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Duck hepatitis A virus type 1 (DHAV-1) is one of the most common and lethal pathogens 
in young ducklings. Live-attenuated DHAV vaccine (CH60 strain) developed by passag-
ing in chicken embryos provided effective immune protection for ducklings. However, the 
accurate mechanism for such adaption in chicken embryos is not fully revealed. Here, we 
utilize RNA-sequencing to perform global transcriptional analysis of DHAV-1-innoculated 
embryonated livers along with histopathological and ultrastructural analysis. This study 
revealed that infection with DHAV-1 strain CH60 is associated with enhanced type I and 
II interferon responses, activated innate immune responses, elevated levels of suppres-
sor of cytokine signaling 1 and 3 (SOCS1 and SOCS3) accompanied with abnormalities 
in multiple metabolic pathways. Excessive inflammatory and innate immune responses 
induced by the CH60 strain are related to severe liver damage. Our study presents 
a comprehensive characterization of the transcriptome of chicken embryos infected 
with DHAV-CH60 and provides insight for in-depth exploration of viral adaption and 
virus–host interactions.

Keywords: Duck hepatitis a virus type 1, transcriptomic analysis, chicken embryo models, innate immune  
system, SOCS

inTrODUcTiOn

Duck hepatitis A virus type 1 (DHAV-1), a member of the genus Avihepatovirus with character-
istics of the family Picornaviridae (1–8), was first reported in Long Island, New York in 1945. 
DHAV-1 poses a serious threat to the duck industry worldwide (9, 10). There was recently an 
outbreak of DHAV-1 infection in Japan, and the nucleotide sequences of outbreak PCR products 
exhibited 96% identity with the HB02 strain of DHAV-1, which was isolated in China (11). 
Therefore, this virus may have been introduced from an epidemic area into a pest-free area. 
DHAV-1 is one of the most common and lethal pathogens in young ducklings and is responsible 
for acute hepatitis characterized by petechial and ecchymotic hemorrhages of liver surfaces 
(12–14). Due to the need for prevention and control of this disease, many studies have focused 
on diagnostic methods (15–20).

Current studies on the pathogenicity of DHAV-1 have been limited to the innate immune response 
at the transcription level (21–24). However, the complex immunological mechanisms associated 
with DHAV-1 remain ill-defined, which is due to the lack of an available chicken embryo model. 
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Previous studies have proposed DHAV-1 infection in mature 
ducks as an alternative small-animal model for viral hepatitis 
(21). Nonetheless, there are limitations associated with duck 
models, such as the lack of duck-derived antibodies and the lack 
of stable animal sources.

The chicken embryo model is commonly used to investigate 
vertebrate biology (25), and several studies have utilized this 
animal model to explore complex mechanisms in recent years 
(26–29). Our lab has previously cultivated a chicken embryo-
attenuated strain of DHAV-1 that causes liver disease in ducks in 
a manner similar to DHAV-1 (30). Herein, we describe the first 
global transcriptional study of the liver in a specific-pathogen-
free (SPF) chicken embryo model of DHAV-1 infection. The 
study was undertaken to explore virus–host interactions in 
detail and provide insight into an alternative small-animal 
model.

MaTerials anD MeThODs

ethics statement
The study was approved by the Committee of Experiment 
Operational Guidelines and Animal Welfare of Sichuan Agricul-
tural University (the approved permit number is XF2014-18).  
Experiments were conducted in accordance with approved 
guidelines.

Viruses and animals
The virulent DHAV-1 CH strain and the attenuated DHAV-1 
CH60 strain were provided by the Institute of Preventive 
Veterinary Medicine, Sichuan Agricultural University. SPF 
embryonated eggs were infected with the CH strain at a concen-
tration of 107.88 copies/ml and the CH60 strain at a concentration 
of 107.65  copies/ml via the allantoic cavity. Viral copies were 
determined by quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR) (16).

