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Background: Pyroptosis is a critical type of programmed cell death that is

strongly associated with the regulation of tumor and immune cell functions.

However, the role of pyroptosis in tumor progression and remodeling of the

tumor microenvironment in gliomas has not been extensively studied. Thus, in

this study, we aimed to establish a comprehensive pyroptosis-related signature

and uncover its potential clinical application in gliomas.

Methods: The TCGA glioma cohort was obtained and divided into training and

internal validation cohorts, while the CGGA glioma cohort was used as an

external validation cohort. Unsupervised consensus clustering was performed

to identify pyroptosis-related expression patterns. A Cox regression analysis

was performed to establish a pyroptosis-related risk signature. Real-time

quantitative PCR was performed to analyze the expression of signature genes

in glioma tissues. Immune infiltration was analyzed and validated by

immunohistochemical staining. The expression patterns of signature genes in

different cell types were analyzed using single-cell RNA sequencing data.

Finally, therapeutic responses to chemotherapy, immunotherapy, and

potential small-molecule inhibitors were investigated.

Results: Patients with glioma were stratified into clusters 1 and 2 based on the

expression patterns of pyroptosis-related genes. Cluster 2 showed a longer
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overall (P<0.001) and progression-free survival time (P<0.001) than Cluster 1.

CD8+ T cell enrichment was observed in Cluster 1. A pyroptosis-related risk

signature (PRRS) was then established. The high PRRS group showed a

significantly poorer prognosis than the low PRRS group in the training cohort

(P<0.001), with validation in the internal and external validation cohorts.

Immunohistochemical staining demonstrated that CD8+ T cells were

enriched in high PRRS glioma tissues. PRRS genes also showed cell-specific

expression in tumor and immune cells. Moreover, the high PRRS risk group

showed higher temozolomide sensitivity and increased response to anti-PD1

treatment in a glioblastoma immunotherapy cohort. Finally, Bcl-2 inhibitors

were screened as candidates for adjunct immunotherapy of gliomas.

Conclusion: The pyroptosis-related signature established in this study can be

used to reliably predict clinical outcomes and immunotherapy responses in

glioma patients. The correlation between the pyroptosis signature and the

tumor immune microenvironment may be used to further guide the

sensitization of glioma patients to immunotherapy.
KEYWORDS

glioma, pyroptosis, prognosis, tumor-associated microenvironment, immunotherapy,
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Introduction

Pyroptosis is a specific type of programmed cell death

characterized by immune activation. It was previously

considered a form of apoptosis, since it shares some

characteristics with the latter, including caspase-dependence,

nuclear condensation with DNA damage, cell swelling, and

finally cell death (1). However, D’Souza et al. described this

pro-inflammatory cell death program in Salmonella-infected

macrophages, which was distinct from the non-inflammatory

cell death observed in apoptosis; they proposed the term

pyroptosis (2). Subsequent studies have discovered a canonical

mechanism of pyroptosis: activation of interleukin-1 converting

enzyme (ICE, also known as Caspase-1), cleaved gasdermin D

(GSDMD), pro-IL-1b, and pro-IL-18. The N-terminal domain of

GSDMD can oligomerize into the cell membrane to form

nonselective pores, leading to cell membrane rupture and

release of mature IL-1b and IL-18 (3). Recent studies have

further revealed the non-canonical pathways of pyroptosis,

involving Caspase-3/4/5/6/8/9/11 and granzymes (4–8).

Pyroptosis participates in innate immunity and is associated

with infectious and autoimmune diseases, nervous system

diseases, and tumor (9). However, controversy remains

regarding the role of pyroptosis in cancer, as different types of

pyroptosis activation lead to distinct effects in different types of

cancer. Therefore, a comprehensive analysis of the different

pyroptosis processes in specific types of cancers is needed.
02
Glioma is the most common primary malignancy of the

central nervous system and is characterized by high therapeutic

resistance and mortality. This is especially true for glioblastoma

(GBM), which is the most malignant type of glioma. Immune

checkpoint inhibitors (ICIs), such as anti-CTLA-4 and anti-PD-

1/PD-L1 monoclonal antibodies (mAb), have achieved great

success in other aggressive malignancies, such as melanoma

and non-small cell lung carcinoma (10, 11). Although

immunotherapy has achieved considerable success in

exceptional cases of recurrent GBM (12, 13), several

subsequent clinical trials evaluating anti-PD-1 therapy in

newly diagnosed or recurrent GBM have failed to show

clinical efficacy (14–16). The low response rate to ICIs

observed in GBM may be part ly attr ibuted to its

immunologically cold state with few T-cell infiltrations and the

predominance of immunosuppressive tumor-associated

macrophages (TAMs) (16, 17). Hence, inflammatory processes

such as pyroptosis may be promising targets to remodel the

tumor-associated immune microenvironment in glioma and

sensitize patients to immunotherapy.

A comprehensive understanding of the pyroptosis landscape

involving both canonical and non-canonical pathways in glioma

is still needed. Therefore, in the present study, we aimed to

investigate the pyroptosis-related expression pattern,

considering both canonical and non-canonical pathways in

gliomas, and to validate its value in predicting prognosis and

survival benefit from immunotherapy. A cluster model was
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established with pyroptosis-related genes focused on gene co-

expression patterns, and a risk signature was established based

on the prognostic subset from the above gene sets and focused

specifically on prognostic value and therapy response. Their

associations with genomic alterations in tumor driver genes,

clinicopathological characteristics, and prognosis were

investigated. Immune infiltration patterns in different

pyroptosis-related groups were analyzed, and the expression of

pyroptosis signature-related genes was confirmed in different

cell types using single-cell RNA sequencing data. Furthermore,

the relationship between pyroptosis-related signatures and

immunotherapy response was predicted and validated in

patients with GBM who received immunotherapy. Finally, a

potential targeted therapy based on a pyroptosis-related

signature that may synergize with immunotherapy was

predicted. This comprehensive analysis emphasizes the critical

role of pyroptosis in shaping the tumor-associated

microenvironment and its potential as a target for optimizing

glioma immunotherapy.
Methods

Data access and processing

RNA-sequencing data from TCGA-663, CGGA-325,

CGGA-693, and CPTAC-GBM cohorts with corresponding

clinical information were obtained from The Cancer Genome

Atlas (TCGA) database (version 28.0, https://portal.gdc.cancer.

gov/), the Chinese Glioma Genome Atlas (CGGA) database

(http://www.cgga.org.cn/index.jsp), and the Clinical Proteomic

Tumor Analysis Consortium (CPTAC) (18). Transcriptional

expression was evaluated using transcripts per million (TPM)

and was further normalized to log2 (TPM + 1). The

establishment of pyroptosis-related signature and internal

validation was performed based on the TCGA-663 cohort,

while the CGGA-325, CGGA-693, and CPTAC-GBM cohorts

were used for external validation. The baseline clinical

characteristics of glioma patients are shown in Supplementary

Table 1. Mutation and copy number variation data were

retrieved from the cBioPortal (http://www.cbioportal.org) for

the analysis of driver gene mutations. Mutation data were

downloaded from TCGA and visualized using the maftools

package in R to identify the somatic mutation landscape in

distinct pyroptosis-related subtypes.
Establishment of the pyroptosis-related
clusters

