisability of 
results in future studies.

Introduction  
In many epidemiological studies, a risk factor 
is measured at a single point in time and 
related to the subsequent development of 
disease under the assumption that a single 
‘one-off’ measure is an approximation for 
that exposure over a long time. Thus, base-
line measurement of body mass index (BMI) 
is associated with subsequent development of 
common disease like cardiovascular disease,1 
diabetes,2 several cancers3 and all-cause 

mortality.4 This approach is crude, and many 
investigators seek to use alternative methods 
that might better capture long-term risk 
factor exposure termed life-course analysis. 
There are widely used examples that capture 
cumulative exposure, such as pack-years for 
smoking and lung cancer, but the assumption 
that incidence rate is proportional to total 
lifetime dose is questionable.5 Many other 
life-course models simply extract features for 
use in standard regression approaches, for 
example, a weight change over time. A more 
sophisticated approach, which takes account 
of within-individual correlations, is mixed-effect 
modelling, but this is difficult to interpret for 
public health implementation. An extension 
of this approach is the use of latent classes, also 
termed growth mixture models.

Latent class trajectory modelling (LCTM) 
simplifies heterogeneous populations into 
more homogeneous clusters or classes. From 
these, one can potentially include random 
effects to allow for individual variation within 
these classes. These models have a long 
history in the criminology6 and psychology7 
literatures, and now, are increasingly reported 

Strengths and limitations of this study

►► We developed a systematic approach, with ratio-
nale for each of eight steps, to derive a latent class 
trajectory model of favoured number of classes and 
‘core’ model structure specification.

►► The results presented here are based on modelling 
data from a large well-characterised US cohort, al-
lowing the derivation of numerically meaningful sub-
populations (ie, classes) with distinct phenotypes.

►► Compared with ‘one-off’ body mass index categori-
sation, latent class trajectory modelling offers ad-
ditional phenotypic information and opportunities to 
identify and intervene early in subpopulations with 
adverse trajectories.

►► While we described multiple diagnostic tests, ulti-
mately model selection was based on case  study 
appropriate model interpretation (eg, model adequa-
cy, discrimination, clinical plausibility and sensitivity 
analyses) by a multidisciplinary research team.
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in the human epidemiology literature (eg, disentangling 
the heterogeneity of childhood asthma8). Of relevance 
to this paper, LCTM has been used in association studies 
of repeated BMI measures with the following endpoints: 
all-cause mortality,9 cancer incidence (multiple cancer 
types10, gastro-oesophageal,11 prostate12)  and cancer 
mortality.12 The LCTM has three general advantages 
compared with using ‘one-off’ exposure determinations: 
first, it better informs aetiological associations by deeply 
phenotyping certain ‘at risk’ subpopulations; and second, 
LCTM offers a public health strategy to identify early 
divergent adverse trajectories as potential intervention 
targets. Some researchers additionally argue that LCTM 
is well equipped for future forecasting and new patient 
generalisations in prediction models, as it handles data 
following a different predictable pattern from that learnt 
by the model.13 Third, the trajectory approach allows a 
better understanding of the causes of between-individual 
variation in certain features (eg, weight variation over 
age), by analysing the trajectory as an outcome rather 
than exposure.

However, LCTM is a complex form of modelling 
and requires several different structure assumptions.14 
Although firmly acknowledged in the GRoLTS-Checklist: 
Guidelines for Reporting on Latent Trajectory Studies,15 
structure-related assumptions have not been systemati-
cally evaluated. For many exposures of interest, typically 
two to seven classes might be described and, as detailed 
later, at least seven model structures might be fitted, 
with and without linear curve properties, such that it is 
possible to derive greater than 80 different models. Thus, 
reported differences between studies using latent class 
modelling might reflect different modelling assumptions 
rather than true differences between populations. To 
facilitate the generalisability of results in future studies, 
here, we propose a framework to construct and select 
a ‘core’ LCTM, using an example of repeatedly deter-
mined BMI across adulthood in the National Institutes 
of Health (NIH)-AARP Diet and Health Study cohort. 
For exposure-disease outcome association analyses, 
current approaches generally use two stages: first, LCTM, 
followed by standard association modelling. The frame-
work described here is limited to the first stage.

