
Leukemia (2019) 33:2254–2265
https://doi.org/10.1038/s41375-019-0499-4

ARTICLE

Minimal residual disease

Quality control and quantification in IG/TR next-generation
sequencing marker identification: protocols and bioinformatic
functionalities by EuroClonality-NGS

Henrik Knecht1 ● Tomas Reigl2 ● Michaela Kotrová 1
● Franziska Appelt1 ● Peter Stewart3 ● Vojtech Bystry2 ●

Adam Krejci2 ● Andrea Grioni4 ● Karol Pal2 ● Kamila Stranska2,5 ● Karla Plevova2,5 ● Jos Rijntjes6 ● Simona Songia4 ●

Michael Svatoň7
● Eva Froňková7 ● Jack Bartram8

● Blanca Scheijen6 ● Dietrich Herrmann1
● Ramón García-Sanz 9

●

Jeremy Hancock10 ● John Moppett 11
● Jacques J. M. van Dongen12

● Giovanni Cazzaniga 4
● Frédéric Davi13 ●

Patricia J. T. A. Groenen6
● Michael Hummel14 ● Elizabeth A. Macintyre15 ● Kostas Stamatopoulos16 ● Jan Trka7 ●

Anton W. Langerak17 ● David Gonzalez3 ● Christiane Pott1 ● Monika Brüggemann1
● Nikos Darzentas1,2 ● on behalf of

the EuroClonality-NGS Working Group

Received: 15 January 2019 / Revised: 23 March 2019 / Accepted: 23 April 2019 / Published online: 21 June 2019
© The Author(s) 2019. This article is published with open access

Abstract
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG)
and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently
under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC)
options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The
EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays.
First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex
NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a
central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the
ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene
rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and
quantification in diagnostics of lymphoid malignancies.

Introduction

Identification and assessment of clonal immunoglobulin
(IG) and T cell receptor (TR) gene rearrangements is a
widely used tool for the diagnosis of lymphoid malig-
nancies, and is also essential for monitoring minimal resi-
dual disease (MRD) [1–6].

Next-generation sequencing (NGS) of IG/TR gene rear-
rangements is gaining popularity in clinical laboratories, as
it avoids laborious design of patient-specific real-time

quantitative (RQ)-PCR assays and provides the capability to
sequence multiple rearrangements and rearrangement types
within a single sequencing run. It also allows detection of
MRD with a more specific readout than RQ-PCR [7].
Hence, several methods have already been described for
high-throughput profiling of IG/TR rearrangements at
diagnosis and follow-up in acute lymphoblastic leukaemia
(ALL), chronic lymphocytic leukaemia (CLL) and other
lymphoid malignancies [8–13].

NGS assays, especially those based on amplicons, pose
major challenges, as multiple primers need to anneal under
the same reaction conditions, while many technical vari-
ables may be introduced by library preparation, sequencing
and bioinformatics, potentially leading to inaccurate results
[14]. Particularly in a clinical context, strategies for stan-
dardisation of laboratory protocols and quality control (QC)
of each component of an NGS assay are highly desirable, if
not required.
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Reference standards are essential for the evaluation of
wet-lab and in silico NGS processes to ensure the analytical
validity of test results prior to implementation of an NGS
technology into clinical practice [15–17]. Reference DNA
materials should be stable sources of rearrangements that
can be sequenced and used for measuring qualitative and
quantitative properties. However, previously published
standards have a limited scope and utility, since they (1) do
not cover all relevant IG/TR loci, (2) do not report on the
quality of the sequencing run or the performance of samples
and primers and/or (3) are synthetic constructs that may not
reflect the complexity of native genomic DNA [9, 18, 19].

The EuroClonality-NGS Working Group was initiated to
develop, standardise and validate protocols for IG/TR NGS
applications, as introduced in Langerak et al. [20] and
described in the accompanying manuscripts by Brügge-
mann et al. [21] and Scheijen et al. [22]. Innovatively, the
EuroClonality-NGS assays include two types of QCs, both
based on basic assay components, and both fully integrated
in ARResT/Interrogate [23], the interactive bioinformatics
platform developed within the Working Group:

1. A central polytarget QC (cPT-QC) consisting of a
standardised mixture of lymphoid specimens, repre-
senting a full repertoire of IG/TR genes. It serves to
assess performance biases or unusual amplification
shifts in a sequencing run by tracking primer usage
and comparison with stored reference profiles.

2. A central in-tube quality/quantification control (cIT-
QC) consisting of human B and T cell lines with well-
defined IG/TR rearrangements. The cIT-QC is directly
added to a sample to undergo concurrent library
preparation and sequencing, acting as in-tube quali-
tative and quantitative standard that is subjected to the
same technical downstream variables.

Here we describe, evaluate and showcase these concepts
and functionalities. We tested the developed protocol on a
dataset of polyclonal samples, B-ALL and T-ALL diag-
nostic materials and follow-ups of patients with substantial
treatment-induced shifts in IG/TR repertoires. We show its
successful application and robustness for clinical labora-
tories that want to implement the EuroClonality-NGS
assays for marker identification and quantification.
Figure 1 provides an overview of the study.

