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Gastric cancer (GC) is a malignant tumor with poor survival outcomes. Immunotherapy can
improve the prognosis of many cancers, including GC. However, in clinical practice, not all
cancer patients are sensitive to immunotherapy. Therefore, it is essential to identify
effective biomarkers for predicting the prognosis and immunotherapy sensitivity of GC.
In recent years, chemokines have been widely reported to regulate the tumor
microenvironment, especially the immune landscape. However, whether chemokine-
related lncRNAs are associated with the prognosis and immune landscape of GC
remains unclear. In this study, we first constructed a novel chemokine-related lncRNA
risk model to predict the prognosis and immune landscape of GC patients. By using
various algorithms, we identified 10 chemokine-related lncRNAs to construct the risk
model. Then, we determined the prognostic efficiency and accuracy of the risk model. The
effectiveness and accuracy of the risk model were further validated in the testing set and
the entire set. In addition, our risk model exerted a crucial role in predicting the infiltration of
immune cells, immune checkpoint genes expression, immunotherapy scores and tumor
mutation burden of GC patients. In conclusion, our risk model has preferable prognostic
performance and may provide crucial clues to formulate immunotherapy strategies for GC.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignant tumors worldwide, and its morbidity and
mortality rank fifth and fourth, respectively (Sung et al., 2021). Although progress has been made in
the diagnosis and treatment of GC, the overall survival time of patients has not improved
significantly especially for advanced gastric cancer (AGC). The effect of immune checkpoint
inhibitors has been previously investigated in patients with AGC. First-line treatment of PD-1/
PD-L1 inhibitors could prolong OS and PFS of GC patients with CPS>10 or MSI-H (Shitara et al.,
2020; Janjigian et al., 2021; Moehler et al., 2021). Results from a randomized phase III KEYNOTE-
062 study indicated that AGC patients with a combined positive score (CPS) more than 10 or greater
could benefit from first-line pembrolizumab (Smyth and Moehler, 2020). Huang et al. reviewed the
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efficacy and safety of third-line treatments for advanced gastric
cancer (AGC). Among them, Nivolumab was one of the most
effective third-line therapy drugs in prolonging overall survival
(OS) of AGC especially for 1-year OS (Huang et al., 2021). These
findings proved that PD-1/PD-L1 has an undeniable effect in
patients with AGC. However, not all patients are sensitive to
immunotherapy. Considering the poor outcome of GC and
promising application use of immunotherapy, the
identification of novel biomarkers for predicting prognosis and
immune therapy response is helpful for disease stratification and
developing GC treatment strategies.

Many biomarkers have been previously identified for
predicting the prognosis of GC. Mismatch repair deficiency
(MMRD) and microsatellite instability (MSI) were identified as
positive prognostic biomarkers in GC patients treated with
surgery alone and negative prognostic biomarkers in GC
patients treated with chemotherapy (Smyth et al., 2017).
Tumor mutation burden (TMB) was proved to be positively
correlated with the disease-free survival (DFS) of
microsatellite-stable (MSS) GC patients (Li et al., 2021). A
combination of immune cell infiltration score and TMB score
could be utilized to predict the survival of GC patients (Jiang et al.,
2021a). Some noncoding RNAs such as circRNAs and lncRNAs
could also act as diagnostic biomarkers or prognostic factors in
GC (Yang et al., 2016; Shan et al., 2019). A recent study identified
an immune-related signature composed of MAGED1, ACKR3,
FZD2, and CTLA4 could be used to predict the prognosis of GC
patients (Dai et al., 2021). These molecular analyses have
increased our knowledge of GC biology and might provide
new insights on GC therapy strategies.

Chemokines are a large class of cytokines with chemotactic
activity. Chemokines were widely reported to regulate cancer
progression and could be used as therapeutic targets (Mantovani
et al., 2010). Dysregulation of chemokines and chemokine
receptors were reported to be closely correlated with the
progression of tumors including GC. For example, CC and
CXC chemokines were reported to promote tumor
angiogenesis, which is essential for tumor growth and
metastasis (Santoni et al., 2014). CXCL5 chemokine could
induce epithelial-mesenchymal transition (EMT) of GC cells
thereby promoting GC metastasis (Mao et al., 2020). Another
chemokine CXCL2 was reported to promote GC cell growth and
peritoneal metastasis (Natsume et al., 2020). CXCL1 chemokine
was reported to exert a tumor-promoting role through activating
the VEGF pathway in GC (Wei et al., 2015). Chemokines and
chemokine receptors also exert crucial roles in immunity and
mainly affect the infiltration of various immune cells, thus
affecting tumor progression. CCL2 chemokine and CCR2
chemokine receptor could regulate the infiltrating level of
macrophages in hepatocellular carcinoma (Li et al., 2017).
CCL2-CCR2 axis could affect the immune cell infiltration,
which results in an induction of immune evasion in
esophageal cancer (Yang et al., 2020). CCL28 chemokine could
promote the infiltration of Treg cells, thereby promoting the
progression of GC (Ji et al., 2020). CCL3 and CCL20 chemokines
could recruit dendritic cell DCs, which could induce anti-tumor
immunity of GC (He et al., 2010). In addition, some chemokines

and chemokine receptors, such as CXCL8, CXCR4 and CXCL13,
were proved to be promising prognostic biomarkers in GC (Jin
K.et al., 2021; Pawluczuk et al., 2021; Xue et al., 2021). These
findings indicated that chemokine-related genes exert crucial
functions in tumors, especially in the tumor microenvironment.