Methods
Cohort
The NIH-AARP Diet and Health Study is a US cohort 
recruited from 1995.16 A baseline medical and lifestyle 
questionnaire, including self-reported weight and height, 
was returned by 566 398 participants (aged 50–71 years; 
mean age: 62.5 years). An additional risk factor question-
naire was mailed in 1996 and completed by a subcohort 
of 327 860, of whom 288 993 (177 455 men and 111 538 
women) provided recall weight for all four time points: 
ages 18, 35 and 50 years. Derived BMIs at baseline and 
these ages (assuming constant height) form the data 
in the present analysis. We excluded participants with 

extreme BMI values (<15 or >70 kg/m2) recorded at any 
time point. Means and SD for derived recalled BMI distri-
butions are representative of BMI distributions for histor-
ical period-equivalent US populations.17

Latent class trajectory modelling
We developed an eight step framework (table 1) model-
ling BMI as a function of age. Latent classes were used to 
identify subgroups of participants with distinct trajecto-
ries (detailed mathematical equations in online  supple-
mentary material p2).18 We used maximum likelihood 
approaches to fit the model with the ‘hlme’ function from 
‘lcmm’ library19 in the R software environment (V.3.2.1) 
and cross-checked results using the ‘PROC TRAJ’ function 
in ‘SAS traj’ library (SAS Institute, Cary, North Carolina, 
USA)20 (online supplementary table S1).

Step 1
We initially constructed a scoping model provisionally 
selecting the plausible number of classes based on avail-
able literature; in the context of BMI trajectories, we used 
K=5 classes as reported elsewhere.10 12 We built models for 
both genders, as BMI patterns of lifetime changes differ 
for men and women.21 To determine the initial working 
model structure of random effects, we followed the ratio-
nale of Verbeke and Molenbergh22 and examined the 
shape of standardised residual plots for each of the five 
classes in a model with no random effects. If the residual 
profile could be approximated by a flat, straight line or a 
curve, then a random intercept, slope or quadratic term, 
respectively, were considered. Preliminary plots suggested 
preference for a quadratic random effects model (supple-
mentary figure S1).

Step 2
We refined the preliminary working model from step 1 to 
determine the optimal number of classes, testing K=1–7. 
The number of classes chosen was based on the lowest 
Bayesian information criteria (BIC).

Step 3
We further refined the model using the favoured K 
derived in step 2, testing for the optimal model structure. 
We tested seven models (detailed in online  supplemen-
tary table S2), ranging from a simple fixed effects model 
(model A) through a rudimentary method that allows the 
residual variances to vary between classes (model B) to a 
suite of five random effects models with different variance 
structures (models C–G).

Step 4
We then performed a number of model adequacy assess-
ments. First, for each participant, we calculated the poste-
rior probability of being assigned to each trajectory class 
and assigned the individual to the class with the highest 
probability. An average of these maximum posterior prob-
ability of assignments (APPA) above 70%, in all classes, 
is regarded as acceptable.6 We further assessed model 
adequacy using odds of correct classification, mismatch 
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scores and entropy, Ek (detailed in online  supplemen-
tary table S3). These diagnostic tools assist in model 
selection.6 23 In some examples, BIC values may decrease 
as more groups and parameters are added reflecting 
model overfit. Therefore, the BIC value might not always 
provide the optimum selection criteria, and model selec-
tion must balance between meaningful trajectories, 
model parsimony and model adequacy. For example, if 
the model adequacy measures are strongly violated, one 
might go back to steps 2 and 3 and consider a different 
model with a higher BIC value. We selected an optimal 
model structure using the lowest BIC value and satisfac-
tory values from the model adequacy assessments and 
referred to the outcome of steps 1–4 as the favoured model. 
To assess the interpretability of the resulting classes, we 
investigated characteristics of lifestyle behaviours of the 
favoured model such as smoking, alcohol consumption 
and physical activity.