Specific-pathogen-free embryonated eggs were purchased 
from Beijing Merial Vital Laboratory Animal Technology Co., 
Ltd. All eggs were incubated at 37.8°C in the same incubator and 
candled daily.

experimental Procedures
Twelve-day-old embryonated eggs were randomly divided into 
three groups (15 embryonated eggs in each group). The embryo-
nated eggs in the first group (CH group) received 0.12 ml of the 
DHAV-CH strain (107.88  copies/ml) via allantoic cavity inocula-
tion, the embryonated eggs in the second group (CH60 group) 
received 0.20  ml of the DHAV-CH60 strain (107.65  copies/ml)  
via allantoic cavity inoculation, and the final group (mock 
group) was inoculated with 0.20  ml of 0.75% physiological 
normal saline as a negative control. Three embryonated egg 
livers were collected from each group at 12, 24, and 36 h post 
infection (hpi), and six embryonated eggs livers were collected 
from each group at 48 hpi. The right lobes of the liver specimens 
were immediately cryopreserved in liquid nitrogen until RNA 
isolation was performed. Additionally, the left lobes of the liver 
specimens were split into two components: one was soaked in 

4% paraformaldehyde solution for histopathological examina-
tion, and the other was soaked in 2.5% glutaraldehyde solution 
for electron microscopy.

hematoxylin and eosin (he) staining, 
TUnel assay, and electron Microscopy
The livers soaked in 4% paraformaldehyde solution were dehy-
drated, embedded in paraffin, cut into 4-μm-thick sections, and 
stained with HE using standard procedures (31).

Four-micron sections from the CH60, CH and mock group at 
48 hpi were also used to perform terminal dUTP nick end labeling 
(TUNEL) using an In Situ Apoptosis Detection Kit (Boster Inc., 
Wuhan, China) according to the manufacturer’s instructions. 
Apoptotic cells were observed under a light microscope. The 
apoptotic nuclei were counted in four randomly selected non-
overlapping fields.

The livers from the CH60, CH, and mock groups obtained 
at 48  hpi were post-fixed in 1.0% osmium tetroxide. After a 
stepwise dehydration in acetone, samples were embedded 
in epoxy resin 618 and polymerized at 80°C for 72  h. Then, 
50-nm ultra-thin sections were prepared, collected on grids, 
and stained with uranyl acetate and lead citrate for subsequent 
examination with a Tecnai G2 F20 transmission electron 
microscope.

rna isolation, cDna library construction, 
and rna sequencing
Total RNA from the livers collected at 48  hpi was extracted 
using a mirVana miRNA Isolation Kit (Ambion) following the 
manufacturer’s protocol. There were three biological replicates 
for each group, with each replicate comprising pooled RNA from 
two embryonated eggs. RNA integrity was evaluated using an 
Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA). Samples with RNA integrity numbers (RINs)  >  7 
were subjected to subsequent analysis. Libraries were con-
structed using a TruSeq Stranded mRNA LT Sample Prep Kit 
(Illumina, San Diego, CA, USA) according to the manufacturer’s 
instructions. Then, these libraries were sequenced on an Illumina 
sequencing platform (HiSeqTM 2500 or Illumina HiSeq X 10), 
and 125/150-bp paired-end reads were generated.