LncRNAs are a subset of noncoding RNAs with a length of
over 200 nucleotides that regulate the expression of many genes
involved in cancer development (Chi et al., 2019; Fang et al., 2021;
Yu et al., 2021). Apart from gene regulation, lncRNAs are also
involved in regulating numerous biological processes involved in
tumorigenesis (Bhan et al., 2017; Peng W.-X. et al., 2017; Fattahi
et al., 2020). Mounting evidence indicated that lncRNAs have an
undeniable prognosis prediction function in GC cancer.
Prognostic signatures based on ferroptosis-related lncRNA,
immune-related lncRNA and helicobacter pylori infection-
related lncRNA were proved to have preferable prognosis
prediction functions in GC (Ma et al., 2021; Pan J. et al., 2021;
Wei et al., 2021; Xin et al., 2021). Apart from this, lncRNAs could
be used for subtype identification and therapy response
prediction of GC (Huang et al., 2021; Jiang et al., 2021b).
LncRNAs have also been reported to modulate immunity (Yu
et al., 2018). Various lncRNAs were identified as prognostic
biomarkers and could be used to predict the immune
landscape of multiple cancers (Hong et al., 2020; Shen et al.,
2020; Xu et al., 2021).

At present, the role and type of immune landscape in the
prognosis of gastric cancer remains largely unknown.
Identification of infiltrating immune cells is associated with
cancer prognosis and new immune therapeutic targets, which
could provide meaningful clues for the future treatment of GC,
especially for immunotherapy.

The correlation between chemokine-related lncRNAs and the
immune landscape in GC has not been reported. In this study, we
first constructed a multi-lncRNA risk model composed of
10 chemokine-related lncRNAs based on The Cancer Genome
Atlas (TCGA) expression data. Then, we explored the prognostic
efficiency and accuracy of the risk model. In addition, we
explored the role of the risk model in predicting immune cell
infiltration, immune checkpoint genes expression level and
immunotherapy scores. Our results demonstrated that the
lncRNA risk model shows preferable performance in
predicting patient survival, immune cell infiltration and
immunotherapy effectiveness.

RESULTS

Identification of Chemokine-Related
lncRNAs
The workflow for this study was shown in Figure 1. First, we
acquired the expression profiling data of 343 tumor samples and
corresponding clinical information from The Cancer Genome
Atlas (TCGA) database. We annotated the gene symbols to
acquire the expression data of lncRNAs and mRNAs by using
a human GTF file. Subsequently, we obtained 64 chemokine-
related genes (Supplementary Table S2) (including chemokines
and chemokine receptors) from four previous reviews concerned
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with chemokines or chemokine recptors (Zlotnik and Yoshie,
2012; Griffith et al., 2014; Sokol and Luster, 2015; Tiberio et al.,
2018). Pearson’s correlation analysis (Pearson ratio > 0.3 and p <
0.001) was further conducted between these 64 chemokine-
related genes and lncRNAs for screening chemokine-related
lncRNAs. A total of 403 chemokine-related lncRNAs were
identified and used for the subsequent analyses.

Construction and Validation of the Risk
Model
After obtaining chemokine-related lncRNAs, we combined
the survival status and survival time of gastric cancer (GC)
patients with lncRNA expression data. We performed
univariate analysis and obtained 24 prognostic chemokine-
related lncRNAs. To further obtain the prognostic signature,
we randomly divided 305 samples (the entire set) into two
sets: training set (Supplementary Table S7) and testing set
(Supplementary Table S8) at a ratio of 1:1. A total of 153
samples and 152 samples were enrolled in the training set and
testing set, respectively. The training set was used for the
establishment of the risk model. Then, lasso regression
analysis was performed 1,000 times to recognize the
potential survival-related combinations of the candidate
chemokine-related lncRNAs in our study, which resulted
in 17 optimal candidates (Figures 2A,B). To make our risk
model more conducive to potential clinical application and
cost-saving, we further conducted a multi-cox analysis on

these 17 optimal candidates to reduce the number of lncRNAs
in our model. Ten out of 17 lncRNAs were identified for the
construction of the prognosis signature (Figure 2C and
Supplementary Table S6). The coef value of each lncRNA
was shown in Supplementary Table S5. The correlation
between chemokines and 10 lncRNAs in the risk model
was visualized by using a heatmap (Figure 2D). According
to the median risk score, patients were divided into a high-
risk group and a low-risk group. Principal component
analysis (PCA) was used for dimensionality reduction of
the entire genes, 403 chemokine-related genes and genes in
the risk model according to the risk patterns of the risk
model. Compared with the expression of all genes and
403 chemokine-related genes, only the risk model showed
elevated efficiency in separating the high-risk and low-risk
patients in all GC samples (Supplementary Figures S1E–G).

To further validate the efficiency of the risk model in
predicting the survival of GC patients, we conducted survival
analysis and found that low-risk group patients had a superior
survival outcome than high-risk patients (Figure 3A). Next, we
tested the accuracy of the risk model by using a time-dependent
receiver operating characteristic (ROC) curve. The area under
curve (AUC) value revealed that the risk model has enough
efficiency in predicting the survival of GC patients
(Figure 3B). In addition, we observed that there were more
deaths in the high-risk group than in the low-risk group
(Figure 3C). The expression of 10 lncRNAs in the risk model
was visualized using a heatmap (Figure 3D).

FIGURE 1 | Flow chart of this study.
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Inner Validation of Risk Model
To further validate the performance of the risk model, we
conducted survival analysis in the testing set and the entire
set. We observed that high-risk patients in the testing and
entire set have poorer survival outcomes than low-risk patients
(Figure 3E and Supplementary Figure S1A). Then, we tested the
accuracy of the risk model in two sets by using a time-dependent
ROC curve. As expected, we observed that our risk model has a
preferable performance in both sets. The AUC values in the
testing set and the entire set were 0.691 and 0.740 at one year
(Figure 3F and Supplementary Figure S1B), respectively. After
ranking the patients according to the median risk score, we found
that the deaths incidence of low-risk patients in the training set
and testing set were 11/77 (14.3%) and 28/85 (32.9%),
respectively. However, the death rate of high-risk patients in
the training set and testing set were 66/77 (85.7%) and 57/85
(67.1%), respectively (Figure 3G and Supplementary Figure
S1C). We concluded that the high-risk group have more
deaths than the low-risk group in both sets (p � 0.006). The
expression of the 10 lncRNAs in two sets was shown in Figure 3H
and Supplementary Figure S1D. These results indicated that our
risk model has a good performance in predicting the survival
outcome of GC patients.