Step 5
We used three graphical presentation approaches. The 
conventional approach is to plot mean trajectories with 
time encompassing each class. Alternatives include the 
use of mean trajectory plots with 95% predictive inter-
vals for each class, which displays the predicted random 
variation within each class, or to plot individual level 
‘spaghetti plots’ with time (eg, a random sample of partic-
ipants), which allows the reader to observe the patterns of 
changes within classes.

Step 6
We assessed model discrimination, including degrees of 
separation, DoSK,24 25 and Elsensohn’s envelope of resid-
uals.25 To describe the separation of latent trajectory 
curves, a multivariate Mahalanobis distance was used. 
Peugh and Fan26 argue that it is reasonable to speculate 
that identification of heterogeneous latent trajectories is 
facilitated by large statistical separation distance among 
the subpopulations. Thus, larger values of DoSK indicate 
the mean trajectories are well separated, while DoSK equal 
to zero is the special case when all mean trajectories 
are identical. If the DoSK value is small, then one might 
consider a model with fewer classes.

To check structure assumptions in fixed effects latent 
class models, Elsenhohn et al25 plotted the local SD of 
the residuals against time. We extended this method to 
random  effects models: first, computing the observed 
residuals for each participant; and second, computing 
the class-specific and time-specific weighted local variance 

Table 1  Framework of eight steps to construct a latent 
class trajectory model

Step Step description Criteria for selection

1 Scope model by 
provisionally selecting 
a plausible number of 
classes based on available 
literature and the structure 
based on plausible clinical 
patterns.

Examine linearity of the 
shape of standardised 
residual plots for each of 
the classes in a model with 
no random effects.

2 Refine the model from 
step 1 to confirm the 
optimal number of classes, 
typically testing K=1–7 
classes.

Lowest Bayesian 
information criteria value.

3 Refine optimal model 
structure from fixed 
through to unrestricted 
random effects of the 
model using the favoured 
K derived in step 2.

4 Run model adequacy 
assessments as described 
in online supplementary 
table S3 including 
posterior probability of 
assignments (APPA), odds 
of correct classification 
(OCC) and relative entropy.

►► APPA: average of 
maximum probabilities 
should be greater than 
70% for all classes.

►► OCC values greater than 
5.0.

►► Relative entropy values 
greater than 0.5.

5 Investigate graphical 
presentation

►► Plot mean trajectories 
across time for each 
class in a single graph.

►► Plot mean trajectories 
with 95% predictive 
intervals for each class 
(one class per graph).

►► Plot individual class 
‘spaghetti plots’ across 
time for a random 
sample.

6 Run additional tools to 
assess discrimination 
including Degrees of 
separation (DoS) and 
Elsensohn’s envelope of 
residuals

►► DoS greater than zero.
►► Envelope of residuals 
is assessed in plots 
by observing clear 
separations between 
classes.

7 Assess for clinical 
characterisation and 
plausibility.

►► Tabulation of 
characteristics by 
latent classes. Are the 
trajectory patterns 
clinically meaningful? 
Perhaps, consider 
classes with a minimum 
percentage of the 
population.

►► Are the trajectory 
patterns clinically 
plausible?

►► Concordance of class 
characteristics with 
those for other well-
established variables.

Continued

Step Step description Criteria for selection

8 Conduct sensitivity 
analyses, for example, 
testing models without 
complete data at all time 
points.

General assessment of 
patterns of trajectories 
compared with main model.

Table 1  Continued 
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of the residuals, with weights being the posterior prob-
abilities of individual belonging to a class. We plotted 
the upper and lower boundary values of the local SD 
of the residuals around the mean values for each class. 
The resulting shape indicates the appropriateness of 
the model assumptions, where non-parallel boundaries 
indicate heteroscedasticity of residuals suggesting poor 
model fit, and differing interval widths suggest that across 
class variability may not be fully accounted for.