Materials and methods

EuroClonality-NGS assay

The EuroClonality-NGS assay for marker identification
used herein is the two-step PCR protocol with eight primer

sets (IGH-VJ, IGH-DJ, IGK-VJ-Kde, intron-Kde, TRB-VJ,
TRB-DJ, TRG, TRD)—hereafter termed ‘tubes’—per
sample, as described in the accompanying manuscript by
Brüggemann et al. [21].

ARResT/Interrogate

ARResT/Interrogate uses a web browser-based interface to
(1) run an analytical pipeline to identify different types of
rearrangements—‘junction classes’—across all IG/TR loci
(Supplementary Table S1), (2) store, retrieve and report on
runs, (3) allow highly varied analyses and visualisations and
(4) enable purpose-built meta-analyses and applications.
Bioinformatic analyses were performed with ARResT/
Interrogate and purpose-built tools unless otherwise stated.
Further implementation details are provided below and as
Supplementary Information. The platform is currently freely
available at arrest.tools/interrogate, hosted at the Meta-
Centrum and CERIT-SC centres in the Czech Republic.

Implementation of the cPT-QC

Sources and methods

The cPT-QC consists of genomic DNA isolated from
healthy human thymus, tonsil and peripheral blood mono-
nuclear cells (MNCs) in a 1:1:1 ratio (see Supplementary
Information). The cPT-QC undergoes library preparation
alongside the investigated samples (Figs. 1 and 2).

Implementation

Primers are bioinformatically identified in the reads of each
of the eight cPT-QC tubes of the run and their abundances
compared to stored cPT-QC reference results using the test
of proportions.

Stored reference results are the output of ARResT/
Interrogate from the analysis of a cPT-QC sample. These
results should be confirmed through replicate runs over time
in each lab to accommodate for technical variability (see
Discussion). The results (and not the raw NGS data) are
stored to ensure that the bioinformatic analysis is not
compromised inadvertently by the user; this means that the
results are updated with every major release of ARResT/
Interrogate to ensure compatibility with new runs.

Issues with abundances of primers of a specific primer
set are used to tag the corresponding cPT-QC samples and
all user samples of the same primer set as ‘QC-failed’.

Replicates

As reproducibility is important for a QC of this type, we
performed replicate runs of cPT-QC and also of MNC (four
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libraries in total); MNCs are regularly used and could serve
as an alternative. Relative abundances of 5′ primers were
compared employing the test of proportions.

Primer perturbations

To investigate whether and how the cPT-QC can be used to
detect issues with primer performance, artificial perturba-
tions of primer concentrations were created to simulate
missing pipetting a primer or pipetting the wrong primer
concentration.

First, 5′ primer usage was analysed in a cPT-QC sample.
Two primers of differing abundances were selected from each
primer set, skipping intron-Kde that only has two primers:
IGH-VJ-FR1-M-1, IGHV-FR1-O-1; IGHD-B-1, IGHD-E-1;
IGK-V-G-1, IGK-V-I-1; TRB-V-AD-1, TRB-V-G-1; TRB-
D-A-1, TRB-D-B-1; TRG-V-F-1, TRG-V-E-1; TRD-D-A-1,
TRD-V-B-1. Second, these primers were perturbed by fully
excluding them from the primer pool (0%) and by changing
their concentration by reduction to 10% and by increase to
200%. Replicate runs of these three primer-perturbed cPT-QC
libraries (six in total) were performed; however, since the
replicates were consistent (data not shown), only the first

replicate of each is shown in Results. Finally, relative abun-
dances of 5′ primers were compared between normal repli-
cates and between normal replicates and the perturbed
libraries using the test of proportions.

Design and validation of the cIT-QC

Sources and methods

In total, 59 human B (n= 30) and T (n= 29) lymphoid cell
lines were obtained from the American Type Culture Col-
lection (ATCC, Manassas, VA, USA; www.lgcpromochem-a
tcc.com) and the German Collection of Microorganisms and
Cell Cultures GmbH (DSMZ, Braunschweig, Germany;
www.dsmz.de), or were derived from internal cell line banks.
Supplementary Table S2 gives an overview of the cell lines.
DNA from cultured cell lines was isolated using a
phenol–chloroform extraction protocol, followed by ethanol
precipitation and elution in Tris ethylenediaminetetra-acetic
acid buffer. Alternatively, DNA was isolated with the
GenElute Mammalian Genomic DNA Miniprep Kit
(Sigma-Aldrich, St. Louis, MO, USA) according to the
manufacturer’s protocol.

identification & verification
of cell line-specific clonal IG/TR gene rearrangements

central in-tube quality/quantification control –cIT-QC

selection of cell lines & of cIT-QC reference sequences

addition of cIT-QC to all 8 primer set tubes of all samples

cIT-QC identification & marker quantification

central polytarget quality control -cPT-QC

1:1:1  of  healthy human thymus : tonsil : MNC

perturbation of over/under-performing primers
test of primer proportions: replicates vs. perturbed
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test of proportions: reference vs. run results

de
ve

lo
pm

en
t

QC & reporting

te
st

in
g

selection of thresholds

single cPT-QC sample per run, in 8 primer set tubes

mixture preparation, batch verification (replicates/comparisons), creation & storage of cPT-QC reference results