Considering our risk model could not be validated in an
external set, we obtained the expression data of colorectal
cancer, the organ most closeted to stomach, (CRC) patients to
validate the function of our risk model. We observed that our risk
model has an undeniable value in predicting the survival time of
CRC patients (Supplementary Figures S1H, I).

Independent Prognostic Value of the Risk
Model
We also explored the correlation between the risk model and
clinical characteristics of the GC patients. After excluding
patients with unknown clinical features, no difference was
observed in clinical characteristics between high-risk and low-
risk patients (Table 1), which further validated the prognostic
function of the risk model as not related to the clinical
characteristics of the patients. To validate the independent
prognostic value of the risk model, we conducted univariate
analysis and multivariable analysis. We found that the risk
score could be used as an independent prognostic index
(Figures 4A,B). Then, we divided the patients into two groups
according to different clinical characteristics and analyzed the
survival outcome of the patients. Interestingly, we observed that

FIGURE 2 | Construction of the risk model. The lasso regression analysis (lasso) was conducted for the construction of the risk model (A,B). A total of
10 chemokine-related lncRNA were identified in the risk model (C). The correlation between chemokines and lncRNAs in the risk model (*p < 0.05, **p < 0.01, ***p <
0.001) (D).
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low-risk group patients had better survival outcomes than high-
risk group patients in all subgroups (Supplementary Figures
S2A–G). In addition, we also divided 305 patients into a
chemotherapy group (Supplementary Table S13) and a none-
chemotherapy group (Supplementary Table S14). We tested the
survival difference between low-risk and high-risk patients in two
groups. Interestingly, we found that low-risk patients in the
chemotherapy group have a better survival outcome than
high-risk patients. However, there was no survival difference
between low-risk and high-risk patients in the none-
chemotherapy group (Supplementary Figures S3A–C). These
findings indicated that the risk score could be used as an
independent prognostic biomarker in all patients.

To further validate that the risk model is superior to other
clinical characteristics in prognostic predicting function, we
conducted ROC curve analysis and decision curve analysis
(DCA) at 1, 3 and 5 years, respectively. The results
demonstrated that the risk model has an elevated efficiency
compared with other clinical characteristics (Figures 4C,D
and Supplementary Figures S3D–E). In addition, nomogram

and calibration curves were plotted to determine the accuracy in
predicting patients’ overall survival time (Figures 4E,G) and
progression-free survival time (Figures 4F,H). The
concordance index (C index) and ROC of the nomogram were
also obtained to validate the accuracy of the nomogram. The
value of C index is 0.739. As for the ROC of the OS nomogram,
the AUC value of 1 year, 3 and 5 years were 0.753, 0.815 and
0.787, respectively (Figure 4G). We also observed that the
predicted overall survival time and progression-free survival
time were almost consistent with the actual survival time
(Figures 4G,H), which further supports the risk model’s
accuracy.

Association Between the Risk Model and
Immune-Related Pathways
To detect the difference in KEGG enrichment between the low-
risk and high-risk patients, we performed gene set enrichment
analyses (GSEAs) and identified 21 enrichment pathways in the
low-risk patients. Among these pathways, 6 out of 21 were

FIGURE 3 | Validation of the risk model in the training set and testing set. Survival analysis of the training set and testing set (A,E). Roc curves were plotted to assess
the accuracy of the risk model in the training set and testing set (B,F). The survival status of the patients in high-risk and low-risk groups (C,G). The expression of the
chemokine-related lncRNAs in the risk model was shown by using heatmap (D,H). Low or high type represent the patients with low risk or high risk.
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immune-related pathways such as antigen processing and
presentation, autoimmune thyroid disease, intestinal immune
network, natural killer cell-mediated cytotoxicity, primary
immunodeficiency and T cell receptor signaling pathway
(Figure 5A). Subsequently, we determined the difference in
13 immune-related pathways between the high-risk group and
low-risk group. Nine out of 13 pathways were identified to have a
statistically significant difference between the two groups.
Interestingly, among these nine immune-related pathways,
eight pathways had a higher activity in the low-risk group,
whereas one pathway showed a lower activity in the low-risk
group (Figure 5B). This result was consistent with the
enrichment of immune-related pathways in the low-risk
group. These results indicated that the risk model is associated
with the immune-related pathways in GC patients.

Correlation Between the Risk Model and
Immune Infiltration Cells
Based on the above results, we speculated that the low-risk group
and the high-risk group have different immune
microenvironment statuses. To validate our hypothesis, the
infiltration status was calculated by using the CIBERSORT
analysis. The infiltration of 22 immune cells was visualized by
using a bar plot graph (Figure 6A). We visualized the infiltration
of 22 immune cells in groups according to the risk pattern. Results
demonstrated that the infiltration pattern of 22 immune cells in
low-risk group patients is obviously different from that in high-
risk group (Supplementary Figures S3F, G). Then, we
determined the correlation among 22 immune cells. The
results demonstrated that most types of T cells have a negative
correlation with macrophages, mast cells and dendritic cells
(Figure 6B). In addition, we determined the difference in

immune infiltration cells between the low-risk group and
high-risk group. We observed that low-risk group patients had
a higher infiltration of memory B cells, activated memory CD4
T cells, CD8 T cells and follicular helper T cells. However, a
higher infiltration of naive B cells, M2 macrophages, resting mast
cells, monocytes and resting memory T cells was detected in the
high-risk group (Figure 6C). Furthermore, we detected the
correlation between the infiltration of immune cells and the
risk score. We observed that follicular helper T cells and
memory B cells have a negative correlation with the risk score,
which indicated that patients with lower risk scores have higher
infiltration of these two immune cells (Figure 6D). In contrast,
resting dendritic cells, M2 macrophages, resting mast cells and
monocytes had a positive correlation with the risk score, which
indicated that patients with higher risk score have more
infiltration of these immune cells (Figure 6D). Our results
suggested that the risk model could be used to predict the
infiltration of immune cells.