To obtain consensus clustering of glioma patients based on

genes related to both canonical and non-canonical pyroptosis as

previously described (19) (Supplementary Table 2), unsupervised
Frontiers in Immunology 03
clustering was performed using ConsensusClusterPlus package in

R based on 80% sample resampling for 10 repetitions (20). The

optimal number of clusters is determined using an empirical

cumulative distribution function plot.
Establishment of pyroptosis-related
risk signature

To establish the pyroptosis-related risk signature (PRRS),

univariate and multivariate Cox regression analyses were

performed using survminer in the R package. Briefly, univariate

Cox regression analysis was performed based on 26 pyroptosis-

related genes for overall survival. Significant factors (P< 0.05) were

then selected for multivariate Cox regression. The risk signature

was further calculated based on gene expression and the coefficient

in multivariate Cox regression analysis for each sample. Receiver

operating characteristic (ROC) curve analysis was performed to

assess the prognosis-predicted performance, and the area under the

curve (AUC) was calculated using timeROC in the R package.
Functional enrichment analysis based on
gene set enrichment Analysis and
STRING database

To explore the potential pathways associated with

pyroptosis-related signatures, GSEA software (version 3.0) was

obtained from the GSEA website (http://software.broadinstitute.

org/gsea/index.jsp), and enrichment analysis was then

performed based on differentially expressed genes (DEGs)

between pyroptosis-related subgroups (Cluster 1 vs. Cluster 2;

high-PRRS group vs. low-PRRS group, separated by the median

PRRS value), with the minimum number of genes set to 5, the

maximum number of genes set to 5000, and 1000 resampling; P

values< 0.05, and FDR< 0.25 were considered statistically

significant. The results were visualized using ggplot2 in the

R package.
Analysis of immune characteristics and
immune infiltration

To evaluate immune characteristics, the immuneScore and

stromalScore were calculated using the estimate package in R

(21). The tumor mutation burden (TMB) score was calculated

using maftools package in R (22) and the microsatellite

instability (MSI) score was obtained from a previous study to

evaluate genomic status (23). To assess the degree of oncogenic

differentiation, stemness indices (mRNA expression-based

stemness index, mRNAsi) for each sample were calculated

using a one-class logistic regression machine learning

algorithm as previously described (24). To characterize
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immune infiltration in glioma tissues, the immunedeconv R

package, which contains six different algorithms, including

TIMER, EPIC, MCP-counter, quanTIseq, CIBERSORT, and

xCell, was used (25).
Collection of glioma samples and
real-time quantitative PCR

Twelve clinical glioma samples were obtained from the

Department of Neurosurgery, Nanfang Hospital, Southern

Medical University, Guangzhou, China. RNA was extracted

from glioma tissues using TRIzol reagent and reverse-

transcribed (Takara Bio Inc., Shiga, Japan). For RT-qPCR,

cDNA was amplified using SYBR Green PCR Master Mix

(Yeasen Biotechnology, China), with three independent

replicates. Relative mRNA expression levels were normalized

to that of b-actin. The primers used for RT-qPCR are listed in

Supplementary Table 3. Prior consent was obtained from the

patients for the use of their clinical materials for research

purposes, and approval was obtained from the ethics

committees of Nanfang Hospital.
Immunohistochemistry

Paraffin sections prepared from clinical samples were used

for IHC to detect CD8 + T cell infiltration as previously

described (26). Mouse anti-CD8-a (cat. No. sc-7970, 1:100;

Santa Cruz Biotechnology, CA, USA) and goat anti-mouse

secondary antibodies (Cat. No. PV-9000, Zhongshan Jinqiao,

Beijing, China) were used. After incubation with the secondary

antibody, the sections were visualized with a DAB kit (Cat. No.

ZLI-9018, Zhongshan Jinqiao, Beijing, China), counterstained

with hematoxylin, and analyzed using a bright-field microscope

equipped with a digital camera (Nikon, Japan).
Analysis of PRRS gene expression pattern
with single cell RNA sequencing data

Single-cell RNA (scRNA) sequencing data for glioblastoma

were retrieved from a previous study that identified malignant

cells as CD45- cells with significant copy number alterations

(27). To specifically analyze the PRRS gene expression pattern in

tumor-associated macrophages (TAMs), another scRNA dataset

focused on CD45+ immune cells within glioblastoma tissues was

used (28). The data were analyzed using the seurat package in R.

Briefly, a series of quality filters was applied to the data to

remove cells with too few total transcript counts (< 1,000),

possible debris with too few genes expressed (< 200), possibly

more than one cell with too many genes expressed (> 7,500), too

many counts (> 7,500), and possible dead cells or a sign of
Frontiers in Immunology 04
cellular stress and apoptosis with a high proportion of

mitochondrial gene expression over the total transcript counts

(> 10%). Clustering was performed on K-nearest neighbor graph

using the Louvain algorithm according to the top 30 principal

component and cell types, including malignant and immune

cells, were assigned according to previous reports (27, 28).
Analysis of the correlation between PRRS
and therapeutic sensitivity

To evaluate the correlation between PRRS and temozolomide

sensitivity, the estimated half-maximal inhibitory concentration

(IC50) of temozolomide in each sample was estimated by ridge

regression using the pRRophetic package in R based on the

Genomics of Drug Sensitivity in Cancer (GDSC; https://www.

cancerrxgene.org) (29).

To evaluate the correlation between PRRS and immunotherapy

response, the potential response to anti-PD1 and anti-CTLA4

immunotherapy was predicted using the Submap tool in

GenePattern (https://cloud.genepattern.org/gp) with human

immunotherapy transcriptome data from a previous study (30).