59 human B/T lymphoid cell lines

test dataset

Fig. 1 Study design:
components and steps of
development (in blue),
application (in green) and testing
for the central polytarget quality
control (cPT-QC) and central in-
tube quality/quantification
control (cIT-QC), including a
schematic overview of the test
dataset based on a 96-well plate.
Text boxes are either shared
across cPT-QC and cIT-QC or
describing equivalent steps if on
same row. MNC=mononuclear
cells, QC= quality control, ref.
= reference, w/o=without
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Identification of cell line-specific clonal IG/TR gene
rearrangements

Each of the 59 cell lines was screened for clonal IG/TR
gene rearrangements using the EuroClonality-NGS assay
with 100 ng of DNA (quantified with Qubit 3.0, Thermo
Fisher Scientific) from each cell line, without the addition
of MNC. Paired-end sequencing (2 × 250 bp) was per-
formed on Illumina MiSeq (Illumina, San Diego, CA,
USA) with a final concentration of 7 pM per library
aiming for at least 2000 reads per sample. To avoid low-
complexity issues, 10% PhiX control was added to each
sequencing run.

Verification of cell line-specific clonal IG/TR gene
rearrangements

Additional methods were used to verify the NGS amplicon-
identified cell line rearrangements:

1. A capture-based protocol, established within
EuroClonality-NGS Working Group and covering
the coding V, D and J genes of IG/TR loci [13]: in
short, cell line DNA was fragmented and processed
with the KAPA Hyperplus Kit with Library Ampli-
fication (Roche Sequencing Solutions, Pleasanton,
CA, USA); hybridisation of libraries was performed

12 * 8 primer sets = 96-well plate:
1   x  cPT-QC (w/o cIT-QC)
10 x  (patient) samples with cIT-QC
1   x  negative control

library preparation & NGS

bioinformatics | ARResT/Interrogate
arrest.tools/interrogate   contact@arrest.tools

primers

NGS data

− primer analysis (tagging, trimming)
− paired-end joining, if applicable
− junction & clonotype identification

− sample-equivalent real-time 
processing of cIT-QC sequences

− cIT-QC identification in samples
− quantification factor calculation
− sample clonotypes: conversion 

of read counts to cells

cIT-QC

cPT-QC − loading of reference cPT-QC results
− test of proportions: cPT-QC 

reference vs. run results

− application of QC thresholds & rules
− creation of run and sample reports

results, via interactive browser

3. analysis: samples only

2. analysis: cPT-QC only

4. QC & reporting: all tubes

1.

2.

3.

4.

1. analysis: all tubes

‘marker screening’ user mode for browser 
with locked presets & special functionalities

0. preparation: samplesheet − sample metadata, incl. input cells0.
stored data:

Fig. 2 EuroClonality-NGS (next-generation sequencing) protocol for
quality control and quantification in marker identification: 96-well
plate set-up, including central polytarget quality control (cPT-QC) and
central in-tube quality/quantification control (cIT-QC), library pre-
paration and NGS, bioinformatics with ARResT/Interrogate. The

bioinformatics are additionally organised per sample type to showcase
distinct steps and functionalities listed on the right: all tubes (1 and 4,
in black), cPT-QC (2, in grey), (patient) samples (3, in red)—these
colours are shared with the well plate. ref.= reference, QC= quality
control, w/o=without
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with customised SeqCap EZ Choice Probes (Roche
Sequencing Solutions, Pleasanton, CA, USA), devel-
oped based on Wren et al. [13] 2 × 150 bp paired-end
sequencing was performed on Illumina NextSeq.

2. Multiplex amplification and Sanger sequencing
according to the BIOMED-2 protocol: PCR products
were checked for fragment sizes and clonality in the
QIAXCEL Advanced System [24, 25]. Clonal PCR
products were subjected to heteroduplex analysis and
sequenced on either an ABI 3130 or ABI 3500
platform (Applied Biosystems, Foster City,
CA, USA).

IG/TR rearrangement profiles of all cell lines were
compared between the different methods.

For cases with discrepant results between the three
methods, IG/TR allele-specific PCR assays were designed
for digital droplet PCR (ddPCR) (QX200TM Droplet
DigitalTM PCR System, Bio-Rad) to verify the respective
rearrangement. Absolute quantification of IG/TR gene
rearrangements by ddPCR was performed using two dif-
ferent genomic DNA amounts (50 ng, 100 ng) (Supple-
mentary Information). Each experiment included a
polyclonal MNC control and a no-template control.

Cell line selection criteria

For establishment of the cIT-QC from the spectrum of IG/
TR gene rearrangements of the 59 cell lines, the following
selection criteria were defined:

1. The final set should consist of as few cell lines as
possible, while covering each primer set by at least
three different rearrangements, hence aiming for ALL
cell lines harbouring not only lineage characteristic
but also cross-lineage rearrangements.

2. The rearrangements should be unambiguously detect-
able with Sanger sequencing and amplicon-
based NGS.

3. The variable region of IGHV-(IGHD)-IGHJ gene
rearrangements should preferably be unmutated in
order to avoid issues with primer annealing.

Implementation

For cIT-QC mixture preparation see Supplementary
Information.

Bioinformatically, cIT-QC reads are identified using an
immunogenetic annotation-based approach that is extremely
fast while allowing for variations in sequence, avoiding
compute-intensive and potentially inaccurate alignment.