Quantitative rT-Pcr
Gene expression levels were determined by performing qPCR 
using a SYBR® Premix Ex Taq™ II (Tli RNaseH Plus) Kit 
(TaKaRa) and an Applied CFX96 real-time PCR detection system 
(Bio-Rad, Hercules, CA, USA). Primer sequences were specifi-
cally designed for suppressor of cytokine signaling 1 (SOCS-1), 
SOCS-3, STAT1, STAT3, IRF-1, IRF-7, IFN-α, IFN-β, IFN-γ, IL-6, 
IL-10, TLR3, TLR7, and GAPDH using Primer Premier 5 (Table 
S1 in Supplementary Material). Amplification was performed in 
10-µl reactions containing 0.4 µl of each primer and 1 µl of cDNA. 
The following thermal cycling conditions were used: initial acti-
vation at 95°C for 30 s, 40 cycles of denaturation at 95°C for 5 s, 
and annealing and extension at 58.6°C for 30 s, and a dissociation 
curve analysis step. Fold change was determined using the 2−ΔΔCt 
method (32).
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FigUre 1 | Gross lesions and histopathological lesions in CH- or CH60-
infected livers of embryonated eggs. Embryonated eggs were infected with 
the CH or CH60 strain, and then the livers were collected and soaked in 4% 
paraformaldehyde solution at 12, 24, 36, and 48 hpi. Microscopic lesions 
were observed under an optical microscope; magnification, 600×.
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analysis of Differentially expressed genes 
(Degs), cluster analysis, and gene 
Ontology (gO) and Kegg enrichment
FPKM (33) and read count values of each transcript (protein 
coding) were calculated using Bowtie 2 (34) and eXpress (35). 
DEGs were identified using the DESeq (36) (2012) functions 
estimateSizeFactors and nbinomTest. P-value <0.05 and fold 
change >2 or fold change <0.5 were set as the thresholds  
for significant differential expression. Hierarchical cluster 
analysis of the DEGs was performed to explore the transcript 
expression pattern. GO enrichment and KEGG (37) pathway 
enrichment analysis of the DEGs were performed using the 
hypergeometric distribution test with the Phyper function in 
the R software package. Significantly-enriched unigenes were 
selected based on a q-value of 0.05 (adjusted p-values were 
found using an optimized FDR). The distribution of unigenes 
within each GO/pathway category was determined by map-
ping all differentially expressed unigenes to terms in the GO  
and KEGG databases.

Methylation-specific Pcr (Ms-Pcr)
SOCS3 gene methylation status in the livers of the mock, 
CH, and CH60 groups was analyzed by MS-PCR with DNA 
treated with an EZ DNA Methylation-Lightning™ Kit (Zymo 
Research, Orange, CA, USA) according to the manufacturer’s 
instructions. The primers for the methylated sequences were 
FM-SOCS3 (5′-TGTTAACGGGTATTTGGATTTTTAC-3′) and 
RM-SOCS3 (5′-CCTAACACTCCTCTACTTACACGAA-3′), 
and the primers for the unmethylated sequences were FU-SOCS3 
(5′-TTAATGGGTATTTGGATTTTTATGA-3′) and RU-SOCS3 
(5′-TCCCTAACACTCCTCTACTTACACAA-3′). PCR was per-
formed in a total volume of 10 µl, containing 5 µl of 2 × TSINGKE 
Master Mix, 0.3  µl of each primer, and 0.5  µl of treated DNA. 
Cycling conditions were as follows: the reaction was hot-started 
at 95°C for 5 min, followed by 32 cycles of denaturation at 95°C 
for 60  s, annealing at 55°C for 30  s, and extension at 72°C for 
30 s; then, a final extension was performed at 72°C for 7 min. Ten 
microliters of the PCR product was electrophoresed on a 1.5% 
agarose gel stained with ethidium bromide and imaged under UV 
light. Normal liver tissue DNA treated with SssI methylase and 
modified with sodium bisulfite according to the manufacturer’s 
instructions (New England Biolabs, Beverly, MA, USA) was used 
as a positive control, and ddH2O was used as a negative control.

resUlTs

gross lesions and histopathological 
analysis
Embryonated eggs were collected at 12, 24, 36, and 48 hpi, and 
we found that the gross lesions of the CH60-infected embryos 
underwent dynamic changes and peaked at 48 hpi, exhibiting 
obvious hemorrhage and swelling (Figure  1-A12). However, 
none of the CH-infected embryonated eggs exhibited gross 
lesions. Then, liver sections were collected and soaked in 4% 
paraformaldehyde solution for histopathological examina-
tion. We observed ecchymotic hemorrhage in the livers of 