Two immunotherapy cohorts [recurrent glioblastoma patients

treated with nivolumab or pembrolizumab, which are both anti-

PD1 mAb (31); metastatic urothelial carcinoma patients treated

with atezolizumab, which is an anti-PD-L1 mAb (32)] were used to

validate the predictive value of PRRS in response to PD-

L1 blockade.
Screening for the potential small
molecule compounds synergizing
immunotherapy

To further unravel the potential small molecule compounds

synergizing immunotherapy based on PRRS, weighted gene co-

expression network analysis (WGCNA) was performed to

identify the gene modules most associated with PRRS and

immuneScore using the WGCNA package in R in both TCGA

and CGGA cohorts (33). Then, DEGs between the high- and

low-PRRS groups were identified using the limma package in R

(P< 0.05 and |FC| > 1.5). Overlapping genes between the module

genes and DEGs were confirmed and imported into the STRING

database for functional enrichment. Connectivity map (CMap)

(https://clue.io/) is a well-established tool to predict potential

therapeutic drug candidates for specific genomic perturbation by

comparing disease-specific gene signatures with drug-specific

gene expression profiles (34, 35). Based on a gene expression

matrix of DEGs between the high- and low-PRRS groups,

potential small-molecule compounds associated with the

expression pattern and their corresponding mechanisms of

action were predicted using the CMap database and CMap

mode-of-action (MOA) analysis, respectively (35).
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Statistical analysis

All statistical analyses were performed using the R software

(version 4.0.2). An unpaired t-test was performed to compare two

normally distributed variables, whereas theWilcoxon rank-sum test

was performed for non-normally distributed variables. The

Kruskal–Wallis test or one-way analysis of variance was

performed to compare three or more variables based on the

results of the normal distribution criteria test. Spearman’s

correlation coefficient was used to determine correlations between

variables. The survminer package in R was used to compare the

survival status between the two groups, with Kaplan–Meier analysis

used to plot survival curves. The log-rank test was performed to

determine statistical significance, set at P< 0.05 (two-tailed).

Results

Expression pattern of pyroptosis-related
genes can separate glioma patients into
two clusters with distinct survival status

A schematic of the working flow is shown in Figure 1.

Using the 26 pyroptosis-related genes (Supplementary
Frontiers in Immunology 05
Table 2), the TCGA-glioma cohort was divided into two

clusters by consensus clustering (Figure 2A; Supplementary

Table 4), which showed satisfactory separation based on PCA

analysis (Figure 2B). Cluster 2 showed significantly longer

overall survival (OS) (HR = 0.18, 95% CI = 0.14–0.25, P<

0.001) and progression-free survival (PFS) (HR = 0.24, 95%

CI = 0.19–0.32, P< 0.001) than Cluster 1 (Figures 2C, D).

Within the GSDM family, GSDMB, GSDMC, GSDMD, and

GSDME have been well-studied and are known downstream

activating enzymes involved in pyroptosis (36). Therefore, the

expression patterns of these four genes were examined in two

clusters. While upregulated expression of GSDMB and

GSDMC was found in Cluster 2 compared to that in Cluster

1, Cluster 1 had higher GSDMD and GSDME expression levels

than Cluster 2, indicating that different pyroptosis pathways

may be activated in different pyroptosis-related clusters

(Figure 2E). Gene mutations are major drivers of

tumorigenesis and tumor progression (37, 38). Thus,

mutations in several driver genes in gliomas were assessed

(Figure 2F). While 39% of the patients in Cluster 2 were found

to possess IDH1 mutations, only 5% of the patients in Cluster

1 had IDH1 mutations (Figure 2F). Moreover, phosphatase
FIGURE 1

Schematic diagram of working flow.
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and tensin homolog deleted on chromosome ten (PTEN), a

tumor suppressor previously reported to promote pyroptosis

b y enab l i n g NLRP3 /ASC1 a s s emb l y v i a NLRP3

dephosphorylation (39), was found to be more frequently

mutated in Cluster 1 (Figure 2F). In addition, a higher
Frontiers in Immunology 06
missense mutation rate of the Drosophila gene capicua

(CIC) was found in Cluster 2 (Figure 2F), which has been

shown to correlate with better survival in glioma patients,

even with the co-occurrence of favorable markers including

IDH mutation and 1p/19q codeletion (40).
B

C D E

F

A

FIGURE 2

Expression pattern of pyroptosis-related genes could separate glioma patients into two clusters with distinct survival status. (A) Consensus
clustering of TCGA-glioma cohort (n=662) based on pyroptosis-related genes. (B) PCA plot showed the separation between Cluster 1 and
Cluster 2. (C, D) Survival analysis between Cluster 1 and Cluster 2 for OS and PFS, respectively. (E) Expression analysis of GSDMB, GSDMC,
GSDMD, and GSDME in Cluster 1 and Cluster 2. (F) Mutation landscape analysis of Cluster 1 and Cluster 2. PCA, principal component analysis;
IDH1, isocitrate dehydrogenase 1; TP53, tumor protein 53; ATRX, ATRX Chromatin Remodeler; TTN, titin; PTEN, phosphatase and tensin
homolog; EGFR, epidermal growth factor receptor; CIC, capicua transcriptional repressor; MUC16, mucin 16, cell surface associate; NF1,
neurofibromin 1; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; GSDMD, Gasdermin D. **P < 0.005;
***P < 0.001.
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The clinical characteristics and immune
infiltration status differ between Cluster 1
and Cluster 2

We further characterized the clinical and molecular

characteristics of Clusters 1 and 2. The pyroptosis-related genes

showed distinct expression patterns between Cluster 1 and Cluster

2, with significantly higher expression levels of GSDMD, CASP1,

CASP3, CASP4, and CASP8, and lower expression levels of P2RX7

and SAMR1 observed in Cluster 1. Cluster 1 was mainly composed

of glioblastomas and grade III gliomas, and Cluster 2 was mainly

composed of grade II gliomas (Figure 3A). Consistently, IDH1

mutations and MGMT promoter methylation were more frequent

in Cluster 2 (Figure 3A). The mDNAsi index (which reflects

epigenetic stemness features) and the mRNAsi index (which

reflects transcriptomic stemness features) were calculated, as

previously described (24). Although Cluster 1 possessed a lower

mRNAsi index, contradictory results were found for the mDNAsi
Frontiers in Immunology 07
index. This indicates that diverse stemness regulation processes

should be focused upon in Clusters 1 and 2 (Figure 3A;

Supplementary Figure 1). A higher ImmuneScore and increased

PD-L1 and CTLA-4 expression levels were identified in Cluster 1

(Supplementary Figure 1), suggesting a more immunosuppressive

tumor ecosystem. Furthermore, higher TMB and lower MSI scores

were observed in Cluster 1 (Figure 3A; Supplementary Figure 1;

Supplementary Table 5).

Immune infiltration of different clusters was evaluated using six

commonly used algorithms. It has been previously reported that

tumor-associated macrophages (TAMs) and CD8+ T cells were

considered the predominant immune cells involved in glioma

progression. Accordingly, most algorithms showed higher CD8+

T cell enrichment in Cluster 1. Additionally, higher infiltration of

bothM1 andM2macrophages was observed, especially in the latter

(Figure 3B). GSEA results showed that in several immune-related

pathways (including the IL-2, IL-6, IFN-g, and TNF-a pathways)

and the inflammatory response were highly enriched in Cluster 1
B

A

FIGURE 3

The clinical characteristics and immune infiltration status differ between Cluster 1 and Cluster 2. (A) Clinical and molecular characteristics of
Cluster 1 and Cluster 2. (B) Immune infiltration analysis based on TIMER, EPIC, MCP-counter, quanTIseq, CIBERSORT, and xCell algorithms.
*P < 0.05; **P < 0.005; ***P < 0.001.
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compared to in Cluster 2 (Supplementary Figure 1), indicating the

regulatory role of these pathways in modulating cluster-specific

immune microenvironments.
Establishment of the pyroptosis-related
risk signature

Pyroptosis-related clusters established with pyroptosis-related

genes focused on the gene co-expression pattern but were also

prognostic for glioma patients. To further confirm the prognostic

value of the pyroptosis-related signature and establish a scoring

system, the TCGA glioma cohort was divided into a training

cohort (n=229) and an internal validation cohort (n=430), and a

scoring system, called pyroptosis-related risk signature, based on

26 pyroptosis-related genes was then established by univariate and

multivariate Cox regression analysis (Supplementary Figure 2).

