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Purpose: RPGR is the most common cause of X-linked retinitis pigmentosa (RP), of
which female carriers are also frequently affected. The aim of the current study was
to explore the RPGR variation spectrum and associated phenotype based on the data
from our lab and previous studies.

Methods: Variants in RPGR were selected from exome sequencing data of 7,092
probands with different eye conditions. The probands and their available family members
underwent comprehensive ocular examinations. Similar data were collected from
previous reports through searches in PubMed, Web of Science, and Google Scholar.
Systematic analyses of genotypes, phenotypes and their correlations were performed.

Results: A total of 46 likely pathogenic variants, including nine missense and one in-
frame variants in RCC1-like domain and 36 truncation variants, in RPGR were detected
in 62 unrelated families in our in-house cohort. In addition, a total of 585 variants,
including 491 (83.9%) truncation variants, were identified from the literature. Systematic
analysis of variants from our in-house dataset, literature, and gnomAD suggested that
most of the pathogenic variants of RPGR were truncation variants while pathogenic
missense and in-frame variants were enriched in the RCC1-like domain. Phenotypic
variations were present between males and female carriers, including more severe
refractive error but better best corrected visual acuity (BCVA) in female carriers than
those in males. The male patients showed a significant reduction of BCVA with increase
of age and males with exon1-14 variants presented a better BCVA than those with
ORF15 variants. For female carriers, the BCVA also showed significant reduction with
increase of age, but BCVA in females with exon1-14 variants was not significant
difference compared with those with ORF15 variants.

Conclusion: Most pathogenic variants of RPGR are truncations. Missense and in-frame
variants located outside of the RCC1-like domain might be benign and the pathogenicity
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criteria for these variants should be considered with greater caution. The BCVA and
refractive error are different between males and female carriers. Increase of age and
location of variants in ORF15 contribute to the reduction of BCVA in males. These results
are valuable for understanding genotypes and phenotypes of RPGR.

Keywords: RPGR, retinitis pigmentosa, genotype, phenotype, exome sequencing

INTRODUCTION

Retinitis pigmentosa (RP) is a common type of inherited
retinal degenerations (IRD) characterized by impaired dark
adaptation and night blindness, progressive visual field defects
and pigmentary retinopathy, affecting approximately one in
3,500–4,000 people worldwide (Berger et al., 2010; Traboulsi,
2010; Sundaram et al., 2012; Zhang, 2016). RP can be inherited
as an autosomal dominant, autosomal recessive, or X-linked trait,
with these categories accounting for approximately 30–40%, 50–
60%, and 5–15% of RP patients, respectively (Bunker et al., 1984;
Grondahl, 1987; Hartong et al., 2006).

X-linked RP is one of the most severe forms of human
retinal degeneration (Bird, 1975). Affected males usually suffer
nyctalopia and severe and rapid progressive loss of peripheral
vision with an early onset, followed by progressive central visual
loss during the second to fourth decades of life, while female
carriers may present a wide range of phenotypes, ranging from
asymptomatic to severe phenotype (Bird, 1975; Fishman et al.,
1986; Banin et al., 2007). Additionally, the phenotype of X-linked
RP generally shows great phenotypic heterogeneity, including
interfamily heterogeneity, in terms of the age of onset, clinical
severity, rate of progression, and prevailing damage to rods
and cones (Fahim et al., 2011). Variants in retinitis pigmentosa
GTPase regulator (RPGR, OMIM 312610) account for 70–80%
(Sharon et al., 2003; Pelletier et al., 2007; Shu et al., 2007)
of X-linked RP cases. This protein localizes to the connecting
cilium in photoreceptors and is thought to play a role in protein
transport (Roepman et al., 2000; Hong et al., 2003).

In 2007, a study provided an overview of RPGR genotypes and
the associated phenotypic variation (Shu et al., 2007). However,
the widespread application of next-generation sequencing (NGS)
in recent years has increased the number of variants identified in
RPGR and expanded the known phenotypic spectrum of patients.
Further comprehensive analysis of RPGR genotype–phenotype
relationships would be expected. In addition, most of the patients
previously reported to show variants in RPGR were recruited
from America or Europe.