CH60-infected embryonated eggs at 48  hpi (Figure  1-B12), 
which corresponded to histopathological lesions. We observed 
infiltration of the hepatic sinusoids by large numbers of red 
blood cells, which was accompanied by disordered hepatic 
cords in the livers of CH60-infected embryonated eggs at 
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FigUre 2 | Transmission electron microscopy analysis of liver tissue of the mock, CH and CH60 groups at 48 hpi. A: mock group; A2 and A4 are magnifications  
of the red boxes in A1 and A3, respectively. B: CH group. B2 and B4 are magnifications of the red boxes in B1 and B3, respectively. C and D: CH60 group. C4, D2, 
and D4 are magnifications of the red boxes in C3, D1, and D3, respectively.
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48 hpi. Additionally, parts of the cell nuclei underwent pykno-
sis, karyolysis, or karyorrhexis (Figure 1-C12). For further his-
topathological analysis, we used electron microscopy to observe 
the livers of CH60-infected embryonated eggs at 48 hpi.

electron Microscopy and apoptotic 
analysis
Transmission electron microscopy (TEM) analysis of the embryo-
nated egg liver tissue samples from the mock, CH, and CH60 
groups at 48 hpi is shown in Figure 2. TEM images of the mock 
group showed clear nuclear structures and mitochondria in the 
hepatocytes (Figure  2A1,A2), and hepatic sinus endothelial 
cells were detected in the mock group (Figure 2A3,A4). There 
were no obvious differences in the nuclear and mitochondrial 
structures of the mock and CH groups (Figure 2B1); however, 
hepatic lipoid drops and autophagic vesicles were detected 
in the hepatocytes of the CH group (Figure 2B4). Compared 
to the mock and CH60 groups, hepatocytes in the CH group 
showed the accumulation of large amounts of glycogen 
(Figure  2B3,B4). TEM images of the CH60 group exhibited 
obvious pathologic changes, including the exit of large num-
bers of lipoid drops from the hepatocytes, expansion of the 

rough endoplasmic reticulum (Figure  2C2, blue arrow), and 
swelling of the mitochondria where the ridge was fractured 
(Figure  2C2, black arrow). Moreover, there were abundant 
secondary lysosomes (Figure 2C3,C4,D3,D4, red arrow) and 
lysosomal residues (Figure 2D2, green arrow), and organelles 
such as mitochondria were autophagocytosed (Figure  2C1, 
yellow arrow).

Then, we also stained the same liver tissue to detect TUNEL 
and counted the number of apoptotic nuclei. We observed 
obvious differences in apoptosis between the CH60 and mock 
groups (p = 0.011, Figure 3B); interestingly, most of the apop-
totic cells were detected in the hepatic sinusoids (Figure 3A).

Transcriptional Profiling of sPF 
embryonated eggs infected With the 
DhaV-1 ch or ch60 strain
We performed transcriptional profiling of CH60-infected livers 
using the most severe lesions. Total RNA from the livers (48 hpi) 
of CH- or CH60-infected embryonated eggs and from the livers 
of mock-infected embryonated eggs was analyzed by RNA-Seq. 
Three biological replicates, each comprising pooled RNA from 
two embryonated eggs, were sequenced using three lanes of the 
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FigUre 3 | TUNEL assay of the livers of CH- or CH60-inoculated embryonated eggs at 48 hpi. (a) TUNEL staining of the livers of the mock, CH, and CH60 groups 
at 48 hpi. (B) Number of apoptotic nuclei identified by TUNEL staining. Student’s t-test was used for statistical analysis to compare the mock and treated groups.
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Illumina HiSeq 2000 platform. Quality control analyses and 
read alignment data are shown in Figure S2 in Supplementary 
Material. DESeq Software was used to identify DEGs in the differ-
ent infected livers. The list of DEGs (q < 0.01 and fold change > 4) 
and the up- and downregulated genes are provided in Table S2  
in Supplementary Material.