Clinical Value of the Risk Model in
Immunotherapy
The expression of immune checkpoint genes was reported to be
associated with immunotherapy efficiency (Burugu et al., 2018).
Patients with higher expression of PD-L1 have better
immunotherapy outcomes in NSCLC (Sharma et al., 2021). In
addition, we found that patients with PD-L1 combine positive
score (CPS) > 10 could benefit more from PD-1 or PD-L1
immunotherapy (Shitara et al., 2020; Janjigian et al., 2021;
Moehler et al., 2021). Elizabeth C et al. also analyzed the
results of KEYNOTE-062 and found that AGC patients with
PD-L1 combined positive score (CPS) more than 10 or greater
could benefit more from pembrolizumab than patients with a

TABLE 1 | Correlations between risk and clinicopathologic characteristics of GC patients.

Characteristic
Risk score

High (%) n = 127 Low (%) n = 145 χ2 p-value

Gender
Male 75 (45.2) 91 (54.8) 0.39 p � 0.532
Female 52 (49.1) 54 (50.9)

Age (Years)
>65 63 (42.9) 84 (57.1) 1.889 p � 0.169
≤65 64 (51.2) 61 (48.8)

Differentiation grade
G1-G2 45 (45.0) 55 (55.0) 0.182 p � 0.670
G3 82 (47.7) 90 (52.3)

Tumor size
T1-T2 33 (45.8) 39 (54.2) 0.029 p � 0.865

T3-T4 94 (47.0) 106 (53.0)
Metastasis
M0 115 (45.1) 140 (54.9) 3.199 p � 0.074
M1 12 (70.5) 5 (29.5)

Lymph node
N0 37 (44.5) 46 (54.5) 0.214 p � 0.643
N1-N3 90 (50.3) 99 (49.7)

Stages
I-II 57 (44.9) 70 (54.1) 0.313 p � 0.576
III-IV 70 (48.3) 75 (51.7)
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CPS of 1 or greater (Smyth and Moehler, 2020). To evaluate the
expression difference of immune checkpoint genes, we compared
the expression of immune checkpoint genes between the low-risk
and high-risk patients. The results demonstrated that the low-risk
patients showed elevated expression of most immune checkpoint
genes (Figure 7A), which indicates that low-risk patients might
be more sensitive to immunotherapy although clinical evidence
should be required. To validate our results, we obtained the
immunotherapy score data from TCIA (https://tcia.at/) and
compared the difference in immunotherapy score between the
two groups. Immunotherapy score was derived in an unbiased
manner using machine learning by considering the four major
categories of genes that determine immunogenicity (effector cells,
immunosuppressive cells, MHC molecules, and
immunomodulators) by the gene expression of the cell types
these comprise (e.g., activated CD4+ T cells, activated CD8+

T cells). The immunotherapy score is positively correlated
with immunogenicity. Results demonstrated that the low-risk
group patients with single positivity for CTLA4 or PD-1 and
double positivity for CTLA4 and PD-1 had higher
immunotherapy scores (Figures 7B–E). We also utilized

Tumor Immune Dysfunction and Exclusion (TIDE) score to
prove immune response difference between the high-risk
group and low-risk group. Result demonstrated that low-risk
group has a relative lower TIDE prediction score, which indicated
a potential better immune therapy response in low-risk group
(Supplementary Figure S3J).

Correlation Between the Risk Model and
Tumor Mutation Burden
By using “maftools” of R, we acquired the TMB data of GC. We
compared the TMB difference between the low-risk group and
high-risk group. We found that low-risk group patients had a
higher TMB level (Figure 8A). The risk score is negatively
correlated with TMB level (Figure 8B). We also analyzed the
TMB status in the low-risk and high-risk groups. Except for the
mutation of TP53, the mutation of other genes was higher in the
low-risk group (Figures 8C,D). We grouped the patients
according to the TMB level and analyzed the survival
outcomes. We found that patients with higher TMB had better
outcomes (Figure 8E). In addition, high TMB patients with lower

FIGURE 4 | Independent prognosis value of the risk model. Univariate analysis and multivariable analysis were conducted to validate the independent prognosis
value of the model (A,B). Roc curves were performed to validate the superiority of the risk score in predicting patient’ survival (C). Decision curve analysis (DCA) was
conducted to confirm the superiority of the risk score in the clinical application (D). Nomogram was plotted for the prediction of overall survival time (E) and progression-
free survival time (F) in GC patients. The calibration curves and ROC curves were further plotted to determine the accuracy of the nomogram for OS and PFS at 1, 3
and 5 years, respectively (G,H).

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7973417

Liang et al. Chemokine-Related lncRNAs in Gastric Cancer

https://tcia.at/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 5 | Correlation between immune microenvironment and risk model. Gene set enrichment analysis based on the chemokine-related lncRNAs risk model
(A). The difference in the enrichment of thirteen immune-related pathways between the low-risk group and the high-risk groupwas assessed (*p < 0.05, **p < 0.01, ***p <
0.001) (B).
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risk scores had the best survival outcome. However, low TMB
patients with higher risk scores have the worst survival outcome
(Figure 8F).