Abbreviations: AF, allele frequency; All, all population; BCVA, best corrected
visual acuity; CD, corneal degeneration; COD, cone dystrophy; CORD, cone-
rod dystrophy; DM, disease-causing mutations; EA, East Asians; G, glaucoma;
HM, high myopia; Hyp, hypermetropia; IRD, inherited retinal degenerations;
LCA, Leber congenital amaurosis; LD, lens dislocation; MC, macular coloboma;
MD, macular degeneration; N, normal; NA, not available; NYS, nystagmus; OA,
ocular albinism; ONH, Optic nerve hypoplasia; PHPV, Persistent Hyperplastic
Primary Vitreous; RB, retinoblastoma; RD, retinal diseases; RE, refractive error;
RP, retinitis pigmentosa; RRD, Rhegmatogenous Retinal Detachment; SA, splicing
acceptor; SD, splicing donor; SER, spherical equivalent refraction. BDGP, Berkeley
Drosophila Genome Project; gnomAD, genome aggregation database; HGMD, the
Human Gene Mutation Database; HSF, Human Splicing Finder.

In this study, we performed a summary of the genotypes
and corresponding phenotypes in RPGR from our database
and the literature. The pathogenicity of the variants in
RPGR and genotype–phenotype correlations were further
assessed and summarized.

MATERIALS AND METHODS

Samples
In an ongoing study of genetic eye diseases, we recruited 7092
probands with different eye conditions from the pediatric and
Genetic Eye Clinic of the Zhongshan Ophthalmic Center, and
we collected the available clinical data of the probands and
their available family members with RPGR variations. This
study was performed in accordance with the Declaration of
Helsinki, and written informed consent was obtained from
participating individuals or their guardians. Our study was
approved by the Institutional Review Board of Zhong Shan
Ophthalmic Center. All patients included in the study underwent
exome sequencing [whole-exome sequencing (WES) and targeted
exome sequencing (TES)]. The rare variants were defined as
variants with a minor allelic frequency of less than 0.01 in
general population from gnomAD database and patients with
likely pathogenic variants were subsequently discriminated from
the rare variants of RPGR in this study. Genotype–phenotype
correlation was investigated by statistical analyses on different
groups of patients with likely pathogenic variants of RPGR
according to the variants in certain regions. In addition, patients
with rare variants in RPGR were summarized based on our data
(Tables 1, 2).

Exome Sequencing
Exome sequencing, including WES and TES, was conducted in
the patients included in our study. Whole-exome sequencing
was performed on 5,307 probands using a commercial service
as described in our previous study (Li et al., 2015). Genomic
DNA from the probands was sheared and fragments of an
approximate 150 bp were selected. Exome was captured by an
Agilent SureSelect Human All Exon Enrichment Kit (Agilent,
Santa Clara, CA, United States). Library quality was assessed
using an Agilent 2100 Bioanalyzer and were then sequenced
on the Illumina HiSeq platform (Illumina, San Diego, CA,
United States) with an average depth of at least 125-fold.
After filtering out low quality reads, and remaining clean data
was verified by aligning the sequencing with the UCSC hg191

1http://genome.ucsc.edu/
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TABLE 1 | 46 likely pathogenic variants in RPGR from 62 unrelated families (based on NM_001034853).

Variants Exon Nucleotide Effect Polyphen2 PROVEAN REVEL CADD BDGP HSF No. of
probands