Differential gene expression analysis
We analyzed the DEGs among the mock, CH, and CH60 groups 
with DESeq2. Compared with the mock group, the CH and 
CH60 groups contained 150 and 2,336 DEGs, respectively 
(p-value < 0.05 and fold change > 2). In addition, there were 
2,191 DEGs between the CH60 and CH groups, 1,732 of which 
were shared between the CH60 and mock groups (Table  1). 
To further analyze the DEGs, we selected more stringent filter 
conditions (p-value  <  0.01 and fold change  >  4). Following 
comparison with the mock and CH groups, there were 844 
and 718 DEGs in the CH60 group, respectively. These results 
were clearly visualized by clustering the samples by differential 
treatment and by constructing a volcano plot of the DEGs 
(Figure 4).

DhaV-1-Mediated changes in expression
There was a clear difference in the number of DEGs between 
the CH and CH60 groups compared with the mock group (the 
CH group had 150 DEGs, and the CH60 group had 2,336 DEGs; 
p-value < 0.05 and fold change > 2). These DEGs reflected the 
differential responses of the host to these two different virulent 
viruses. Therefore, we performed GO analysis and KEGG 
pathway analysis to filter the biological processes and pathways 

TaBle 1 | Number of differentially expressed genes between comparisons*.

individual comparisons Overlapping genes 
between comparisons

comparison p-Value < 0.05  
Fc > 2

p-Value < 0.01 
Fc > 4

Mock vs 
ch

Mock vs 
ch60

ch vs 
ch60

Mock vs CH 150 10 – 72 73

Mock vs CH60 2,336 844 24 – 1,732
CH vs CH60 2,191 718 20 603 –

*Number above “–” indicates DEG at p-value < 0.05 and fold change > 2 between 
indicated comparisons. Number below “–” indicates DEG at p-value < 0.01 and fold 
change > 4 between indicated comparisons.
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FigUre 4 | Analysis of differentially expressed genes (DEGs) of the mock, CH, and CH60 groups (p-value < 0.01 and fold change > 4). A heatmap was used to 
classify the gene expression patterns, and a volcano plot displayed the number of DEGs. (a,B) The x-axis represents the experimental conditions. (c) Volcano plot 
of DEGs between the CH and CH60 groups. (D) Volcano plot of DEGs between the MOCK and CH60 groups. The y-axis indicates the negative logarithm of the 
p-value; the x-axis indicates the base 2 logarithm of fold change.
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impacted by DHAV-1. When comparing the CH group to the 
mock group, 150 genes were observed to be significantly dif-
ferentially expressed (p-value < 0.05 and fold change > 2), and 
most of these genes are involved in interactions between neuroac-
tive ligands and receptors, such as CHRNA4, GABRB2, GRIA4, 
GRM7, and OPRM1 (Figure S4B in Supplementary Material). 
However, comparison of the CH60 and mock groups yielded 844 
DEGs (p-value < 0.01 and fold change > 4) involved in multiple 
biological processes and pathways.

Gene ontology enrichment indicated that multiple vital biolo-
gical processes are involved in CH60 strain infection (Figure 5A), 
including inflammatory response, cytokine-mediated signaling 

pathway, defense response to virus, cellular response to interferon 
gamma, and immune response. By tracking the genes involved 
in these biological processes, we found IL10 (FC = 371.6) and 
IL18 (FC = 8.8) to be significantly upregulated in the inflam-
matory response. SOCS1 (FC = 45.8), SOCS3 (FC = 117.6), and 
IFN-β (FC = INF) participate in the cytokine-mediated signal-
ing pathway; and IL6 (FC = INF), OASL (FC = 1,526.6), IFIT5 
(FC =  1,558.6), TLR3 (FC =  11.3), and IRF1 (FC =  46.9) are 
involved in the defense response to virus. Additionally, IFN-γ 
might play a crucial role in DHAV-1 CH60 infection. Four key 
chemokines, CCL4 (FC = 372.7), CCL19 (FC = 128.5), CCL26 
(FC = 18.9), and CX3CL1 (FC = 20.5), participate in the cellular 
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FigUre 5 | Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs). The z-score is assigned to the x-axis, and the negative logarithm  
of the adjusted p-value is assigned to the y-axis. The areas of the displayed circles are proportional to the number of genes assigned to the term, and the colors 
correspond to the categories. (a) GO enrichment analysis of DEGs between the mock group and CH60 group (p-value < 0.01 and fold change > 4). (B) GO 
enrichment analysis of DEGs between the CH group and CH60 group (p-value < 0.01 and fold change > 4).
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response to IFN-γ (Table S3 in Supplementary Material). Among 
the abovementioned biological processes, defense response to 
virus was the only common biological process during CH strain 