Eight pyroptosis-related genes were identified, and the final

formula for calculating PRRS was as follows:

RS = (0:9548� CASP5 expression level) + ( − 0:4692�
DMB expression level) + (0:1130� GZMA expression level) +

(0:5692� GZMB expression level) + (1:665�MEFV expression

level) + ( − 0:8230� NLRC4 expression level) +

( − 0:6217� SARM1 expression level) + (0:8052�
STAT3 expression level)

In the training cohort, patients were divided into low- and

high-PRRS groups based on the median value (Figure 4A); more

alive-status samples were in the low-PRRS group (Figure 4B).

The high-PRRS group had higher expression levels of CASP5,

GZMA, GZMB, MEFV, NLRC4, and STAT3 than the low-PRRS

group, whereas higher GSDMB and SARM1 expression levels

were observed in the low-risk group (Figure 4C). PRRS can

satisfactorily divide glioma patients into two groups with distinct

survival statuses. Specifically, the low-PRRS group had a

significantly longer OS than the high-PRRS group (median

OS: 9.506 and 4.085 years in the low-PRRS and high-PRRS

groups, respectively; Figure 4D), and PRRS also showed

satisfactory performance for 1-year, 3-year and 5-year OS

predictions (1-year AUC = 0.84, 3-year AUC = 0.76, and 5-

year AUC = 0.62; Figure 4E). In the internal validation cohort,

PRRS showed a similar prognostic value for glioma patients

(median OS: 5.622 and 1.537 years in the low- and high-risk

groups, respectively; HR = 3.576, 95% CI = 2.672–4.789,

P<0.001; Figure 4F–I). As in the training cohort, the AUC for

the 1-year, 3-year and 5-year OS were 0.80, 0.79, and 0.70,

respectively (Figure 4J).

The CGGA-325 and CGGA-693 cohorts were further used

for external validation, and PRRS showed robust performance

for prognosis prediction in these two cohorts (Supplementary
Frontiers in Immunology 08
Figures 3, 4). In CGGA-325 cohort, the low-PRRS group had a

significantly longer OS compared with the high-PRRS group

(median OS: 6.1 and 1.2 years in the low-PRRS and high-PRRS

groups, respectively; HR = 2.20, 95% CI = 1.67–2.89, P<0.001;

Supplementary Figure 3). PRRS also showed satisfactory

prediction performance in the CGGA-693 cohort (median OS:

6.8 and 1.7 years in the low-risk and high-risk groups,

respectively; HR = 2.20, 95% CI = 1.80–2.69, P<0.001;

Supplementary Figure 4). Collectively, PRRS is an ideal tool

for predicting the prognosis of patients with glioma.
The prognostic value of PRRS remains
under a subgroup analysis

PRRS was evaluated in different clinical subgroups. High

PRRS was observed in Cluster 1 compared to that in Cluster 2, in

accordance with the poorer prognosis found in Cluster 1

(Figure 5A). While PRRS increased as the stage advanced

(Figure 5B), higher PRRS was also observed in IDH1 wildtype,

1p/19q non-codeleted, and MGMT-promoter unmethylated

gliomas compared to their counterparts (Figure 5C-E). Since

lower grade, 1p/19q codeletion, MGMT promoter methylation,

and IDH1 mutation were the major favorable prognostic

markers for glioma, a subgroup analysis based on the status of

these parameters was performed in both TCGA and

CGGA cohort.

PRRS showed satisfactory stratification for prognosis in the

TCGA-LGG cohort (HR = 2.39, 95% CI = 1.56-3.66, adjusted P-

value = 0.001). GBM patients with low PRRS also showed longer

survival times than those with high PRRS, although this difference

was not statistically significant (HR = 1.66, 95% CI = 1.06-2.60,

adjusted P-value = 0.111; Figure 5F). Nevertheless, in the CGGA-

325 cohort, PRRS was prognostic in the GBM subgroup (for the

LGG subgroup, HR = 1.33, 95% CI = 0.75-2.34, adjusted P-value =

1.000; for the GBM subgroup, HR = 2.34, 95% CI = 1.31-4.20,

adjusted P-value = 0.012; Figure 5G), whereas in the CGGA-693

cohort, PRRS also showed an association with decreased overall

survival time in both LGG and GBM subgroups, although

the difference was not statistically significant (for the LGG

subgroup, HR = 2.19, 95% CI = 1.55-3.09, adjusted P-

value<0.001; for the GBM subgroup, HR = 1.15, 95% CI = 0.73-

1.82, adjusted P-value = 1.000; Supplementary Figure 5). To

further consolidate this result, we obtained the expression and

survival data from another GBM cohort from CPTAC and found

similar results (HR = 1.57, 95% CI = 0.94-2.62, P value = 0.088;

Supplementary Figure 5; Supplementary Table 6).

In both TCGA and CGGA cohorts, high PRRS was significantly

associated with poor prognosis in both MGMT methylated and

unmethylated subgroups (Figure 5H; Supplementary Figure 5).

Considering the 1p/19q codeletion status, in TCGA and CGGA-

325 cohorts, low PRRS predicted longer OS time in glioma patients

without 1p/19q codeletion, whereas in the CGGA-693 cohort,
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PRRS was a significantly prognostic predictor in patients with or

without 1p/19q codeletion (Figure 5I; Supplementary Figure 5).

Further investigation found that PRRS could not be a significant

prognostic predictor in either the IDH1 wildtype or mutant

subgroups in the TCGA cohort, although high PRRS was still

correlated with unfavorable survival in both subgroups (Figure 5J).