For QC, we expect identification of at least one read per
cIT-QC rearrangement and of at least as many total cIT-QC
reads as total cIT-QC cells, otherwise the tube is tagged as
‘QC-failed’ (see below for how this is used in ARResT/
Interrogate).

Quantification applies the quantification factor—calcu-
lated per primer set by dividing total cIT-QC cells by total
cIT-QC reads—to convert read counts of a clonotype to cell
counts, and then calculate its relative abundance against the
total sample input cells.

Creation of a test dataset

To evaluate and showcase the aforementioned concepts and
functionalities, we compiled a test dataset with:

1. Four diagnostic bone marrow B-/T-ALL samples with
high leukaemic infiltration (assessed by routine
cytomorphology to be 60–80%).

2. Four samples of patients with B/T cell aplasia after
antibody treatment. The two samples with B cell
aplasia were CLL samples after Rituximab (anti-
CD20) treatment and the two samples with T cell
aplasia were T cell prolymphocytic leukaemia sam-
ples after Alemtuzumab (anti-CD52) treatment. In all
these samples lineage-specific aplasia was confirmed
by flow cytometry.

3. cPT-QC for all primer sets, but with the TRB-VJ
primer set results swapped with perturbed results from
experiments outlined above. To showcase generic QC
functionalities, one diagnostic sample was sub-
sampled to <1000 random reads.

The diagnostic samples and the cPT-QC were run with
all primer sets as described in the accompanying manu-
script by Brüggemann et al. [21], while the aplastic
follow-up samples only with the corresponding primer
sets, that is, the IG sets for samples with B cell aplasia,
and the TR sets for samples with T cell aplasia. Figure 1
includes a schematic of the test dataset. Finally, the
follow-up samples were run without the addition of MNC
to test that the addition of cIT-QC is sufficient to stabilise
the samples for sequencing without compromising their
immunogenetic profile.

Results

The resulting protocol and functionalities for QC and
quantification in IG/TR NGS marker identification are
depicted in Fig. 2. We present and further discuss the
underlying results below.

2258 H. Knecht et al.



cPT-QC allows to assess primer performance

We compared normal cPT-QC and MNC replicate libraries
and primer-perturbed cPT-QC replicate libraries (10 librar-
ies in total) to investigate the use of cPT-QC in assessing
primer performance. We applied the test of proportions on
5′ primer relative abundances in those libraries, which
showed that there is a clear difference in p values between
un-perturbed (high p values indicating insignificant chan-
ges) and perturbed (low p values) primers. In other words, p
values of the differences in abundance of the perturbed
primers are noticeably lower, an observation we can use to
highlight such cases.

Table 1 presents a simplified view of the results, focusing
on perturbed primers plus at least one other un-perturbed
primer per primer set, either to show their normal behaviour
or discuss their abnormal behaviour. At a p value threshold
of 1e−200 none of the primers are flagged in the cPT-QC
(white cells), which highlights the reproducibility of the
assay, while all the perturbed primers are flagged in the
perturbed libraries (light/dark grey cells). Significant chan-
ges in abundance are also visible in other cells, with the
most likely explanation that those primers were indirectly

affected by perturbations of other primers. That is, a primer
‘taking over’ when an initially abundant primer was
excluded, such as IGHV-FR1-D-1 when IGH-VJ-FR1-M-1
is perturbed either way, especially since these primers
amplify partially overlapping lists of genes. Supplementary
Table S3 presents the full set of results, including the actual
p values and results from the replicate MNC libraries.

Composing the cIT-QC sample from human B and T
cell lines

Following the criteria outlined above, we selected six B cell
lines: ALL/MIK (ALL), Raji (Burkitt lymphoma), REH (B
cell precursor ALL), TMM (CML-BC/EBV+ B-LCL),
TOM-1 (ALL) and WSU-NHL (B cell lymphoma, histio-
cytic lymphoma); and three T cell lines: JB6 (ALCL),
Karpas299 (ALCL) and MOLT-13 (ALL). The nine cell
lines featured a total of 46 rearrangements, all of which are
used as part of the cIT-QC. All but two rearrangements that
were not detected by capture NGS were detected by all
three sequencing methods. Also, another two were of very
low abundance and/or trimmed in the capture NGS data, but
since the junction segmentation was clearly the same, they

Table 1 cPT-QC: replicates and primer perturbations. Relative abundances (%) of selected 5′ primers across all primer sets. Top group of primers
were perturbed as described in Materials and methods; bottom group is a selection of primers that were left un-perturbed: one per primer set
selected alphabetically, plus two examples where the primer behaviour is of interest to the discussion (see text). Results are shown from two cPT-
QC replicates (blue column) and from replicate 1 of the blue column (“rep1”) vs. cPT-QC libraries where primers were excluded (0%, orange
column), reduced to 10% (yellow column) and increased to 200% (green column). Changes in abundance compared to cPT-QC rep1 are shown
separately (column “% or rep1”, in italics) and coloured from red (0%) to white (100%, i.e. no change) to green (200%). Actual primer abundances
are coloured based on the p value from the test of proportions, with grey indicating a noticeable change according to our threshold of 1e−200 (p
value <1e−199 highlighted in dark grey, and <1e−99 in light grey, otherwise in white)