Initial
diagnosis

HGMD Novel or Evidence

change HVAR pred score (reported)
¸

Known

Missense and In-frame

1 2 c.124T>C p.Cys42Arg D D 0.897 25.7 / / 1 HM NA Novel 2, 3, 4, 5, 6

2 2 c.149T>G p.Val50Gly D D 0.796 23.2 / / 1 RP NA Novel 2, 3, 4, 5, 6

3 4 c.292C>A p.His98Asn D D 0.84 26.6 / / 1 CORD NA Novel 1, 2, 3, 4,
5, 6

4 5 c.431A>G p.Gln144Arg D D 0.507 24.6 / / 1(1) RP DM Known 2, 3, 4, 5, 6

5 6 c.494G>T p.Gly165Val D D 0.982 26.6 / / 1 RP DM Known 1, 2, 3, 4,
5, 6

6 7 c.748T>C p.Cys250Arg D D 0.906 24.5 / / 1 RP DM Known 2, 3, 4, 5,
6, 7

7 8 c.878G>T p.Arg293Met D D 0.295 13.92 / / 1 RP NA Novel 2, 3, 4, 5,
6,

8 8 c.905G>A p.Cys302Tyr D D 0.919 25.2 / / 1 RP DM Known 2, 3, 4, 5,
6,

9 9 c.958G>A p.Gly320Arg D D 0.959 32 / / 1 RP DM Known 2, 3, 4, 5,
6,

10 10 c.1071_1073
delTGG

p.Gly358del / / / / / / 1(1) RP DM? Known 1, 2, 4, 5,
6,

Truncation

1 2 c.140_144dup
CTGCT

p.Ser47Phefs*23 / / / / / / 1(1) RP NA Known 1, 2, 4, 5, 6

2 6 c.473del p.Asp158Glufs*17 / / / / / / 1(1) RP NA Known 2, 4, 5, 6

3 6 c.530dupT p.Ser178Lysfs*2 / / / / / / 1(1) RP DM Known 1, 2, 4, 5, 6

4 10 c.1243_1244del p.Arg415Glyfs*37 / / / / / / 1 RP DM Known 2, 4, 5, 6

5 14 c.1685_1686del p.His562Argfs*20 / / / / / / 1(1) RP DM Known 1, 2, 4, 5, 6

6 ORF15 c.1872_1873del p.Glu624Aspfs*5 / / / / / / 1 RP NA Known 1, 2, 4, 5, 6

7 ORF15 c.2075dupG p.Glu693Argfs*77 / / / / / / 1(1) RP NA Known 2, 4, 5, 6

8 ORF15 c.2190del p.Glu732Argfs*83 / / / / / / 1 RP NA Novel 1, 2, 4, 5, 6

9 ORF15 c.2236_2237del p.Glu746Argfs*23 / / / / / / 6(2) RP NA Known 1, 2, 4, 5, 6

10 ORF15 c.2272del p.Glu758Lysfs*57 / / / / / / 1 RP NA Novel 1, 2, 4, 5, 6

11 ORF15 c.2384del p.Glu795Glyfs*20 / / / / / / 1 RP NA Known 2, 4, 5, 6

12 ORF15 c.2403_2406del p.Glu802Glyfs*12 / / / / / / 1(1) RP NA Known 2, 4, 5, 6

13 ORF15 c.2405_2406del p.Glu802Glyfs*32 / / / / / / 5(4) HM, RP NA Known 1, 2, 4, 5, 6

14 ORF15 c.2420_2435del p.Glu807Glyfs*3 / / / / / / 1(1) RP NA Known 2, 4, 5, 6

15 ORF15 c.2442_2445del p.Gly817Lysfs*2 / / / / / / 2 MD, RP NA Known 2, 4, 5, 6

16 ORF15 c.2476_2477del p.Arg826Glyfs*8 / / / / / / 2(2) HM, RP NA Known 1, 2, 4, 5, 6

17 ORF15 c.3027_3028del p.Glu1010Glyfs*68 / / / / / / 3(1) HM, RP NA Known 1, 2, 4, 5, 6

18 ORF15 c.3092del p.Glu1031Glyfs*58 / / / / / / 1 HM NA Known 1, 2, 4, 5, 6

19 ORF15 c.3096_3097del p.Glu1033Argfs*45 / / / / / / 2 HM NA Known 1, 2, 4, 5, 6

(Continued)
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TABLE 1 | Continued

Variants Exon Nucleotide Effect Polyphen2 PROVEAN REVEL CADD BDGP HSF No. of
probands