Nevertheless, high PRRS is still a valuable marker for poorer

prognosis in the IDH1 wild-type subgroup in the CGGA-325

cohort and in the IDH1 mutant subgroup in the CGGA-693

subgroup (Supplementary Figure 5; Supplementary Table 6).
PRRS is positively correlated with CD8+
T cell infiltration in glioma

We previously found that different pyroptosis-related

clusters were associated with distinct immune infiltration. To

determine the potential value of PRRS in immunotherapy, we

first evaluated the correlation between PRRS and CD8+ T cells,

which are canonical effector cells in immunotherapy
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(Figure 6A). Among the six commonly used algorithms, PRRS

was significantly correlated with CD8+ T-cell enrichment in the

TIMER and MCP-counter algorithms (r = 0.530, P<0.001 for the

TIMER algorithm; r = 0.400, P<0.001 for the MCP-counter

algorithm; Figure 6B; Supplementary Figure 6). To further

validate this result, the correlation between PRRS and CD8A

and CD8B was analyzed, and a significant positive correlation

between PRRS and CD8A and CD8B was confirmed (r = 0.550,

P<0.001 for CD8A; r = 0.630, P<0.001 for CD8B; Figure 6C;

Supplementary Figure 6). Consistently, PRRS was positively

correlated with both stromal and immune scores (r = 0.750,

P<0.001 for stromal score; r = 0.620, P<0.001 for immune score;

Figure 6D; Supplementary Figure 6). However, a positive

correlation between PRRS and immune checkpoints, including

PD-L1 and CTLA-4, was also found (r = 0.660, P<0.001 for PD-

L1; r = 0.410, P<0.001 for CTLA-4; Figure 6E, F), indicating that

although a high PRRS was associated with more CD8+ T cell

infiltration, the infiltrated T cells may be exhausted because of

the concomitantly high expression of immune checkpoints.

While PRRS was positively correlated with TMB score, it was
B

C

D E

F

G

H

I J

A

FIGURE 4

Establishment of pyroptosis-related risk score (PRRS). (A) PRRS value in the training cohort. (B) Survival status in the training cohort. (C)
Expression pattern of the PRRS genes in the training cohort. (D) Survival analysis of different risk group for overall survival in the training cohort.
(E) ROC curve analysis for 1-year, 3-year and 5-year overall survival in the training cohort. (F) PRRS value in the internal validation cohort. (G)
Survival status in the internal validation cohort. (H) Expression pattern of the PRRS genes in the internal validation cohort. (I) Survival analysis of
different risk group for overall survival in the internal validation cohort. (J) ROC curve analysis for 1-year, 3-year and 5-year overall survival in the
internal validation cohort.
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negatively associated with MSI score (r = 0.310, P<0.001 for

TMB score; r = -0.370, P<0.001 for MSI score; Supplementary

Figure 6). Consistently, in both CGGA-325 and CGGA-693

cohorts, PRRS was positively correlated with CD8+ T cell

enrichment and higher immune checkpoint expression levels

(Supplementary Figure 7).

We subsequently validated the relationship between PRRS

and CD8+ T cell infiltration in glioma samples. Through

quantification of signature genes by RT-qPCR and calculation

of PRRS according to the formula mentioned above, 12 glioma
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samples were divided into low- and high-PRRS groups. Higher

expression of CASP5, GZMB, MEFV, and NLRC4 was found

in the high-PRRS group (Figure 6G; Supplementary Table 7).

CD8+ T cell infiltration was examined in the low- and high-

PRRS groups using IHC. It was previously reported that T-cell

infiltration can be highly variable in gliomas (41), and we

observed that LGG or GBM samples with high PRRS harbored

more CD8+ T cells than those with low PRRS (Figure 6H).

Moreover, a positive correlation was observed between PRRS

and CD8+ T-cell enrichment (Figure 6H).
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FIGURE 5

The prognostic value of PRRS remains under a subgroup analysis. (A) Comparison of PRRS in Cluster 1 and Cluster 2 in TCGA cohort. (B)
Comparison of PRRS in WHO grade II, grade III, and grade IV gliomas in TCGA cohort. (C) Comparison of PRRS in IDH1 wildtype and mutant
gliomas in TCGA cohort. (D) Comparison of PRRS in 1p/19q codeleted and non-codeleted gliomas in TCGA cohort. (E) Comparison of PRRS in
MGMT promoter methylated and unmethylated gliomas in TCGA cohort. (F) Survival analysis of glioma patients with low and high PRRS in LGG
and GBM group, respectively, in TCGA cohort. (G) Survival analysis of glioma patients with low and high PRRS in LGG and GBM group,
respectively, in CGGA-325 cohort. (H) Survival analysis of glioma patients with low and high PRRS in co-occurrence with MGMT promoter
methylation or not in TCGA cohort. (I) Survival analysis of glioma patients with low and high PRRS in co-occurrence with 1p/19q codeletion or
not in TCGA cohort in TCGA cohort. (J) Survival analysis of glioma patients with low and high PRRS in co-occurrence with IDH1 mutation or not
in TCGA cohort. *P < 0.05; **P < 0.005; ***P < 0.001, n.s., not significant.
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PRRS genes are expressed at a cell type-
specific manner

GZMA and GZMB were previously reported to be specifically

expressed in CD8+ T cells (42), indicating that PRRS is a signature

involving not only tumor cells but also immune cells. To further

illustrate the potential cell type-specific expression pattern, the

expression of eight PRRS genes in glioblastoma cells, TAMs, T

cells, and oligodendrocytes was analyzed using scRNA data

obtained in a previous study (Figure 7A) (27). STAT3 and MEFV

are ubiquitously expressed in several cell types. Conversely, higher

expression levels ofGSDMB,GZMA, andGZMBwere detected in T

cells, whereasNLR4 and CASP5 showed specifically high expression
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levels in TAMs, and CASP5, GZMA, GZMB, and NLRC4 were

barely detected in glioblastoma cells (Figure 7B). Neftel et al.

stratified malignant glioblastoma cells into four cellular states:

neural-progenitor-like (NPC-like), oligodendrocyte-progenitor-like

(OPC-like), astrocyte-like (AC-like), and mesenchymal-like (MES-

like) states (27). It has been suggested that glioblastoma cells in the

MES-like state may be more efficiently killed by T cells (43). By

calculating the PRRS in each cellular state, we found that MES-like

and AC-like glioblastoma cells possessed a higher PRRS score than

those in the other two states (Figure 7C). Specifically, while MEFV

and STAT3 expression was detected in both glioblastoma cells and

immune cells, SARM1 expression level was higher in NPC-like and

OPC-like glioblastoma cells than inMES-like, AC-like glioblastoma
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FIGURE 6

PRRS is correlated with CD8+ T cell infiltration in glioma. (A, B) The correlation between PRRS and CD8+ T cell was analyzed using EPIC,
TIMER, CIBERSORT, quanTIseq, MCP-counter, and xCell algorithms. (C) Dot graph showed the correlation between PRRS and CD8A expression.
(D) The correlation between PRRS and PD-L1, CTLA-4, Stromal score, Immune score, TMB score, MSI score, mRNAsi, and mDNAsi was
analyzed. (E, F) Dot graph showed the correlation between PRRS and PD-L1 or CTLA-4 expression. (G) RT-qPCR analysis of signature genes in
twelve glioma tissues. (H) The infiltration of CD8+ T cell was examined with anti-CD8-a staining in low- and high-PRRS glioma tissues,
respectively, and correlation plot and Spearman’s correlation coefficient analysis were performed. Scale bar = 50 µm. *P < 0.05; **P < 0.005.
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cells, and other tumor cells (Figure 7D–G). Antunes et al. divided

myeloid cells in GBM into several subsets (28). PRRS was calculated

for each type of TAMs. A previous study suggested that higher

interferon g (IFNg) response was associated with immunotherapy

response in GBM, and IFNg could modulate the immune cell

composition in the tumor center (44). Intriguingly, a significantly

higher PRRS was found in interferon-signature microglial-TAM

(IFN_MgTAM) than in non-interferon-signature microglial-TAM

(MgTAM) (Figure 7H, I).
Pyroptosis-related cluster and PRRS are
associated with survival benefits from
temozolomide and immunotherapy