Expression Validation of Ten lncRNAs inOur
Risk Model
The above results indicated that ten chemokine-related lncRNAs
of the risk model (AC010719.1, BX293535.1, LINC01094,
AC008770.3, MIR3142HG, AC147067.2, AC005332.4,
AC091043.1, ACTA2-AS1, USP30-AS1) were associated with
patients’ survival and immune landscape. To find the most
valuable lncRNAs in our risk model, we determined the
expression of each lncRNA in TCGA coherent. Six out of ten
lncRNAs (AC010719.1, BX293535.1, LINC01094, AC008770.3,
MIR3142HG and AC147067.2) were differentially expressed
between tumor tissues and normal tissues (Figures 9A–J).
Compared with normal tissues, only BX293535.1 exhibited a
lower expression level in tumor tissues (Figure 9B). In
addition, we collected 18 paired GC samples and performed
qRT-PCR to validate the differences of these six lncRNAs in
clinic samples. Interestingly, we observed that only LINC01094
and MIR3142HG were differentially expressed between tumor

tissues and paired adjacent normal tissues (Figure 9K–P). These
results indicated that LINC01094 and MIR3142HG might exert a
more crucial function in GC development.

DISCUSSION

Traditionally, patients diagnosed with GC are treated with
sequential chemotherapy such as the combination of platinum
and fluoropyrimidine (Smyth et al., 2020). However, the overall
survival of patients is still very low (Spolverato et al., 2014),
especially the median survival time of advanced gastric cancer
(AGC) is less than one year (Smyth et al., 2020). Immunotherapy
can prolong the overall survival of many cancer patients (Herbst
et al., 2016; McGranahan et al., 2016; Jin T. et al., 2021). However,
immunotherapy is not effective for all patients. The effectiveness
of immunotherapy is associated with many factors, such as the
infiltration state of immune cells (Anfray et al., 2019; Zhang et al.,
2019), the expression level of immune checkpoint genes (Burugu
et al., 2018) and the state of somatic mutations (Allgäuer et al.,
2018; Zhao et al., 2019). Therefore, it is very important to find
effective biomarkers that could be used to predict patient
prognosis and immunotherapy sensitivity.

FIGURE 6 | Tumor infiltrating immune cells in GC. CIBERSORT calculation method was used to calculate the infiltrating level of 22 tumor immune cells in GC
patients (A). Correlation between 22 tumor infiltrating immune cells was visualized. The red plot represents the negative correlation between two immune cells, while the
blue plot represents the positive correlation between two immune cells. The larger the shape of the point, the stronger the correlation (B). The difference of the tumor
infiltrating immune cells between the low-risk group and high-risk group (*p < 0.05, **p < 0.01, ***p < 0.001) (C). Correlation between the risk score and infiltrating
level of T cells follicular helper, B cells memory, dendritic cells resting, macrophages M2, mast cells resting and monocytes (D).
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Chemokines are a large class of cytokines with chemotactic
activity. It has been reported that chemokines exert crucial
functions in the tumor microenvironment, especially in the
immune microenvironment (Bian et al., 2019; Xun et al.,
2020). Different types of immune cells could be recruited into
the tumor microenvironment via interactions between
chemokines and chemokine receptors (Nagarsheth et al.,
2017). Altered expression levels of chemokines in malignant
tumors are associated with angiogenesis, proliferation,
metastasis and recruitment and activation of immune cells in
multiple tumors (Strieter et al., 2005; Teicher and Fricker, 2010;
Santoni et al., 2014; Li et al., 2017; Yang et al., 2017; Liang et al.,
2018; Mo et al., 2020; Yang et al., 2020). Many anti-chemokine
drugs have been used in combination with other antitumor drugs

in cancer treatment (Feig et al., 2013; Salazar et al., 2018).
Therefore, it is essential to explore the function of chemokines
and their related genes.

In this study, we first identified a novel chemokine-related
lncRNA prognostic signature based on the expression data of
patients in the TCGA database. In brief, we acquired the RNA
sequence profiles of 343 tumor samples from the TCGA database.
By using the human GTF file, we annotated the mRNA and
lncRNA from the RNA sequence results. To obtain chemokine-
related lncRNAs, we conducted co-expression analysis between
certified chemokine-related genes and lncRNAs (Zlotnik and
Yoshie, 2012; Griffith et al., 2014; Sokol and Luster, 2015;
Tiberio et al., 2018). A total of 403 chemokine-related
lncRNAs were identified and used for univariate analysis to

FIGURE 7 | Correlation between risk model and immune checkpoint genes and immunotherapy score. The difference in the expression of immune checkpoint
genes between the low-risk group and the high-risk group was determined (*p < 0.05, **p < 0.01, ***p < 0.001) (A). The immunotherapy scores of patients with positive
status of CTLA4 or PD-1 in the low-risk group patients are higher than that of high-risk group patients (B–E).
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FIGURE 8 | Correlation between the risk model and tumor mutation burden (TMB). Boxplot was used to visualize the TMB level between the low-risk group and
high-risk group (A). The risk score is negatively correlated with the TMB level (B). The top 20 genes’ TMB in the low-risk group and high-risk group (C–D). The survival
difference between the high TMB group and low TMB group (E). The survival status of patients with low or high risk-score in the high TMB group and low TMB group (F).
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obtain prognostic chemokine-related lncRNAs. Then, lasso
regression analysis (LASSO) and multi-cox analysis methods
were performed to screen chemokine-related lncRNAs for the
construction of the model. Ten chemokine-related lncRNAs
(AC010719.1, BX293535.1, LINC01094, AC008770.3,
MIR3142HG, AC147067.2, AC005332.4, AC091043.1, ACTA2-
AS1, USP30-AS1) were identified in the risk model. Among these
lncRNAs, AC091043.1, USP30-AS1, MIR3142HG, LINC01094
and ACTA2-AS1 were reported to regulate the progression of
various tumors, while others were reported for the first time
(Hadjicharalambous et al., 2018; Xu et al., 2020; Pan et al., 2021a;
Wan et al., 2021). After obtaining the risk model, we divided
patients into a high-risk group and a low-risk group according to
the median risk score. Then, Principal component analysis (PCA)
was performed for dimensionality reduction and model
identification of the entire gene expression profile,
403 chemokine-related genes and a risk model (Li et al.,
2020). As expected, we found that only the risk model showed

elevated efficiency in separating the high-risk patients and low-
risk patients, which further validates the efficiency of the risk
model in separating high-risk patients and low-risk patients.