Step 7
We assessed for clinical characterisation and plausibility 
using four approaches: (1) assessing the clinical meaning-
fulness of the trajectory patterns, aiming to include classes 
with at least 1% capture of the population; (2) assessing 
the clinical plausibility of the trajectory classes; (3) tabula-
tion of characteristics by latent classes versus conventional 
categorisations; and (4) concordance of class member-
ship with conventional BMI category membership using 
the kappa statistic (as LCTM is an unsupervised learning 
approach, we computed k for all possible combinations 
and selected the optimal k).

Step 8
We conducted sensitivity analyses, in this example, with 
individuals with at least two and three BMI values, as 
LCTMs are flexible enough to deal with different obser-
vation times between participants.

Patient and public involvement
No patients and or public were involved with this 
manuscript.

Statistical algorithms
All R and SAS codes used to implement these tools are 
available via the authors and can be downloaded from 
www.​github.​com/​hlennon/​LCTMtools.

Results
Number of classes
From the preliminary working model of a quadratic 
random  effects model, model F (proportional covari-
ance structure), we derived BICs for up to seven classes: 
three of the class models failed to converge in men and 
women. Table 2 reports that the lowest BIC was obtained 
with five classes in men and women, confirming our 
initial working model. The proportions by class in men 
were 68.1%, 25.0%, 3.8%, 2.7% and 0.4%, and in women, 
proportions by class were 32.6%, 41.1%, 21.1%, 3.5% and 
1.7%. For model G (our second favoured model), the 
lowest BICs were noted for five classes in men and women 
(online supplementary table S2).

Assessment for model structures
With the number of classes now selected as five, we tested 
the seven model structures: A–G. Table  3 reports that 

Table 2  Number of classes (K=1–7) using random effects quadratic structure model F (proportional covariance structure) by 
gender

Model K
Number of 
parameters BIC

Proportions per class %

Class
I Class II Class III Class IV Class V Class VI Class VII

Men

Model F 1 10 * 100

2 15 3 324 009 83 17

3 20 3 310 908 62 32 3

4 25 3 324 128 100 0 0 0

5 30 3 301 301 68 25 4 3 0.4

6 35 *

7 40 *

Women

Model F 1 10 * 100

2 15 2 195 386 86 14

3 20 2 179 080 58 34 8

4 25 2 179 137 100 0 0 0

5 30 2 169 791 41 32 21 4 2

6 35 *

7 40 *

Results from random effects quadratic structure model G (unrestricted) by gender are shown in supplemental material S2.
*Models failed to converge.
BIC, Bayesian information criteria.

http://www.github.com/hlennon/LCTMtools
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the lowest BIC was for model F in men and women, justi-
fying the selection of model F in the preliminary working 
phase. The class sizes varied between models, with class I 
ranging from 41% to 68% in men and from 32% to 95% 
in women. The APPA for each class in model F was 0.81, 
0.74, 0.87, 0.83 and 0.74 in men and 0.74, 0.79, 0.80, 0.83 
and 0.84 in women, indicating a good discrimination of 
trajectory. The classes were well differentiated with the 
relative entropy, EK  values ranging from 0.59 to 0.81 in 
men and from 0.66 to 0.83 in women.

There was moderately good concordance (unweighted 
and weighted) between the unstructured variance models 
G with model F in men (k: 0.57) and women (k: 0.65) 
(supplementary tables S4 and S5) but poorer concor-
dance between the favoured models and fixed-effects 
models in men.

Graphical presentation
We plotted the mean trajectories for model A, B, C, D, F and 
G in men and women (figure 1) illustrating the increased 
complexity from model A to model G. As alternatives, we 
plotted separately mean trajectories with 95% predictive 
intervals for each class, in model F (online supplementary 
figure S2), which displays the predicted random variation 

within each of the classes with time, noting that variation 
was greater with the more ‘complex’ classes (classes IV and 
V compared with classes I, II and III). Spaghetti plots of 
individual level data illustrated that the timing and size of 
BMI changes characterise the classes; for example, sharp 
increases in BMI in early adulthood in class III but later in 
adulthood for class IV (online supplementary figure S3).