Based on the prognostic value of the pyroptosis-related group

and PRRS, and the distinct tumor-associated immune
Frontiers in Immunology 12
microenvironment between different groups, further

investigation into their roles in therapeutic response was

performed. Both Cluster 1 and the high-PRRS group had a

lower temozolomide IC50 index than their counterparts,

indicating that Cluster 1 and the high-PRRS group were more

sensitive to TMZ therapy (Figure 8A, B). Higher expression levels

of several immune checkpoints were also observed in Cluster 1

and the high PRRS group (Figure 8C, D, Supplementary Table 8).

Subsequently, a submap algorithm was used to evaluate the

potential value of PRRS in predicting immunotherapy

responses. The results showed that glioma patients with high

PRRS might be more responsive to anti-PD1 therapy (nominal P-

value = 0.001 and Bonferroni corrected P-value = 0.008;

Figure 8E). A recurrent glioblastoma (rGBM) cohort that

received anti-PD1 mAb therapy was used for validation (31).

Both PFS and OS of GBM patients with high PRRS showed a

trend toward improved response compared with the low-PRRS
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FIGURE 7

PRRS genes are expressed at a cell type-specific manner. (A) UMAP plot of malignant cells and immune cells was performed on TPM-
normalized data. (B) Expression pattern of PRRS gene in different cell type. (C) PRRS value in different subtype of GBM cells. (D-G) Expression
pattern of GSDMB, MEFV, SARM1, and STAT3 in different subtype of GBM cells. (H) UMAP plot of TAMs was performed on RPCA-based
integrated data. (I) PRRS value was calculated in different subtype of TAMs. TAMs, tumor-associated macrophages/microglia. MoTAM,
monocyte-derived TAM; MgTAM, microglia-derived TAM. *P < 0.05; ***P < 0.001, n.s., not significant.
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group. However, these differences did not reach statistical

significance, partially due to the limited sample size (Figure 8F,

G). In the Imvigor210 cohort, a clinical trial involving urothelial

carcinoma patients who received anti-PD-L1 therapy, a survival

benefit was not observed. However, a higher percentage of

inflamed immune phenotype, which is considered a “hot”

tumor, was observed in the high-PRRS group, indicating that

PRRS could stratify patients into different immune phenotypes

(Supplementary Figure 8).
Identification of small-molecule
compounds to synergize immunotherapy

Connectivity map (CMap) is a well-established tool for

predicting potential small-molecule compounds for particular
Frontiers in Immunology 13
genomic perturbations or diseases by comparing specific gene

signatures with drug-specific gene expression profiles in the

reference database (35). To further deepen the therapeutic

value of PRRS, subsequent screening using CMap was

performed for potential therapeutic drug candidates associated

with PRRS-related expression patterns. First, WGCNA was

performed in the TCGA cohort, and nine co-expression gene

modules were identified based on a power of 16 ( Figure 9A),

while the number of mean connectivity was 17 (Figure 9B),

including black, blue, brown, green, red, pink, turquoise, yellow,

and gray; the gray module was considered to be a group of genes

that could not be assigned to any module (Figure 9C,

Supplementary Table 9). Among these nine modules, the

brown module showed the most positive correlation between

both PRRS and ImmuneScore (Figure 9D). Using the same

methodology, the blue module, which was highly associated

with PRRS and ImmuneScore, was identified in the CGGA-325
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FIGURE 8

Pyroptosis-related cluster and PRRS are associated with survival benefits from temozolomide and immunotherapy. (A) Predicted TMZ sensitivity
in Cluster 1 and Cluster 2. (B) Predicted TMZ sensitivity in high- and low-PRRS group. (C) Expression levels of immune checkpoints in Cluster 1
and Cluster 2. (D) Expression levels of immune checkpoints in high- and low-PRRS group. (E) Submap analysis of the predicted response to
anti-CTLA4 and anti-PD1 in high- and low-PRRS group. (F) Survival analysis for progression-free survival between low- and high-PRRS group.
(G) Survival analysis for overall survival between low- and high-PRRS group. *P < 0.05; **P < 0.005; ****P < 0.0001.
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cohort (Supplementary Figure 9, Supplementary Table 10).

Through further analysis of DEGs, we identified 2142 and

2865 DEGs between the high- and low-PRRS groups in TCGA

and CCGA-325 cohorts, respectively (Supplementary Table 11-

12; Figure 9E). The intersection of genes from the TCGA brown

module, the CGGA blue module, and DEGs created a list of 183

genes (Figure 9F). Subsequent functional enrichment analysis

showed significant enrichment in immune response, immune

system process, immune effector process, and regulation of

immune response for biological process analysis. For the

REACTOME pathway analysis, neutrophil degranulation,
Frontiers in Immunology 14
interferon signaling, antigen processing-cross presentation, and

PD-1 signaling were enriched. For the wikiPathway analysis, the

microglia pathogen phagocytosis pathway, complement system,

macrophage marker, and type II interferon signaling pathways

were enriched (Figure 10A). Ultimately, based on 183

upregulated genes and 63 downregulated genes in the high-

PRRS group compared to in the low-PRRS group, potential

small molecular compounds and their related mechanisms were

predicted by the CMap database and MOA analysis, respectively

(Figure 10B, Supplementary Table 13). These results indicate

that treatment with targeted drugs, such as Bcl-2 and ATPase
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FIGURE 9