infection (Figure S4A in Supplementary Material). Furthermore, 
by analyzing GO enrichment of DEGs between the CH group 
and the CH60 group, we found that the identified biological 
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FigUre 6 | KEGG enrichment analysis of differentially expressed genes (DEGs) (p-value < 0.01 and fold change > 4). Circles and triangles represent KEGG 
enrichment analyses of the DEGs between the CH and CH60 groups and the DEGs between the mock and CH60 groups, respectively. The colors of the circles  
and triangles indicate p-value; the sizes indicate the number of genes assigned to the term.
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processes almost completely overlapped with those identified 
by GO enrichment of DEGs between the mock group and the 
CH60 group (Figure 5B).

Three pattern recognition receptor signaling pathways of the 
innate immune system were activated by CH60 infection, namely, 
the toll-like receptor signaling pathway (TLR3, MYD88, IKKε, 
IRF7, and MD-2), the retinoic acid-inducible gene I (RIG-I)-like 
receptor signaling pathway (MDA5, LGP2, TRIM25, and STING), 
and the nucleotide oligomerization domain (NOD)-like recep-
tor signaling pathway (RIPK2, Caspase1, and TNFAIP3); another 
key signaling pathway, the JAK–STAT signaling pathway 
(SOCS1, SOCS3, STAT1, STAT2, and STAT4), was also involved 
(Figure 6).

Duck hepatitis A virus type 1 CH60 infection led to abnor-
malities in multiple metabolic pathways in the liver (Figure 6).  

For example, in tryptophan metabolism (Figure S5A in Sup-
plementary Material), the expression of tryptophan hydroxylase 
1 (TPH1, FC  =  61) and tryptophan 2,3-dioxygenase (TDO2, 
FC  =  4.2) was upregulated, potentially affecting tryptophan 
biosynthesis after CH60 infection. In terms of fatty acid bio-
synthesis (Figure S5B in Supplementary Material), we found 
that expression of the key protein fatty acid synthase (FASN) 
was 10-fold higher after CH60 infection, potentially stimulating 
fatty acid synthesis. This finding was consistent with the obser-
vation of large numbers of fat particles by TEM. In addition, we 
were interested in a vacuolar ATPase, ATP6V1G3 (FC = 873), 
in the phagosome membrane (Figure S5C in Supplementary 
Material), which played an important role in the evolution of 
the phagosome (38), consistent with observations of the phago-
some by TEM.
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FigUre 7 | Confirmation of differentially expressed genes by RT-PCR and methylation status of SOCS3. (a) Gene expression levels were measured by the 2−ΔΔCt 
method with relative quantification. Differences in the expression levels of the various genes between strains CH and CH60 were analyzed using Student’s t-test  
and were considered significant as follows: *p < 0.05; **p < 0.01; (B) Methylation status of the SOCS3 gene in liver tissues from Duck hepatitis A virus type 1 
(DHAV-1)-infected embryonated eggs. DNA from the liver tissues of embryonated eggs infected with DHAV-1 at 48 hpi was subjected to methylation-specific  
PCR. M, methylation-specific primers; U, non-methylation-specific primers.
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confirmation of Differential gene 
expression and Methylation status  
of sOcs3
We confirmed expression of 13 critical DEGs, namely, SOCS-1, 
SOCS-3, STAT1, STAT3, IRF-1, IRF-7, IFN-α, IFN-β, IFN-γ, 
IL-6, IL-10, TLR3, and TLR7, by qRT-PCR in the same samples. 
Compared to the CH group, gene expression was significantly 
higher in the CH60 group (Figure 7A). Importantly, the genes 
identified by qRT-PCR exhibited similar expression levels as 
those detected via transcriptomic analysis. Furthermore, we 
determined the methylation status of SOCS3 in the livers of 
the mock, CH, and CH60 groups. All samples showed SOCS3 
hypermethylation (Figure 7B).