Initial
diagnosis

HGMD Novel or Evidence

change HVAR pred score (reported)
¸

Known

20 ORF15 c.3241del p.Asp1081Metfs*8 / / / / / / 1(1) HM NA Known 1, 2, 4, 5, 6

21 ORF15 c.3317del p.Lys1106Serfs*25 / / / / / / 1 RP NA Known 2, 4, 5, 6

22 ORF15 c.3364del p.Met1122Cysfs*9 / / / / / / 1(1) HM NA Known 1, 2, 4, 5, 6

23 2 c.93G>A p.Trp31* / / / 33 / / 1 RP DM? Known 1, 2, 4, 5, 6

24 2 c.122C>G p.Ser41* / / / 35 / / 1(1) RP DM Known 1, 2, 4, 5, 6

25 3 c.191G>A p.Trp64* / / / 39 / / 1 RP NA Novel 2, 4, 5, 6

26 5 c.352C>T p.Gln118* / / / 33 / / 2(1) RP DM Known 1, 2, 4, 5,
6, 7

27 10 c.1234C>T p.Arg412* / / / 34 / / 2(1) RP DM Known 1, 2, 4, 5, 6

28 11 c.1345C>T p.Arg449* / / / 23.7 / / 1 RP DM Known 1, 2, 4, 5, 6

29 13 c.1561C>T p.Gln521* / / / 35 / / 1 RP NA Known 1, 2, 4, 5, 6

30 ORF15 c.2248G>T p.Glu750* / / / 24.9 / / 1 RP NA Novel 2, 4, 5, 6

31 ORF15 c.2491G>T p.Glu831* / / / 32 / / 1 RP NA Known 2, 4, 5, 6

32 IVS4 c.310 + 1G>A / / / / 33 SD SD 1(1) RP DM Known 2, 4, 5, 6

33 IVS9 c.1060−1G>A / / / / 33 SA SA 1 RP NA Novel 2, 4, 5, 6

34 IVS12 c.1506 + 1G>T / / / / 33 SD SD 1 HM NA Novel 2, 4, 5, 6

35 IVS12 c.1506 + 2T>C / / / / 32 SD SD 1 RP NA Novel 2, 4, 5, 6

36 IVS13 c.1573−2A>G / / / / 28.2 NSC SA 1 RP DM Known 2, 4, 5, 6

CORD, cone-rod dystrophy; DM, disease-causing mutations; HM, high myopia; MD, macular degeneration; NA, not available; NSC, no splicing change; RP, retinitis pigmentosa; SA, splicing acceptor; SD, splicing
donor; *, termination codon; /, not applicable. BDGP, Berkeley Drosophila Genome Project; HGMD, the Human Gene Mutation Database; HSF, Human Splicing Finder; ()

¸
: Previously reported by our lab. None of the

variants were recorded in gnomAD except c.3027_3028delGG. Evidence that variant is likely pathogenic: 1 = segregate with inherited eye diseases in one or more families (males with variants were affected); 2 = variants
identified in one or more families with eye disease accompany with RP, CORD, COD, MD, or HM; 3 = at least three of four predicting tools are pathogenic; 4 = MAF ≤ 4.7 × 10−5 or absence in gnomAD database;
5 = other known IRD pathogenic variants were not identified; 6 = variants does not find in controls; 7 = variants are de novel.
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TABLE 2 | 51 benign or likely benign variants in RPGR from 101 unrelated families (based on NM_001034853).

Variants Exon Nucleotide Effect À Á Â Ã gnomAD No. of probands Diagnosis Novel or Evidence