primer set primer name rep1 % of rep1 rep2 % of rep1 % of rep1 % of rep1
IGH-VJ-FR1 IGH-V-FR1-M-1 27.44 81.05 22.24 2.66 0.73 7.35 2.02 128.13 35.16
IGH-VJ-FR1 IGH-V-FR1-O-1 1.18 92.48 1.10 5.33 0.06 5.74 0.07 241.98 2.87
IGH-DJ IGH-D-B-1:#1:14C 7.32 101.64 7.44 0.00 0.00 0.65 0.05 197.73 14.47
IGH-DJ IGH-D-B-1:#2:14T 11.74 104.09 12.22 0.01 0.00 0.74 0.09 197.79 23.22
IGH-DJ IGH-D-E-1:#4:14G22G 1.86 94.69 1.77 0.29 0.01 0.59 0.01 89.27 1.66
IGK-VJ-Kde IGK-V-G-1 6.08 102.78 6.25 2.07 0.13 2.78 0.17 223.52 13.59
IGK-VJ-Kde IGK-V-I-1 8.85 100.64 8.91 0.66 0.06 3.99 0.35 234.06 20.71
TRB-VJ TRB-V-AD-1 31.76 105.92 33.64 1.11 0.35 15.44 4.91 112.37 35.69
TRB-VJ TRB-V-G-1 10.09 94.90 9.58 0.27 0.03 1.99 0.20 117.44 11.85
TRB-DJ TRB-D-A-1 63.20 101.50 64.15 0.02 0.01 22.64 14.31 110.33 69.73
TRB-DJ TRB-D-B-1 36.14 96.24 34.78 0.22 0.08 8.08 2.92 135.17 48.85
TRD TRD-V-B-1 12.55 118.57 14.88 0.49 0.06 3.27 0.41 344.94 43.29
TRD TRD-D-A-1 64.60 109.85 70.96 0.14 0.09 3.35 2.16 88.53 57.19
TRG TRG-V-E-1 3.52 96.79 3.40 0.09 0.00 1.70 0.06 257.81 9.06
TRG TRG-V-F-1 14.48 99.45 14.40 0.75 0.11 0.20 0.03 162.50 23.53
IGH-VJ-FR1 IGH-V-FR1-A-1 15.34 111.08 17.04 94.20 14.45 76.21 11.69 148.31 22.75
IGH-VJ-FR1 IGH-V-FR1-D-1 16.41 90.13 14.79 259.54 42.59 237.96 39.05 39.07 6.41
IGH-DJ IGH-D-A-1:#1:6C 8.29 118.24 9.80 121.46 10.07 115.17 9.55 93.87 7.78
IGK-VJ-Kde IGK-V-A-1 9.79 100.82 9.87 139.47 13.65 134.77 13.19 101.50 9.93
TRB-VJ TRB-V-AB-1 1.42 103.79 1.48 204.01 2.90 136.33 1.94 95.15 1.35
TRD TRD-V-A-1 14.37 50.49 7.26 165.69 23.81 156.51 22.49 68.63 9.86
TRG TRG-V-A-1 18.71 109.09 20.41 116.35 21.77 110.15 20.61 85.94 16.08

pe
rtu

rb
ed

all numbers are percentages (%)  ;  rep:replicate  ;  test of proportions vs cPT-QC rep1, dark grey:<1e-199,  light grey:<1e-99
CQ-TPcsremirp vs.  0% vs.  10% vs.  200%
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were still tagged as confirmed. Table 2 presents the full list
of the 46 rearrangements, with the NGS amplicon-based
reference nucleotide sequences in Supplementary Table S4.

QC aspects can be evaluated in ARResT/Interrogate

Information on the in silico QC based on both the cPT-QC
and cIT-QC is available in ARResT/Interrogate (Supple-
mentary Figure S1). Generic QC is also performed on
samples, specifically to check for low number of raw reads
and low percentage of reads with an identified junction.
Such samples are tagged as ‘QC-failed’ and excluded by
default to prevent the user from their unintended use.
However, the user is notified and has the option to include
them back in the analysis.

Marker identification and quantification

Abundances of lymphocyte subpopulations are frequently
not available for samples of patients with lymphoid
malignancies. Furthermore, as IG/TR NGS only reflects
relative representation of the rearrangements, it was
important to establish a calibrator that would allow us to
normalise sequencing reads to input DNA cells.

Analysis of our test dataset showed the utility of the cIT-
QC in marker identification and quantification. Excluding
cIT-QC reads, both diagnostic and aplastic samples seem to
harbour few highly abundant clones if simply based on the
number of reads (Fig. 3, Supplementary Table S5). How-
ever, the very high number of reads from only a very lim-
ited number of cIT-QC cells (120–440, dependent on the
number of cIT-QC rearrangements per primer set), in all
aplastic and a few of the diagnostic samples, are an indirect
yet clear indication of the restricted numbers of patient cells
harbouring rearrangements in those samples. From another
perspective, the total percentage of reads of cIT-QC is much
greater than that of patient rearrangements in those samples,
suggesting that also cIT-QC cells are more numerous than
patient cells with rearrangements. Consequently, after
quantification with the cIT-QC, marker abundances fall well
below the threshold indicating clonality. On the other hand,
and as expected, in most diagnostic samples cIT-QC reads
constitute a minority, indicating the true abundant presence
of patient cells with clonal rearrangements. Hence, using the
cIT-QC, a marker can be more accurately quantified and
identified.