DiscUssiOn

Herein, we describe the first global intrahepatic transcriptional 
profiles of embryonated eggs infected with the virulent DHAV-1 
CH strain or the attenuated CH60 commercial vaccine strain and 
combined the results with microstructural and ultrastructural 
analyses to compare the effects of the two strains. Notably, the 
hepatic sinusoids were infiltrated by large numbers of red blood 
cells, which was accompanied by disordered hepatic cords and 
granular degeneration in the livers of CH60-infected embryo-
nated eggs, consistent with liver injury in duck embryos infected 
with DHAV-1 (21). We also observed abundant lysosomes 
and secondary lysosomes in TEM images of the CH60 group 

(Figure  2). A similar hepatotropic virus, hepatitis A virus, 
utilized lysosomal organelles to facilitate nonlytic viral release, 
and final maturation was catalyzed by lysosomal proteases (39). 
Therefore, we hypothesized that a similar phenomenon occurred 
in the livers of DHAV-1-infected embryonated eggs. Moreover, 
the mitochondria in the livers of the CH60 group were slightly 
swollen where the ridge was fractured (Figure  2), which was 
consistent with mitochondrial injury in ducks infected with 
DHAV-1 (40). The mitochondrial apoptosis pathway is the main 
pathway of apoptosis, and damaged mitochondria are likely to 
affect apoptosis (41, 42). There was obvious apoptosis in the livers 
of CH60-infected embryonated eggs. Notably, several apoptotic 
cells clung to hepatocytes, and we speculate that these cells might 
be apoptotic hepatic stellate cells. The current study revealed that 
the liver can repair fibrosis by inducing the apoptosis of hepatic 
stellate cells (43, 44).

The fundamental role of the innate immune system is to 
detect invading viruses, induce inflammatory responses, produce 
cytokines, and chemokines to fight against viral infection, and 
most importantly, activate adaptive immunity (45, 46). Invading 
viruses are detected by pattern-recognition receptors (PRRs), 
which include toll-like receptors, RIG-I-like receptors, and NOD-
like receptors. We found that the CH60 strain could be detected 
by multiple PRRs, especially TLR3 and TLR7. Once TLR3 and 
TLR7 sense viral RNA, downstream molecules (IRF3 and IRF7) 
are activated, resulting in induction of type I IFN, including 
IFN-α and IFN-β. This mechanism corresponds with our 
results (Figure 7). The inflammatory response is a double-edged 
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sword that plays an important role in liver metabolism. A mild 
inflammatory response exerts consistent hepatoprotective effects. 
Conversely, excessive inflammation may cause liver damage (47). 
Previous studies have indicated that DHAV-1 induces exces-
sive inflammatory responses and causes tissue damage in the 
liver (21, 48) and kidney (1). In our study, a pro-inflammatory 
mediator (IL-6) and an anti-inflammatory mediator (IL-10) were 
significantly upregulated during CH60 infection, combined with 
severe pathological damage. Inflammation is known to be driven 
by apoptosis in the liver (49). Apoptosis was visibly induced by 
the CH60 strain. Therefore, we hypothesized that CH60 infec-
tion induced apoptosis in the liver, that hepatocyte apoptosis 
drove inflammation in the liver, and that excessive inflammatory 
responses caused liver damage. To directly attack invading viruses, 
the innate immune system produces a mass of cytokines and 
chemokines. Based on GO enrichment analysis, genes express-
ing cytokines (IFN-β, IFN-γ, OASL, IFIT5) and chemokines  
(CCL4, CCL19, CCL26, and CX3CL1) were significantly upregu-
lated and played an antiviral role during CH60 infection.