Additional tools of suitability of fit
The DoSk values ranged from 0.10 to 0.36 and 0 to 0.34, in 
men and women, respectively (table 3). The covariances 
were high and in the positive direction, and therefore 
models with non-parallel mean trajectories lead to higher 
separation.

We plotted the local SD of the residuals with time and 
found that these were broadly homogeneous, that  is, 
there were few parallel boundaries (figure 2). The local 
residuals for the rapidly obese groups in both genders 
are the exceptions to parallel lines, which might reflect 
comorbidities in this group and smaller numbers.

Clinical assessment
Having established the favoured model, model F with five 
classes in both genders, we assigned descriptive labels to 

Table 3  Model adequacy assessments of latent trajectory class models based on different assumptions for K=5 classes, by 
gender in the NIH-AARP cohort

Model Description BIC
Proportion per 
class %

Average 
posterior 
probability 
assignment

Relative
entropy (EK)

Degree of 
separation (DoSK)

Men

 � A Homoscedastic 3476322 51: 22: 21: 6: 1 83: 84: 85: 91: 95 0.78 0.10

 � B Heteroscedastic 3511646 41: 26: 20: 7: 6 85: 82: 84: 89: 86 - 0.15

 � C Random intercept 3364856 68: 24: 4: 3: 2 90: 82: 89: 85: 82 0.81 0.34

 � D Random slope 3325463 63: 19: 13: 3: 4 72: 70: 74: 83: 83 0.59 0.26

 � E Random quadratic, Equal *

 � F Random quadratic, 
Proportional

3301301  68: 25: 4: 3: 0.4 81: 74: 87: 83: 74 0.68 0.36

 � G Random quadratic, 
Unrestricted

3320005 56: 30: 8: 5: 0.4 74: 70: 80: 79: 88 0.63 0.33

Women

 � A Homoscedastic 2289509 45: 36: 13: 4: 1 90: 84: 88: 93: 96 0.83 0.14

 � B Heteroscedastic 2238444 32: 30: 15: 15: 8 87: 83: 85: 89: 91 - 0.05

 � C Random intercept 2240681 52: 35: 9: 2: 2 89: 82: 86: 89: 91 0.79 0.21

 � D Random slope 2193155 79: 12: 5: 2: 2 91: 80: 79: 86: 91 0.82 0.34

 � E Random quadratic, Equal 2188224 95: 5: 0: 0: 0 49: 88: 0: 0: 0 0.26 0.05

 � F Random quadratic, 
Proportional

2169793 41: 33: 21: 3: 2 74: 79: 80: 83:84 0.66 0.09

 � G Random quadratic, 
Unrestricted

2187707 67: 23: 6: 3: 1 84: 77: 84:82: 87 0.73 0.34

*Failed to converge.
BIC, Bayesian information criteria; NIH, National Institutes of Health.
Bold values are the chosen according to the lowest value.

https://dx.doi.org/10.1136/bmjopen-2017-020683
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each respective class as follows (table  4): stable normal 
weight; normal weight to overweight; normal weight to 
obese; overweight to obese; and rapid early obesity. We 
noted that the proportion in the rapid early obesity 
(class V) was less than 1% in men. However, overall, the 

proportion for class V for men and women combined was 
nearly 1%. Thus, we retained this class as we judged it 
to be clinically meaningful as follows. In both genders, 
there were rapid increases in obesity from early to middle 
adulthood, then apparent severe weight reductions. We 

Figure 1  BMI mean trajectories by men (left) and women (right) for models A–G. Colours are used to discriminate classes 
within each plot but should not be used for direct comparisons across plots. BMI, body mass index.
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rationalised that this was clinically plausible, as it could 
be explained either by intentional (eg, bariatric surgery) 
or non-intentional weight loss (eg, reverse causality from 
development of disease).