To explore the function of the risk model in predicting
patients’ survival outcomes. We performed survival analysis
and found that low-risk group patients have better survival
outcomes than high-risk group patients in the training set.
The area under curve (AUC) values of the ROC curve at one,
three and five years exceeded 0.8, which confirmed the accuracy
of our risk model. The efficiency and accuracy of the risk model in
the testing set and entire set were also determined. In addition, we
explored the independent prognostic function of the risk model.
The results demonstrated that the risk score could be used as an
independent prognostic biomarker in GC. All patients with
different clinical characteristics in the low-risk group had
better survival outcomes. ROC curve and decision curve
analysis (DCA) were conducted to validate the accuracy of the
risk score in an independent prognostic function. In addition, the

FIGURE 9 | Expression validation of ten lncRNAs in our risk model. A total of six lncRNAs were identified to be differentially expressed between normal tissues and
tumor tissue of the TCGA dataset (A–J). Expression of AC010719.1, BX293535.1, MIR3142HG, LINC01094, AC008770.3 and AC147067.2 between tumor tissues
and adjacent normal tissues in 18 clinic samples (K–P).
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predicted survival time from the nomogram was almost
consistent with the actual survival time. These results
indicated that our risk model has enough efficiency in
predicting the prognosis of GC patients.

The immune system plays a crucial role in the development of
cancer. Chemokines play crucial functions in the tumor
microenvironment, especially in the immune
microenvironment (Bian et al., 2019; Xun et al., 2020). To
explore whether the chemokine-related lncRNA risk model
also functions in the immune microenvironment, we
performed gene set enrichment analyses (GSEA) and identified
six immune-related pathways, antigen processing and
presentation, autoimmune thyroid disease, intestinal immune
network, natural killer cell-mediated cytotoxicity, primary
immune deficiency and T cell receptor signaling pathway, that
were enriched in the low-risk group (Tang et al., 2021). In
addition, we observed that patients in the low-risk group
showed an elevated score in immune-related pathways.
Therefore, we speculated that the risk model may regulate
immunotherapy by affecting the immune infiltration cells of
GC. The status of immune infiltration cells was also reported
to be associated with the response to immunotherapy (Anfray
et al., 2019; Zhang et al., 2019). Then, we analyzed the proportion
of infiltrating immune cells in GC tissue. We observed that the
low-risk group had a higher infiltration of memory B cells,
activated memory CD4 T cells, CD8 T cells and follicular
helper T cells. However, the high-risk group had a higher
infiltration of naive B cells, M2 macrophages, resting mast
cells, monocytes and resting memory T cells. High infiltration
of helper T cells, memory CD4 T cells and CD8+ T cells is
reported to be associated with better survival outcomes in patients
with cancers (Melssen and SlingluffJr, 2017; Kim H. S. et al.,
2021). Patients with more CD4+ and CD8+ T cell infiltration
experienced a superior treatment response from immunotherapy
than those with less infiltration (Zander et al., 2019; Niogret et al.,
2021; Pan et al., 2021b). In contrast, M2 macrophages, resting
mast cells and monocytes exert tumor-promoting functions.
Monocytes can affect the tumor microenvironment through
various mechanisms that induce angiogenesis, immune
tolerance, and increased dissemination of tumor cells (Ugel
et al., 2021). Infiltration of monocytes is associated with
cancer progression, including GC (Peng L.-s. et al., 2017;
Wang et al., 2017; Cavassani et al., 2018). Mast cells play a
tumor-promoting role in gastric cancer by releasing angiogenic
factors and lymphangiogenic factors (Sammarco et al., 2019).
Macrophages in solid tumors are associated with poor prognosis
and might enhance tumor progression and metastasis (Qian and
Pollard, 2010; Cassetta and Pollard, 2018). M2 macrophages are
related to the EMT and progression of GC (Guan et al., 2021).
These results support the use of our risk model as a biomarker for
predicting the GC immune landscape.

Immune checkpoint genes’ expression level and tumor
mutation burden (TMB) are effective indicators for
immunotherapy. Patients with higher expression of immune
checkpoint genes and higher somatic mutations might have
better immunotherapy effectiveness (Allgäuer et al., 2018;
Burugu et al., 2018; Zhao et al., 2019). To further understand

the function of the risk model in the immune landscape, we
analyzed the expression of immune factors and found that
patients in the low-risk group had a relatively higher
expression of various checkpoint genes. In addition, we
compared the TMB status between the low-risk and high-risk
patients. The risk score obtained from the risk model is negatively
correlated with TMB. Patients with lower risk scores have a
higher level of TMB. Thus, we speculated that low-risk
patients might be more sensitive to immunotherapy. Based on
this hypothesis, we downloaded the immunotherapy score data of
GC and assessed the sensitivity of high-risk and low-risk group
patients to immunotherapy. We found that low-risk patients with
single positivity for CTLA4 or PD-1 and double positivity for
CTLA4+PD-1 had higher immunotherapy scores. The survival
analysis concerned with TMB revealed that high TMB patients
with lower risk scores had the best survival outcome, and low
TMB patients with higher risk scores had the worst survival
outcome. According to the above results, we concluded that the
chemokine-related lncRNA risk model could be used to predict
the immunotherapy sensitivity of GC.