Notably, expression of IL-10 was significantly upregulated 
in the livers of CH60-infected embryonated eggs. As an anti-
inflammatory mediator, IL-10 suppresses inflammation via 
various mechanisms, including reducing HLA class II expres-
sion, decreasing T  cell secretion of IL-2, and diminishing the 
production of IL-1, TNF-α, and IL-8 by activated monocytes/
macrophages (50, 51). Furthermore, we found that expression 
of IL-1, IL-2, TNF-α, and IL-8 was not significantly changed 
in CH60-infected livers (Table S1 in Supplementary Material); 
therefore, these cytokines may be suppressed by excessive expres-
sion of IL-10. Another key cytokine, IFN-γ, plays a vital role in 
CH60 infection. Unlike type I interferon, IFN-γ participates in 
innate and adaptive immunity by regulating the differentiation of 
natural T cells (52). According to studies investigating hepatitis 
E virus, high levels of TLR3 and a robust IFN-γ response are 
able to limit the disease, and hosts can recover uneventfully 
(53). Similar expression of TLR3 and IFN-γ was observed in our 
studies; however, the liver did not recover uneventfully, and we 
speculate that the virus may evade the innate immune system 
through an unknown mechanism.

Interestingly, we observed that expression of SOCS1 and  
SOCS3 was significantly upregulated in the livers of CH60-
infected embryonated eggs; hypermethylation of SOCS3 was 
confirmed. These two molecules are involved in the cytokine-
mediated signaling pathway according to GO enrichment. 
Notably, a similar phenomenon was observed in multiple hepati-
tis models (54–56). SOCS proteins were shown to be negative- 
feedback regulators of cytokine signaling mediated by the 
JAK–STAT signaling pathway, and cytokine signaling played an 
important role in the differentiation, maturation, proliferation, 
and apoptosis of various types of cells (57). The current study 
revealed that SOCS1 reduces induction of the IFN signaling 
pathway in chicken cells and can potentiate virus replication 
(58). A similar study revealed that SOCS1 downregulation by 
miRNA 155 enhances type I IFN expression and suppresses 
virus replication (59). In our study, we hypothesized that the 
CH60 strain may utilize SOCS1 to suppress expression of IFN-α, 
ultimately facilitating replication; however, further research is 

needed to verify this hypothesis. The JAK–STAT signaling path-
way is a central communication node for the immune system 
(60). KEGG analysis indicated that the JAK–STAT signaling 
pathway played a critical role in the livers of CH60-infected 
embryonated eggs. Expression of STAT1 and STAT3, two key 
genes in the JAK–STAT signaling pathway, was markedly 
upregulated. STAT3 plays an important role in liver inflamma-
tion and cancer. The pro-inflammatory mediator IL-6 exerts 
many of its functions via activation of STAT3 (61). A study 
investigating HCV revealed that HCV repressed the cellular 
antiviral response by upregulating STAT3 (62). However, inter-
actions among SOCS, IFN, and STAT during DHAV-1 infection 
are not fully understood, and further research is needed.

In summary, our study is the first to utilize the RNA-Seq 
platform for an in-depth exploration of virus–host interactions, 
and we identified a number of genes that were dysregulated 
during CH60 infection and jointly analyzed these genes with 
pathological lesions and apoptosis. Excessive inflammatory 
and innate immune responses induced by the CH60 strain 
caused severe liver damage. The alternative animal model 
described in this study will be used for further molecular 
exploration of viral hepatitis and to elucidate the pathogenesis 
of DHAV-1.
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