We then tabulated the baseline characteristics according 
to the five classes for model F in men and women and 
noted patterns across the classes (table  4 and fully 
expanded in online  supplementary tables S5 and S6). 
Thus, for example, for current smoking status, there were 
little differences in patterns by class in men: 10%, 8%, 
9%, 10% and 15%, and in women: 16%, 12%, 12%, 13% 
and 11%. This contrasts with BMI categories: men (12%, 
8%, 8%, 7% and 7%) and women (16%, 12%, 10%, 8% 
and 7%) (online supplementary tables S7 and S8).

Finally, we noted very poor concordance between the 
favoured model and conventional BMI categorisation in 
men (k: 0.18) and women (k: 0.52) (table 5).

Sensitivity analyses
We tested the favoured model using a larger sample of 
individuals with at least three measures and found no 
material differences between these models, in men and 
women, and the main model (online  supplementary 
figure S4).

Discussion
Main findings
We propose an eight-step framework for the construc-
tion and selection of models derived from LCTM. We 
evaluated a range of model structures from fixed effect 
models to a set of random effects models, favouring the 
latter models in this case study, as they include different 
variance structures and more likely to reflect the natural 
history of changes with time in BMI distributions in 
different subpopulations. We showed that different model 
structures resulted in different classes with contrasting 
clinical phenotypes. We propose prespecified criteria for 
model selection and that the reporting of a ‘core’ model 
will facilitate generalisability of results in future studies.

Context of other literature
To the best of our knowledge, this is the first study to 
systematically address structure-related assumptions in 
LCTMs, and their potential impact on clinically relevant 
endpoints—in this example, BMI trajectories. Anecdot-
ally, there is a justifiable criticism regarding the use of 
LCTM models and an uncertainty of how class member-
ships are derived—a ‘black box’ effect. The proposed 
framework, here, encourages the opposite—a transparent 
stepwise approach to class and model structure selection. 
To enhance this process, for example, we have ‘borrowed’ 
tools developed to address to quantify uncertainty, such 
as entropy measures, E and Ek, and applied them to assist 
assessment of model adequacy. A further modification 
of discrimination measurement with variance estimation 
has been described by Shah and colleagues27 and might 
have importance for class assignment where ‘yes/no’ 
treatment decisions are required.

Variations of model A (fixed  effects) have been 
reported in the clinical literature,9–12 which assume no 
within-class variability when deriving latent classes. Inter-
pretation in this setting is that variation from the mean 
trajectory is random; that  is, the correlation between 
measurements for the same individual is explained by 
latent class membership. In the context of any repeated 
measures in the general population, this assumption 
might not be valid.14 Saunders28 argued in support of 
full random effects models (ie, models F and G), calling 
on Moffitt’s theory from criminology, which recognises 
that ‘there are distinct developmental clusters of trajectories of 
anti-social behaviour that are the result of divergent aetiologies’; 
in other words, it is unlikely that latent classes start from 
a similar baseline.

The publication of the 16-item GRoLTS Checklist in 
201715 heralded an important advance for the application 
of LCTM. Here, we add a framework for construction and 
interpretation.

Strengths and weaknesses
The study has strengths. First, the considered and strategic 
workflow to optimise identification and application of 

Figure 2  Illustration of the local (Elsensohn) residual envelope plots (shown here for model B).

https://dx.doi.org/10.1136/bmjopen-2017-020683
https://dx.doi.org/10.1136/bmjopen-2017-020683
https://dx.doi.org/10.1136/bmjopen-2017-020683
https://dx.doi.org/10.1136/bmjopen-2017-020683
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Table 4  Latent class characteristics of 177 453* men and 111 503* women in the NIH-AARP cohort

Model F (favoured model)

Class I Class II Class III Class IV Class V

Stable normal 
weight

Normal weight to 
overweight

Normal weight to 
obese Overweight to obese

Rapid increase to 
obese

Men

Number, n (%) 120 867 (68.1) 44 383 (25.0) 6 723 (3.8) 4 764 (2.7) 718 (0.4)

Mean (SD) BMI at 
18 years 20.75 (0.01) 23.92 (0.02) 21.69 (0.04) 27.16 (0.09) 24.76 (0.2)