ARResT/Interrogate user mode for marker
identification

A critical aspect of bioinformatic-based protocols is their
standardisation and usability, as evident from our experi-
ences within EuroClonality-NGS and EuroMRD. We have

thus designed ARResT/Interrogate to be flexible but also
‘lockable’. Flexibility comes from a deep parameterisation
of many aspects of the pipeline and the browser. At the
same time, we can lock down important parameters so that
users cannot inadvertently compromise the analysis. This
concept is called ‘user mode’ in ARResT/Interrogate, and as
a result of this study we have created a marker identification
user mode.

In this user mode, EuroClonality-NGS primer sets and
cIT-QC sequences are pre-selected and locked, as are other
pipeline options. A special samplesheet is available to
annotate samples with metadata, including providing num-
bers of sample input cells for quantification. The user
interface is simplified, with many non-essential functional-
ities (including many of the visualisations normally avail-
able) hidden from view, and with less user actions required
to load results. The minimum read-based percentage abun-
dance for a clonotype is pre-set to 5% for marker
identification.

Discussion

In this study, we introduce protocols developed within the
EuroClonality-NGS Working Group for QC and quantifi-
cation in NGS-based IG/TR marker identification. Both
laboratory and bioinformatic protocols are presented and
showcased on clinically relevant data.

The cPT-QC is used to monitor the primer performance
of each of the EuroClonality multiplex NGS assays; the
cIT-QC is spiked into each patient DNA sample for QC and
quantification. The use of ‘central’ highlights that these
controls should be as stable as possible and thus centrally
available at an applicable level (minimum at an intra-
laboratory level)—this is further discussed below in the
context of the cPT-QC.

Our experiments show that the cPT-QC is a valuable tool
to monitor reproducibility of results and to identify primer
perturbations and other deviations in the wet-lab protocol,
as they introduce detectable changes to the sequencing
profile. The addition of cPT-QC to each analysis allows to
check the primer and assay performance after sequencing.
Accidental deviations in the concentrations of single
primers within the multiplexed IG/TR primer sets can
be detected, performance failures of single primers can be
traced and consequences for the IG/TR analysis can
be estimated by analysis of cPT-QC data.

In our study, replicates of cPT-QC demonstrated high
reproducibility. Nevertheless, we are aware that reproduci-
bility across labs may be affected by a large number of other
variables, from consumables and equipment to users. Only
centralised access to consumables, for example, in the form
of a kit, and a comprehensive protocol, including the
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Table 2 cIT-QC: full list of gene rearrangements per primer set and human B/T cell line, with notes on their verification and clonotype annotation

Primer set Cell line Notes Clonotype (see Supplementary Information—Materials and
methods)

TRB-VJ JB6 VJ:Vb-(Db)-Jb V12–3=V12–4 6/14/4 J2–3
CASRLAGGPDTQYF pro

TRB-DJ JB6 DJ:Db-Jb D1 7/6/4 J2–2 VGTEITGELFF pop

TRG JB6 VJ:Vg-Jg V10 7/12/12 J1= J2 CAAWS*GW#KLF unp

TRG JB6 VJ:Vg-Jg V2 5/13/ J1= J2 CATWGSI*VNYYKKLF unp

TRB-VJ Karpas299 VJ:Vb-(Db)-Jb V20–1 1/22/6 J2–7
CSARAQIGSSPLEQYF pro

TRB-DJ Karpas299 DJ:Db-Jb D1 /2/6 J1–6 VGTGGLNSPLHF pop

TRG Karpas299 VJ:Vg-Jg V2 /13/4 JP2 CATWDGG*VP#SDWIKTF unp

TRG Karpas299 VJ:Vg-Jg V8 /2/5 J1= J2 CATWDR##YKKLF unp

IGH-VJ-FR1 ALL/MIK VJ:Vh-(Dh)-Jh V3–72 16/24/ J4 SPCPPRKN#YFDYW unp

IGH-VJ-FR1 ALL/MIK VJ:Vh-(Dh)-Jh V7–4–1 11/40/27 J4
TPYYYDSSGY*VP unp

IGK-VJ-Kde ALL/MIK Vk-Kde V2–24=V2D-24 26/6/20 Kde LGGR unk

IGK-VJ-Kde ALL/MIK VJ:Vk-Jk V1–39=V1D-39 6/7/5 J3 CQQSYSTGA#F unp

intron-Kde ALL/MIK Intron-Kde intron 4/2/ Kde
PCVCPIDAAVASFP##SPSGSPGR unk

Intron-Kde ALL/MIK Capture: low% Intron-Kde intron 4/6/1 Kde
PCVCPIDAAVASFPSL#SPSGSPGR unk