Recently, many studies constructed prognostic signatures in
GC. All these studies aim to find a reliable signature for predicting
prognosis, immune cells infiltration and immune response of GC.
Dai identified that low-risk patients in their risk model have a
higher tumor mutation burden (TMB) score and immunotherapy
score than that in high-risk group (Dai et al., 2021), which is
similar to our results. Ma established an immune-related lncRNA
signature which has a preferable performance in prognosis and
immune cell infiltration prediction. They observed that high-risk
patients have a relatively higher infiltration of M2 macrophages
and T cells regulatory (Ma et al., 2021). In our study, risk score
was revealed to be positively correlated with the infiltration of M2
macrophages. Unexpectedly, there was no obvious difference in
the infiltration of T cells regulatory between the two groups.
Unlike other studies, Kim et al. constructed a novel tumor
immune microenvironment (TIM) classification system. They
found that TIM of GC could be influenced by frameshift
mutations and tumor mutational burden (Kim H. et al., 2021).
In our study, we only observed that risk score is closely correlated
with immune cells infiltration and TMB. However, whether the
infiltration of immune cells could be affected by TMB needs
further research.

Despite our positive findings, we recognized that our study has
some limitations. We obtained a risk model that could be used to
predict patients’ survival outcomes and immune landscape. We
didn’t perform independent validation of the risk model, which
might lead to a risk of overfitting the model. In this regard, we
performed 1,000 times lasso regression analysis. After obtaining
the risk model from the training set, we validate the prognostic
function of the model in the testing set and entire set. We also
validated that our risk model has a good performance in
predicting the survival time of CRC patients. These results
indicated our model is reliable in predicting the prognosis of
gastrointestinal cancer.

Additionally, these ten lncRNAs have not been previously
reported to be associated with GC except LINC01094.
LINC01094 was used for the construction of another
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signature to predict the prognosis of GC patients (Zhang
et al., 2021). To find the most valuable lncRNAs in our risk
model, we determined the expression of ten lncRNAs in the
TCGA dataset and 18 clinic samples. Two lncRNAs
(LINC01094 and MIR3142HG) were identified to be
differentially expressed between normal tissues and tumor
tissues both in the TCGA dataset and 18 clinic samples. These
results indicated that these two lncRNAs (LINC01094 and
MIR3142HG) in the risk model might exert vital function in
the prognosis and immune infiltration of GC patients. We
will explore the association between these two lncRNAs and
GC in further study.

In conclusion, we constructed a chemokine-related lncRNA
risk model in GC. The risk model could be used to predict the
prognosis of GC patients. The risk model also exerts a crucial
function in predicting the immune landscape of GC patients.
These results could provide insights for prognosis prediction of
GC patients andmight provide valuable clues for immunotherapy
in GC.

MATERIALS AND METHODS

Data Acquisition and Processing
The RNA sequence data of gastric cancer (GC) and colorectal
cancer (CRC) patients and their corresponding clinical
information (Supplementary Table S1) were obtained from
The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.
gov/tcga/). Patients with survived time more than 30 days were
enrolled. The human GTF file download from Ensembl (http://
asia.ensembl.org) was used to acquire mRNA and lncRNA
expression data from transcriptome data.

Acquiring of the Prognostic
Chemokine-Related lncRNAs
According to four previous reviews concerned with chemokines
or chemokine receptors (Zlotnik and Yoshie, 2012; Griffith et al.,
2014; Sokol and Luster, 2015; Tiberio et al., 2018), we obtained 64
chemokine genes (Supplementary Table S2). Then, the
expression of these 64 chemokine genes was extracted from
the mRNA matrix of TCGA STAD by using the “limma”
package of R software. Based on these 64 chemokines, we
screened chemokine-related lncRNAs from lncRNA matrix by
using Pearson’s correlation analysis (Pearson ratio >0.3 and p <
0.001), and 403 chemokine-related lncRNAs were identified
(Supplementary Table S3). Subsequently, univariate analysis
was performed to determine prognosis-related lncRNAs. A
total of 24 prognostic chemokine-related lncRNAs were
identified (Supplementary Table S4).

Establishment of the Risk Model
The training set was used to construct the risk model, and the
entire set (Supplementary Table S6) and testing set were used for
the validation of the risk model. In brief, the lasso regression
analysis and multi-cox analysis were utilized to construct the
lncRNA risk model by using 24 prognostic chemokine-related

lncRNAs. We identified 10 chemokine-related lncRNAs
(Supplementary Table S5) to establish the risk model. The
calculation formula of the risk score is as follows:

Risk score(patients) � ∑
n

i�1
coefficient(gene i)pexpression(gene i)

In this formula, n, i, coefficient, and expression represent the
number of selected lncRNA, lncRNA numbers, regression
coefficient values and lncRNA expression value, respectively.
Principal component analysis (PCA) was further used for
dimensionality reduction, grouping visualization and model
identification of the entire gene expression profiles,
403 chemokine-related genes and risk model according to the
risk patterns of the risk model [25].

Validation of the Risk Model
According to the median risk score, all samples were divided
into high-risk group and low-risk group. Kaplan-Meier
survival analysis was used to determine the over survival
(OS) difference between the two groups. A time-dependent
receiver operating characteristic (ROC) curve was plotted to
detect the accuracy of the risk model. The expression of the
chemokine-related lncRNAs in the model was visualized by
using a heatmap. All analyses were further performed in the
entire set and testing set. R package of “survivalROC”,
“survival”, “survminer” and “pheatmap” were used in the
validation of the risk model.

Independent Prognostic Value of the Risk
Model
The relationship between the risk model and clinicopathological
characteristics was determined by using the chi-square test.
Univariate analysis and multivariate analysis were used to
detect the independent prognostic value of the risk model.
Kaplan-Meier survival analysis was used to determine the over
survival (OS) difference among patients with different clinical
characteristics. The ROC curve and decision curve analysis
(DCA) were performed to validate the clinical application
value of the risk model. The “survival” and “regplot” R
packages were utilized to construct a nomogram for the
prediction of survival time in GC patients. The calibration
curve was acquired to assess the accuracy of the nomogram by
using “rms” package of R.