Mean (SD) BMI at 
35 years 23.35 (0.01) 26.72 (0.01) 30.24 (0.04) 26.61 (0.09) 37.69 (0.26)

Mean (SD) BMI at 
50 years 24.66 (0.01) 29.12 (0.02) 31.34 (0.05) 30.95 (0.12) 35.01 (0.35)

Mean (SD) entry age, 
years

62.88 (0.01) 61.59 (0.03) 62.03 (0.06) 59.71 (0.07) 57.73 (0.18)

Mean (SD) current (at 
baseline) BMI, kg/m2

25.39 (0.01) 30.84 (0.02) 29.07 (0.05) 35.14 (0.12) 30.51 (0.28)

Mean (SD) waist 
circumference, cm

94.38 (0.02) 106.23 (0.05) 102.73 (0.13) 115.24 (0.28) 105.91 (0.64)

Smoking, n (%)

 � Current 11 823 (10) 3 761 (8) 638 (9) 460 (10) 106 (15)

 � Former 67 948 (56) 26 898 (61) 3 809 (57) 3 002 (63) 370 (52)

 � Never 37 149 (31) 12 130 (27) 2 012 (30) 1 110 (23) 218 (30)

 � Missing 3 946 (3) 1 594 (4) 264 (4) 191 (4) 24 (3)

Mean (SD) alcohol g/
day

18.69 (0.13) 17.45 (0.21) 15.48 (0.56) 15.57 (0.69) 10.22 (1.14)

Women

Number, n (%) 36 311 (32.6) 45 832 (41.1) 23 544 (21.1) 3 898 (3.5) 1 918 (1.7)

Mean (SD) entry age, 
years

62.48 (0.03) 62.23 (0.02) 61.07 (0.03) 59.61 (0.09) 59.69 (0.12)

Mean (SD) BMI at 
18 years 19.3 (0.01) 20.44 (0.01) 22.61 (0.02) 29.01 (0.09) 23.97 (0.1)

Mean (SD) BMI at 
35 years 20.26 (0.01) 22.53 (0.01) 25.51 (0.02) 28.38 (0.1) 36.92 (0.16)

Mean (SD) BMI at 
50 years 21.16 (0.01) 24.77 (0.01) 29.52 (0.03) 33.51 (0.13) 37.69 (0.2)

Mean (SD) current (at 
baseline) BMI, kg/m2

21.97 (0.01) 26.66 (0.01) 32.4 (0.03) 37.47 (0.15) 34.4 (0.19)

Mean (SD) waist 
circumference, cm

76.19 (0.04) 86.66 (0.05) 97.82 (0.09) 106.29 (0.32) 101.96 (0.41)

Smoking, n (%)

 � Current 5803 (16) 5660 (12) 2733 (12) 495 (13) 214 (11)

 � Former 14 173 (39) 18 557 (40) 9748 (41) 1764 (45) 731 (38)

 � Never 15 313 (42) 20 290 (44) 10 417 (44) 1507 (39) 909 (47)

 � Missing 1022 (3) 1325 (3) 646 (3) 132 (3) 64 (3)

Mean (SD) alcohol g/
day

8.07 (0.1) 6.26 (0.08) 4.47 (0.11) 3.92 (0.29) 3.4 (0.48)

Hormone therapy use, n (%)

 � Ever 13 989 (39) 20 206 (44) 12 215 (52) 2241 (57) 1092 (57)

 � Never 22 322 (61) 25 626 (56) 11 329 (48) 1657 (43) 826 (43)

*Exclusions include 35 women and 2 men with biologically implausible cancers from classes in proportions (2, 16, 12, 0 and 5) and (1, 0, 0, 1 
and 0), respectively.
BMI, body mass index; NIH, National Institutes of Health.