TRD ALL/MIK VJ:Vd-(Dd)-Ja V2 5/21/4 J29
CACAQGGPRS#SGNTPLVF unp

TRG ALL/MIK VJ:Vg-Jg V2 /5/8 JP1 CATWDGP#GWFKIF unp

TRG ALL/MIK VJ:Vg-Jg V5 2/3/ JP1 CATWDTYTTGWFKIF pro

TRB-VJ MOLT-13 VJ:Vb-(Db)-Jb V10–1 6/18/1 J1–1
CASRRVRRDRNTEAFF unp

TRB-DJ MOLT-13 DJ:Db-Jb D1 //6 J1–5 VGTGG#QPQHF pop

TRB-DJ MOLT-13 DJ:Db-Jb D2 /4/3 J2–3 VGTSGRA#TDTQYF pop

TRD MOLT-13 VJ:Vd-(Dd)-Jd V1 1/9/ J1 CALGEPGGYTDKLIF pro

TRG MOLT-13 VJ:Vg-Jg V3 /8/9 J1= J2 CATWDRPRLKKLF pro

TRG MOLT-13 VJ:Vg-Jg V8 3//3 JP1 CATWD#TGWFKIF unp

IGH-VJ-FR1 Raji Capture: low% VJ:Vh-(Dh)-Jh V3–11=V3–21=V3–48 2/40/3 J4
CARQRNDFSDNNSYYSNFDFW pro

IGH-DJ Raji DJ:Dh-Jh D6–13 8/12/6 J1 VGYSSIPPP#YFQHW pop

IGK-VJ-Kde Raji Vk-Kde V1–8 2/2/4 Kde CQQYYSYSVPSGSPGR unk

IGH-VJ-FR1 REH VJ:Vh-(Dh)-Jh V3–15 1/21/5 J6
CTTGMVRGVI#YYYYGMDVW unp

IGK-VJ-Kde REH VJ:Vk-Jk V2–29 5/4/ J4 *MQGIHLS#LTF unp

IGK-VJ-Kde REH Vk-Kde V3–20=V3D-20 4/1/ Kde
CQQYGSS##SPSGSPGR unk

Intron-Kde REH Intron-Kde intron 5// Kde
PCVCPINAAVASF##SPSGSPGR unk

TRB-VJ REH VJ:Vb-(Db)-Jb V20–1 1/2/26 J2–7 CSARG unp

TRD REH VD:Vd-Dd3 V2 7/3/ D3 CACLLGDTH unk

TRD REH VJ:Vd-(Dd)-Ja V2 3/22/5 J29
CACDPYGGGSP#SGNTPLVF unp

TRG REH VJ:Vg-Jg V9 1/2/3 J1= J2 CALWEV#YYKKLF unp

TRG REH VJ:Vg-Jg V4 10/14/3 J1= J2 CATLF*R#YYKKLF unp

IGH-VJ-FR1 TMM VJ:Vh-(Dh)-Jh V1–24 /28/8 J5
CATDQAISGVVKSFDPW pro
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equipment used, will further improve inter-laboratory
comparability of results. Besides, activities such as the
QC rounds organised bi-annually by ESLHO (eslho.org) are
an opportunity to gather data and experience, compare assay
performance and identify relevant factors introducing var-
iations. Until full inter-laboratory standardisation is

guaranteed, the implementation of the cPT-QC will require
that the reference samples are analysed in each laboratory
separately, and updated with every new batch of reagents,
while keeping track of equipment and users. These refer-
ence data can then be stored in ARResT/Interrogate, which
has the ability to store as many different such sets of

Table 2 (continued)

Primer set Cell line Notes Clonotype (see Supplementary Information—Materials and
methods)

IGH-DJ TMM DJ:Dh-Jh D2–2 3/13/ J3
VRIL**YQLLLNSANDAFDIW pop

IGK-VJ-Kde TMM Vk-Kde V2–30=V2D-30 /7/3 Kde
CMQGTHWRPGR#PSGSPGR unk

IGH-VJ-FR1 TOM-1 VJ:Vh-(Dh)-Jh V4–55 1/17/10 J6
CARWAGTTG#YYGMDVW unp

TRD TOM-1 VD:Vd-Dd3 V2 3/3/2 D3 CACDL#GDTH unk

TRD TOM-1 VD:Vd-Dd3 V2 8/4/ D3 CAFLLGDTH unk

TRG TOM-1 VJ:Vg-Jg V5 8//18 J1= J2 CAT#F unp

IGH-VJ-FR1 WSU-NHL VJ:Vh-(Dh)-Jh V6–1 1/22/19 J6
CARGTYAAKASMDVW pro

IGH-DJ WSU-NHL DJ:Dh-Jh D2–2 1/1/8 J4 VRIL**YQLLY#DYW pop

IGK-VJ-Kde WSU-NHL Not in capture VJ:Vk-Jk V1–17=V1D-17 1//4 J4 CLQHNSYP#TF unp

Intron-Kde WSU-NHL Not in capture Intron-Kde intron 2//3 Kde
PCVCPIDAAVASFP##PSGSPGR unk

See Supplementary Table S4 for NGS amplicon-based full nucleotide reference sequences. cIT-QC central in-tube quality/quantification control

5%

5%
0

10
20
30
40
50
60
70
80
90

100

%

spike-ins(%)

Marker (%)

diagnostic, B/T-ALL samples follow-up, B/T-aplastic samples

0
10
20
30
40
50
60
70
80
90

100

%

Cells (%)

Marker (%)

A.