Identification of canonical module genes related with PRRS by weighted gene co-expression network analysis (WGCNA). (A, B) Determination of
soft-threshold power in WGCNA. The most appropriate power was 16 (A), and the corresponding number of mean connectivity was 17 (B). (C)
Cluster dendrogram and module assignment in WGCNA. (D) Association between module and PRRS and ImmuneScore through module–trait
relationship analysis. (E) Differentially expressed genes (DEGs) were analyzed between high- and low-PRRS groups in TCGA and CGGA cohort,
respectively. (F) Venn diagram showing the overlap between module genes and DEGs.
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inhibitors, may facilitate immunotherapy in gliomas, although

further evidence is required.
Discussion

Pyroptosis is a specific form of programmed cell death,

characterized by an inflammatory response that is distinct

from apoptosis (9). Pyroptosis can be activated via canonical

or noncanonical pathways. Canonical pyroptotic death is

mediated by inflammasome assembly, consisting of (i)

inflammasome-forming sensors, including NOD-like receptors

(NLRs), proteins absent in melanoma 2 (AIM2) and pyrin

(protein coded by MEFV), (ii) adapter apoptosis-associated

speck-like protein containing a caspase recruitment domain
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(CARD) (ASC), and (iii) procaspase-1 (45). Unlike

inflammasomes activated by NLRPs (such as NLRP3 and

NLRP1), the NLRC4-inflammasome consists of two NLR

family members, NLRC4 and NAIP (NLR family of apoptosis

inhibitory protein) (46). The canonical inflammasome then

further cleaves the gasdermin protein, the executioner of

pyroptosis, and pro-IL-1b and pro-IL-18, which trigger

pyroptosis and the release of mature cytokines through the N-

terminal pore-forming domain of cleaved gasdermin members

(47). Unlike canonical pyroptosis, the non-canonical pyroptosis

pathway has not been extensively studied. Independent of the

upstream inflammasome sensory complex, caspase-4/5 can be

directly activated by binding to intracellular lipopolysaccharides

through their CARD at the N-terminus (6). Activated caspase-4/

5 can also cleave gasdermin D (GSDMD) into N-GSDMD,
B

A

FIGURE 10

Identification of small molecule compounds to synergize with immunotherapy. (A) Functional enrichment of the overlapped genes between
module genes and differentially expressed genes. (B) Mechanism of action analysis of the identified small molecule compounds.
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which ultimately forms plasma membrane pores in target cells

and leads to pyroptosis (48, 49). Although caspase-8 is well

recognized as an apoptosis executioner, it is also involved in

pyroptosis following TNF-a stimulation (7, 50). Moreover,

granzyme B (GZMB) released from T cells can cleave GSDME

directly or through Caspase-3 in target cells and activate

extensive pyroptosis, further promoting antitumor immune

response and inhibiting tumor growth (51, 52). Granzyme A

(GZMA)-derived natural killer cells and cytotoxic T

lymphocytes (CTLs) can also directly cleave GSDMB in high-

GSDMB target cells and trigger pyroptosis, which updates the

current understanding of cytotoxic lymphocyte killing

mechanisms (53). Interestingly, high levels of GSDMB are

correlated with a poorer response to HER-2 targeted therapy

in breast cancer, and may be associated with the malignant

phenotype of gastric cancer (54, 55). The pyroptosis-related risk

signature (PRRS) established in the present study involved genes

from canonical pathways, such as MEFV and NLRC4; genes

from non-canonical pathways, such as CASP5, GZMA, and

GZMB; gene-coded pyroptosis executioner, such as GSDMB;

and genes involved in pyroptosis regulation, such as STAT3 and

SARM. Therefore, this signature may provide a more

comprehensive understanding of pyroptosis than previous

pyroptosis-related signatures identified in glioma (56–58).

Moreover, using single-cell analysis, we confirmed the

expression of PRRS genes in a cell type-specific manner,

indicating that this signature involved both tumor cells and

their associated microenvironment, and deepened the current

understanding of the tumor microenvironment from a

pyroptosis perspective.

Pyroptosis and related components play crucial roles in

tumorigenesis and tumor progression, although their

relationship is diverse due to the different genetic natures of

different malignancies. In gastric cancer, GSDMB is highly

expressed in most cancerous tissue samples but not in most

normal gastric samples, and may be associated with increased

levels of invasion (55). Zhou et al. found that tumor cells

overexpressing GSDMB showed obvious pyroptosis

characteristics, and interferon-g and GZMA secreted from

lymphocytes further accelerated this process (53). In non-

neuroendocrine lung cancer cells treated with etoposide, loss of

YAP increases GSDME expression levels, switches the cell death

route from apoptosis to pyroptosis, and sensitizes tumor cells to

etoposide (59). During the early stage of colorectal cancer,

elevated IL-18 secretion facilitated by NLRP1/NLRP3/pyrin

could protect against colorectal cancer through the promotion

of epithelial barrier regeneration during the early stages of

colorectal cancer. Notably, pyroptosis-related genes can also

exert their effects in a pyroptosis-independent manner. For

example, while the upregulation of GSDMC is cleaved by

caspase-8 and induces pyroptosis in MDA-MB-231 and BT549

breast cancer cells (7), knockdown of GSDMC significantly

inhibits proliferation and tumorigenesis in colorectal cancer in
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a pyroptosis-independent manner (60). The inflammasome

sensor, pyrin, can promote the integrity of the intestinal barrier

and prevent colitis and tumors (61). Suppression of GSDMD

expression in gastric cancer can activate the signal transducer and

activator of transcription 3 (STAT3) and phosphatidylinositol 3

kinase/protein kinase B (PI3K/PKB) signaling pathways and

regulate cell cycle-related proteins to accelerate the S/G2 phase

cell transition (62). Although pyroptosis has been less studied in

glioma, Liu et al. recently found that high GSDMD expression

levels were correlated with poor survival and improved TMZ

sensitivity in glioblastoma (63).

Programmed cell death is the major regulator of therapeutic

resistance. However, the regulatory role of pyroptosis is not well

understood. Chemotherapeutic agents can induce caspase-3-

dependent GSDME cleavage, ultimately leading to pyroptosis

in cells with high GSDME expression levels. However,

chemotherapy resistance exists because GSDME expression

levels are low in most tumor cell lines, owing to GSDME

promoter methylation (64, 65). Additionally, the combination

of BRAF and MEK inhibitors was reported to induce GSDME-

dependent pyroptosis through caspase-3 and the release of pro-

inflammatory factors in melanoma cells, which is associated with

an increase in CD4+ T cell and CD8+ T cell infiltration and

decreased TAM levels. On the other hand, a loss of pyroptosis

was observed in BRAF inhibitor + MEK inhibitor-resistant

tumors (66). TMZ is the first-line treatment for glioma.

However, over 50% of patients do not respond to TMZ

therapy (67). In the present study, although the high-PRRS

group was associated with glioma progression and unfavorable

prognosis, the patients showed improved sensitivity to

temozolomide and immunotherapy. This result is consistent

with the findings of a previous study that evaluated the role of

gasdermin D (GSDMD) in GBM. While GSDMD is highly

expressed in GBM and associated with poor prognosis,

temozolomide treatment leads to pyroptosis through the

upregulation of GSDMD and increased IL-1b secretion. This

indicates that GBM patients with higher GSDMD expression

levels may be more sensitive to temozolomide therapy (63).

These paradoxical results may be partially due to the double-

edged role of pyroptosis, as discussed above. On the one hand,

glioma is a highly pro-inflammatory tumor since the abundant

secretion of pro-inflammatory factors, such as IL-1b, IL-6, and
high mobility group box protein (HMGB1) through the

autocrine or paracrine mechanism accelerates tumor growth

(68, 69). Chronic inflammation due to pyroptosis may promote

glioma progression through multiple mechanisms involving not

only tumor cells but also immune and stromal cells residing in

the tumor microenvironment. In contrast, several antibiotic

chemotherapeutic reagents can promote severe pyroptosis and

cell death (7), and pyroptosis-inducing reagents can reverse or

partially eliminate chemoresistance in apoptosis-resistant cells

and serve as alternatives for malignancy treatment (70).