Correlation Between the Risk Model and
Immune-Related Pathway
Gene set enrichment analyses (GSEA) were performed to
define the lncRNAs signatures in the KEGG. Subsequently,
we obtained and evaluated the difference in immune-related
pathways between the high-risk group and low-risk group
through the single-sample gene set enrichment
analysis (ssGSEA). In ssGSEA analysis, the R packages of
“limma”, “GSVA”, “GSEABase”, “ggpubr”, “reshape2”
were used.
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Evaluation of Immune Cell Infiltration
The CIBERSORT bioinformatic computational tool was used to
predict the infiltration status of immune cells in tumors
(Supplementary Table S9). The root mean squared error and
p-value were counted for each sample file to improve the accuracy
of the deconvolution algorithm. Only p < 0.05 was filtered and
selected for further analysis, and the algorithm used a default
signature matrix for 1000-loop computation. The “corrplot”
package was used to visualize the correlation among 22
immune cells. The difference of immune infiltration cells
between the high-risk and low-risk group was visualized by
using R packages of “ggpubr”, “ggplot2” and “data.table”.

The Clinical Value of the Risk Model in
Immunotherapy
The expression of immune checkpoint genes between the
high-risk group and low-risk group patients was evaluated
by using “limma”, “reshape2”, “ggplot2” and “ggpubr”
package of R. In addition, the immunotherapy score data
was obtained from TCIA (Supplementary Table S10). The
sensitivity of high-risk and low-risk group patients to
immunotherapy was calculated to further validate the
prognostic function of our risk model. Tumor Immune
Dysfunction and Exclusion (TIDE) score was acquired
from http://tide.dfci.harvard.edu.

Correlation Between the Risk Model and
Tumor Mutation Burden
Tumor mutation burden (TMB) data of GC was downloaded
from the TCGA database (https://tcga-data.nci.nih.gov/tcga/).
The correlation between the risk model and tumor mutation
burden was acquired and visualized by using “ggpubr”,
“reshape2” and “ggplot2” packages of R software. The
“maftools” package was utilized to obtain the TMB status in
the high-risk group (Supplementary Table S11) and low-risk
group patients (Supplementary Table S12). Kaplan-Meier
analysis was performed to determine the survival difference
among patients with different statuses of TMB and risk scores.

Human Tissue Samples Collection, RNA
Isolation and Quantitative Real-Time PCR
A total of 18 pairs of GC tissues and adjacent normal tissues were
collected from the First Affiliated Hospital of Chongqing Medical
University (Chongqing, China). This study was approved by the
Ethics Committee of the First Affiliated Hospital of Chongqing
medical university. Total RNA of GC samples was isolated by
using Trizol reagent according to the manufacturer’s protocol
(Takara, Japan). For the qRT-PCR assay, all primers were
designed and synthesized by Sangon Biotech (Sangon Biotech,
Wu Han, China). cDNA was synthesized by using PrimeScript
RT Reagent Kit (#RR037A, Takara, Japan). qRT-PCR was
performed by using TB Green Premix Ex Taq II (Takara,
#RR820A). Results were normalized using GAPDH. The
information of primers was exhibited in Supplementary Table S15.

Statistical Analysis
All data were acquired by using Perl (5.30.1) or R (version 4.1.0)
software. Pearson correlation test was used for the correlation
analysis. Survival analyses were performed using the Kaplan-
Meier method with a log-rank test.
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full#supplementary-material

Supplementary Figure S1 | Validation of the risk model in the entire set. Prognosis
of the risk model. Patients were ranked according to the risk score (A). Survival
analysis of the entire set (A). Roc curves were plotted to assess the accuracy of the
risk model in the entire set (B). The survival status of the patients in the high-risk and
low-risk group (C). The expression of the chemokine-related lncRNA in the risk
model was shown by using heatmap (D). Principal component analysis (PCA) for the
entire gene set (E), chemokines (F) and lncRNAs in the risk model (G). The green
plots represent the patients with low risk, and the red plots represent the patients
with high risk.

Supplementary Figure S2 | Survival analysis was conducted in high-risk and low-
risk group patients with different ages (A), genders (B), grades (C), stages (D), T
stages (E), different N stages (F) and M stages (G).

Supplementary Figure S3 | Survival analysis was conducted in patients without
chemotherapy (A). Survival analysis was conducted in patients receiving
chemotherapy (B). AUC value of the survival analysis in patients with
chemotherapy (C). 3 and 5 years DCA curves were plotted to validate the
clinical application value of our risk model (D and E). CIBERSORT was utilized
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to visualize the infiltration of 22 immune cells in the high-risk group (F) and low-risk
group (G). Prognostic function of our risk model in colorectal cancer (CRC) patients
(H). AUC value of our risk model in predicting OS of CRC patients (I). Tumor Immune
Dysfunction and Exclusion (TIDE) score was obtained to prove the immune response
difference between the high-risk group and low-risk group (J).

Supplementary Table S1 | Clinical information of the GC patients

Supplementary Table S2 | Expression of 64 Chemokines related genes in 343 GC
Samples

Supplementary Table S3 | Expression of 403 Chemokines related lncRNAs in 343
GC Samples

Supplementary Table S4 | Prognosis-related 24 lncRNAs

Supplementary Table S5 | Ten lncRNAs for the construction of the model

Supplementary Table S6 | Risk pattern of all GC patients

Supplementary Table S7 | Risk pattern of the training group

Supplementary Table S8 | Risk pattern of the testing group

Supplementary Table S9 | Immune cells infiltration status of GC patients

Supplementary Table S10 | Immune therapy sensitivity data

Supplementary Table S11 | Tumor mutation burden data of the high-risk
group

Supplementary Table S12 | Tumor mutation burden data of the low-risk group

Supplementary Table S13 | The risk score of GC patients receiving chemotherapy

Supplementary Table S14 | The risk score of GC patients receiving no
chemotherapy

Supplementary Table S15 | Quantitative real-time PCR primer sequences and R
code used in our manuscript
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