B. *   *  *

cIT-QC %reads
marker %reads

after, marker %cells
before, marker %reads

cIT-QC vs. markers

markers before and 
after quantification

Fig. 3 Abundances of central in-tube quality/quantification control
(cIT-QC) and of markers before and after quantification, in the test
dataset. The line of marker abundances before quantification (in
orange) is shared in both plots for reference. The 5% threshold used for
marker identification is shown in both plots. a Abundance in percen-
tage of reads (“%reads”) of cIT-QC (in blue) and of markers before
quantification (in orange), in diagnostic (left half) and follow-up
aplastic (right half) samples. As expected because of the nature of the
samples, the cIT-QC is generally most abundant where patient cells
with clonal rearrangements are not, and vice versa. Note: For cIT-QC
(in blue), the denominator is all reads with junction; for markers (in

orange), it is what we term ‘usable’ reads with junction, which
excludes cIT-QC reads; this may lead to sums of those two numbers
that exceed 100% per sample. b Abundance of markers before (in
orange) and after (in green) cIT-QC-based quantification to percentage
of patient input cells (“%cells”). Quantification of markers in the
aplastic samples places their abundances below the 5% threshold
routinely used in marker identification and in the EuroClonality-NGS
protocols. Note: When cIT-QC read counts are very low, indicating
clonality, quantification factors may lead %cells to exceed 100%; three
such cases in the test dataset are indicated by an asterisk (“ * ”)
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reference data as needed, for example, linking a specific set
to a specific user if necessary.

In this study we also highlighted a number of unique and
advantageous properties of the cIT-QC. In contrast to
plasmids or synthetic reference templates, cIT-QC cell lines
are particularly well suited to be used as control because
they are sources of large quantities of genomic DNA.
Second, the nine cell lines with a total of 46 rearrangements
represent as few cell lines as possible while covering each
primer set by at least three different rearrangements, taking
advantage of ALL cell lines harbouring not only lineage-
associated but also cross-lineage rearrangements. Third, the
rearrangements are unambiguously detectable with
amplicon-based NGS. Fourth, the variable region of IGHV-
(IGHD)-IGHJ gene rearrangements are not/lowly mutated
and therefore minimise issues with primer annealing. Fifth,
cIT-QC rearrangements represent 2/3 of the amplifiable
junction classes (in italics in Supplementary Table S1) over
all eight primer sets, and thus offer an opportunity to
highlight a number of issues, most obviously over-/under-
amplification, but also bioinformatic misidentification.
Additionally, cIT-QC rearrangements can replace MNC for
PCR stability without influencing the patient immune
repertoire (since cIT-QC rearrangements are identified and
by default excluded from the results).

Our cIT-QC enables the conversion from reads to cells,
which is of utmost importance for clinical use. Diagnostic
material being analysed for MRD marker identification can
show abundances of particular clonotypes that do not reflect
the clonal composition of the sample. For example, if the
diagnostic sample is highly infiltrated by a lymphoid
malignancy that does not harbour a targetable rearrange-
ment, the (few) residual lymphoid cells would generate the
whole spectrum of detectable rearrangements; in such
situations minor accompanying physiological B or T cell
clones could be misassigned as clones with leukaemic
markers. In the accompanying study by Brüggemann et al.
[21], where 134 clonal signals with abundance >5% were
detected by NGS but not by Sanger sequencing, cIT-QC
quantification reduced the abundances of 71 (53%) of them
below the 5% threshold.

In addition to its use in marker identification, and as
exemplarily shown for B and T cell depletion in aplastic
follow-up samples, the cIT-QC is of utmost relevance for
MRD quantification in samples on or after treatment, in
particular if B or T cell-directed therapy was applied, which
minimises the background of polyclonal gene rearrange-
ments. If the relative tumour burden is calculated by the
ratio of leukaemia-specific reads to all annotated reads
without any quantification, the quotient reflects the marker
frequency only among cells carrying a particular type of
rearrangement (e.g. IG rearrangements in B cells) and might
thus heavily overestimate the tumour load [26].

Quantification values over 100% (examples in Fig. 3b
and Supplementary Table S5) show that using the cIT-QC is
still a semi-quantitative approach, potentially affected by
amplification biases. However, there is to date no other
scientific or commercial solution available that exceeds our
methodology in its broad applicability (universal IG/TR
approach) and/or allows precise absolute quantification
[12, 27–29].

Finally, the QC protocols are embedded in ARResT/
Interrogate, which informs users with reports and messages
and allows them, for example, to include the QC-failed
samples back into the analysis. The logic behind this is that
the ‘fail’ flag simply indicates that our pre-defined QC
criteria were not met, and not that the data are corrupt
beyond use. Nevertheless, flagged data should always be
used with caution, and dependent on the application or
question.

In summary, our study showcases the applicability of
two reference standards, developed by the EuroClonality-
NGS Working Group, which allow standardised analysis of
IG/TR NGS data (using the EuroClonality-NGS primer
sets) with high reproducibility, accuracy and precision
in marker identification. With ARResT/Interrogate, a com-
plete in silico solution accompanying the in vitro assays
was built, enabling an analysis of IG/TR sequences
including all quality criteria and quantification concepts
necessary for valid marker identification in lymphoid
malignancies.
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