Moreover, acute pyroptosis may remodel the “cold” tumor
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immune microenvironment to a “hot” microenvironment and

activate antitumor immunity (71).

In the TME, inflammatory processes regulated by pyroptosis

may mediate the interaction between tumor cells and

neighboring immune cells through specific pathways. NLRP3

promotes inflammasome activation and IL-1b secretion in

macrophages. Additionally, Helicobacter pylori infection

enhances NLRP3 expression and subsequent inflammasome

activation and IL-1b release in macrophages, which could

enhance the tumorigenesis of gastric cancer (72). Moreover,

increased IL-1b levels in the stomach epithelium could

contribute to the development of gastric cancer by increasing

the number of myeloid-derived suppressor cells (73). Abundant

TAM (CD68+/CD163+) infiltration was observed in glioma

tissues with high GSDMD expression (63). Diminished lung

metastasis of melanoma cells was observed in NLRP3 knockout

mice, with increased infiltration of activated NK cells and

production of IFN-g (74). Colitis-associated cancer was

promoted in NLRP3-knockout mice due to decreased IL-1b
and IL-18 levels in hematopoietic cells. However, disease

progression was not diminished in NLRC4-deletion mice (75).

Notably, NLRC4 can promote cytokine and chemokine release

in TAMs and amplify protective IFN-g-producing CD4+ and

CD8+ T cells, thereby diminishing tumor growth in melanoma

independent of inflammasome assembly (76). In the present

study, we established a PRRS with eight pyroptosis-related genes

that showed distinct expressions in different cell types. While

STAT3 and MEFV were ubiquitously expressed, higher SARM1

expression levels were observed in GBM cells, higher NLRC4

expression levels were observed in TAMs, and higher GSDMB,

GZMB, and GZMA expression levels were observed in T-cells.

This cell type-specific expression pattern may be attributed to

specific cellular interactions in the microenvironment. For

example, under hypoxia, increased p-STAT3 levels promote

the nuclear translocation of PD-L1 in cancer cells, leading to

the upregulation of GSDMC transcription. On the other hand,

TNF-a derived from macrophages stimulates caspase-8

expression in cancer cells, which further specifically lyses

GSDMC into N-GSDMC to induce pyroptosis (7). Moreover,

GZMA-derived natural killer cells and CTLs can directly cleave

GSDMB and trigger pyroptosis in cancer cells, leading to tumor

clearance in a mouse model (53). Therefore, the close interaction

between tumor cells and T cells may account for the survival

benefit of immunotherapy in the PRRS group, although further

validation is needed.

Targeting pyroptosis is emerging as a promising strategy to

synergize immunotherapy. ICI therapy elicits durable responses

in specific tumor types with highly infiltrated CD8+ T cells.

However, most patients do not respond to this therapy. Thus,

remodeling the tumor microenvironment to increase CD8+ T

cell numbers and ignite the antitumor immune response may be

a viable approach to sensitize tumors to immunotherapy (77,

78). For example, Wang et al. found that the microbial
Frontiers in Immunology 17
metabolite trimethylamine N-oxide could induce pyroptosis in

breast cancer cells through protein kinase r-like ER kinase and

ultimately enhance CD8+ T cell-mediated antitumor immunity

(79). Moreover, combined treatment with BRAF and MEK

inhibitors induces GSDME-dependent pyroptosis in melanoma

cells and subsequently increases the number of intratumoral

CD8+ T cells (66). In the present study, based on the pyroptosis-

related expression pattern, we screened for potential small

inhibitors that may influence pyroptosis, remodeled the tumor

immune microenvironment, and identified Bcl-2 or ATPase

inhibitors as potential candidates. The BCL-2 inhibitor ABT-

737 releases pro-apoptotic BAX protein from Bcl-2 and induces

apoptosis in glioblastoma cells both in vitro and in vivo (80).

However, ABT-737 was less efficient in glioma stem cells with

high myeloid cell leukemia 1 (MCL1) expression, and sorafenib

targeting MCL1 synergized with ABT-737 to trigger apoptotic

cell death in glioma cells (81). To our knowledge, gossypol is the

only BCL-2 inhibitor tested in clinical trials for the treatment of

r e cu r r en t (NCT00540722 ) and new l y d i a gno s ed

(NCT00390403) GBM. However, the results of these trials

have not yet been published. Obatoclax, a Bcl-2 inhibitor,

directly inhibits the proliferation of hepatocellular carcinoma

(HCC) cells and sensitizes cancer cells to T cell-mediated killing

(82, 83). The combination of obatoclax and anti-PD-1 mAb

synergistically inhibited HCC growth in a murine model (83).

Similarly, Na+/K+-ATPase inhibition by ouabain and digoxin

decreased immune checkpoint expression levels in A549 lung

and MDA-MB-231 breast cancer cells, repurposing the currently

used reagents to synergize immunotherapy (84). However, it

remains unclear whether these inhibitors exert their effects in a

pyroptosis-dependent manner.

The pyroptosis-related risk signature established in the

present study provides a comprehensive understanding of the

potential role of pyroptosis in tumor progression and tumor

microenvironment remodeling, and its value in the prediction of

survival benefit from immunotherapy was validated in an anti-

PD1 cohort. Nevertheless, the present study had several

limitations. First, although the risk signature is established

based on pyroptosis and provides a comprehensive

understanding of pyroptosis-related genes in gliomas, the

actual pyroptosis status group in each group should be further

confirmed in in vitro and in vivo experiments since pyroptosis is

a complex process involving protein cleavage. Second, we

interpreted the potential cell interaction based on the cell-

specific expression of pyroptosis-related genes, which requires

further validation through co-culture experiments and

orthotopic glioblastoma allografts. Third, although we

screened several small molecular compounds that synergize

cancer immunotherapy, the value and specific mechanism of

action require further validation. We expect that the exploration

of pyroptosis-related signatures in our study will facilitate

further studies on the role of pyroptosis in the TME

and immunotherapy.
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Conclusions

In this study, we established a pyroptosis-related risk

signature. The high-PRRS group was associated with a poorer

prognosis but may be more responsive to TMZ therapy and

immunotherapy. While the high PRRS group was correlated

with the enrichment of CD8+ T cells, PRRS genes showed a cell

type-specific expression pattern, indicating that the potential

interaction between tumor cells and immune cells may be

involved in pyroptosis. Pyroptosis may be a double-edged

sword in glioma owing to its direct effect on tumor cells and

indirect effects on the tumor immune microenvironment.

Targeting pyroptosis is a promising strategy to optimize

glioma immunotherapy.
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