9Lennon H, et al. BMJ Open 2018;8:e020683. doi:10.1136/bmjopen-2017-020683

Open access

latent classes provides for a more robust and transparent 
application of these models in epidemiology. Second, the 
results presented are based on modelling data from a 
large well-characterised US cohort, therefore allowing the 
derivation of numerically meaningful subpopulations (ie, 
classes) with distinct phenotypes. We uniquely used aver-
aged kappa values to demonstrate that the LCTM-derived 
subpopulations are markedly different to those derived 
from a ‘one-off’ BMI determinations. In turn, BMI trajec-
tories are more likely to reflect normal clinical practice 
of considering a ‘weight history’. Third, we extensively 
explored different model selections and adequacy tools, 
and described extensions to other tools, to supplement 
model interpretation. Fifth, tofurther supplement model 
interpretation, we embedded this project within a multi-
disciplinary research team including data scientists, stat-
isticians, clinicians and epidemiologists—an approach 
echoed elsewhere.29 Finally, we have made the statistical 
algorithms freely available.

There are several study weaknesses. First, LCTMs 
currently only considers trajectories of one risk factor 
at a time. Second, there were only four time points in 
the AARP such that it was not possible to assess weight 
cycling. Third, while we described multiple diagnostic 
tests, ultimately model selection was based on case study 
appropriate model interpretation (eg, model adequacy, 
discrimination, clinical plausibility  and sensitivity anal-
yses) as well as likelihood-based model fit criteria.18 Some 
discussion on statistical power and efficiency is warranted. 
The objective of model selection is a trade-off between 
efficiency and validation with the aim of summarising 

distinct features of the data as parsimonious as possible 
and not just the maximisation of model fits.6 For example, 
in a hypothetical scenario, putting too much emphasis on 
the validity of a model in which 10 classes provide the best 
model fit is questionable if 3 of the 10 classes each include 
less than 0.5% of the population and do not show mark-
edly different characteristics.

Clinical implications and future research
We showed that different model structures resulted in 
different classes with contrasting clinical phenotypes. 
Thus, for example, it is well recognised that the propor-
tions of current smokers decreases with increasing BMI 
categories. However, this ‘trend’ is not observed across 
the latent classes derived in our favoured model F, 
suggesting that the clinical characteristics derived from 
the LCTM differed from those derived from conventional 
categorisation approaches. Thus, compared with ‘one-
off’ BMI categorisation, LCTM offers additional pheno-
typic information.

For future research, improving the construction, inter-
pretation and reporting of LCTM (advocated here) is 
hugely important as the LCTM approach has opportuni-
ties to identify and intervene early in subpopulations with 
adverse trajectories. This approach is analogous to the 
well-held public strategy of using childhood growth charts 
to identify and intervening in young children failing to 
thrive. Thus, in the example of BMI, remembering that 
80% of obese adults were not obese in childhood,30 
future LCTM studies might identify (new) individuals in 
their 20s or early 30s on adverse trajectories towards later 

Table 5  Concurrence between BMI categories and classes in model F from the NIH-AARP cohort

Latent class N

BMI categories (kg/m2)

<18.5 18.5 to 24.9 25.0 to 29.9 30.0 to 34.9 >35.0

Men

177 453 875 53 466 86 967 28 234 7911

 � I 120 866 312 50 171 68 646 1736 1

 � II 44 383 319 1860 14 097 23 472 4635

 � III 6723 47 859 3335 1943 539

 � IV 4763 172 437 679 917 2558

 � V 718 25 139 210 166 178

Cohen Kω = 0.182 (0.181 to 0.183)

Women

111 503 1327 48 273 36 025 16 245 9633

 � I 36 311 1215 33 371 1725 0 0

 � II 45 832 3 12 584 28 636 4607 2

 � III 23 544 83 1683 4777 10 587 6414

 � IV 3898 14 382 519 614 2369

 � V 1918 12 253 368 437 848

Cohen Kω= 0.52 (0.51 to 0.53)

Kω weighted.
BMI, body mass index; NIH, National Institutes of Health. 
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adulthood obesity. This strategy is a new methodological 
paradigm, as the repeated measurement of a risk factor 
(here, BMI) becomes a clinically relevant endpoint rather 
than just an exposure.
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