change AF Hemi EA Hemi (reported)
¸

Known

Missense

1 ORF15 c.1910G>A p.S637N B N 0.055 23.6 NA NA NA NA 1(1) HM Known 3

2 ORF15 c.1930G>A p.V644M B N 0.004 9.241 NA NA NA NA 1 RP Novel 1, 3, 5

3 ORF15 c.1957G>A p.G653S B N 0.019 10.57 NA NA NA NA 1 BCD Novel 2, 3, 5

4 ORF15 c.1967A>T p.D656V B N 0.043 16.41 NA NA NA NA 1(1) HM Known 3

5 ORF15 c.2135A>G p.Q712R B N 0.038 0.077 9/157035 2 9/12249 2 8(1) N, HM, RB, ONH, G, HYP Known 2, 3, 4, 5, 6

6 ORF15 c.2200G>A p.E734K P N 0.04 18.53 6/117024 1 5/8773 1 5(1) G, NYS, HM Known 2, 3, 4, 5

7 ORF15 c.2342C>T p.A781V B N 0.082 5.756 11/126393 4 0/9010 0 1 RP Novel 3, 4

8 ORF15 c.2357A>C p.K786T B N 0.013 13.68 NA NA NA NA 1 Best Novel 2, 3, 5

9 ORF15 c.2606A>G p.E869G B N 0.062 14.86 25/40040 0 0/3847 0 1 RP Novel 3, 4

10 ORF15 c.2995G>T p.G999W P N 0.025 17.62 1/71397 0 1/7897 0 1 RP Novel 3, 4, 5

11 ORF15 c.3035A>G p.E1012G B N 0.031 12.1 5/110513 2 5/9144 2 2 RB, RP Novel 2, 3, 4, 5

12 ORF15 c.3088G>A p.G1030R B N 0.046 15.2 NA NA NA NA 1 RP Novel 1, 3, 5

13 ORF15 c.3122A>G p.E1041G B N 0.04 14.35 NA NA NA NA 2 LCA, HM Novel 1, 3

14 ORF15 c.3220G>A p.E1074K B N 0.034 14.59 3/181654 1 2/13859 1 1 G Novel 2, 3, 4

15 ORF15 c.3271A>T p.I1091L B N 0.006 10.61 NA NA NA NA 2 N, RB Novel 2, 3, 6

16 ORF15 c.3439C>G p.H1147D P N 0.257 24.1 NA NA NA NA 1 RP Novel 3

In-frame

1 ORF15 c.2360_2362del p.G787del / / / / 3/127259 0 3/9008 0 1 HM Novel 4

2 ORF15 c.2447_2461del p.G816_E820del / / / / 123/103374 16 2/7866 1 4(1) CORD, RP, RB, HM Known 2, 4

3 ORF15 c.2952_2954del p.E985del / / / / 2/52677 1 1/6728 0 1 LCA Novel 4

4 ORF15 c.3032_3043del p.G1011_E1014del / / / / 3/116321 0 1/9309 0 1 HM Novel 4

5 ORF15 c.3051_3053del p.E1018del / / / / 547/119184 118 1/9395 1 1 NYS Novel 4

6 ORF15 c.3105_3122delins† p.E1037_E1041delins# / / / / NA NA NA NA 7 N, HM, RD, FEVR, RP Novel 1, 2, 6

7 ORF15 c.3123_3125del p.E1042del / / / / 25/191580 6 2/14266 0 2(1) RP Known 4

8 ORF15 c.3133_3135del p.E1045del / / / / 4/176793 3 0/13596 0 1 RP Novel NA

9 ORF15 c.3170_3172del p.R1057del / / / / 10/201586 5 1/14789 0 1 RP Novel 4

10 ORF15 c.3180_3182del p.E1066del / / / / 2/181016 0 0/13852 0 1 HM Novel NA

11 ORF15 c.3189_3191del p.E1066del / / / / 2/181292 0 1/13854 0 1 G Novel 2, 4

12 ORF15 c.3195_3197del p.E1066del / / / / 2/181292 0 1/13854 0 1 HM Novel 4

13 ORF15 c.3225_3227del p.E1076del / / / / 1/181925 0 0/13860 0 1 HM Novel NA

Exon1-14

1 1 c.7G>A p.E3K P N 0.127 22.2 NA NA NA NA 1 G Novel 2, 3

2 2 c.37G>A p.A13T D D 0.485 25.3 NA NA NA NA 1 FEVR Novel 2

3 2 c.112G>A p.V38I B N 0.051 0.066 NA NA NA NA 1 LD Novel 2, 3, 5

4 4 c.277G>T p.A93S D D 0.59 24.4 1/182876 1 1/13846 1 4 RD, HM, COD, CD Novel 1, 2, 4, 5

(Continued)
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TABLE 2 | Continued

Variants Exon Nucleotide Effect À Á Â Ã gnomAD No. of probands Diagnosis Novel or Evidence

change AF Hemi EA Hemi (reported)
¸

Known

5 6 c.522A>T p.L174F D D 0.55 15.94 NA NA NA NA 1 N Novel 6

6 7 c.738C>G p.I246M P N 0.404 17.84 NA NA NA NA 1 HM Novel 3

7 8 c.782A>C p.N261T B N 0.19 7.487 4/180617 2 4/13651 2 4 N, RP, RD, HM Novel 2, 3, 4, 5, 6

8 7 c.727G>A p.E243K P N 0.33 23.1 NA NA NA NA 1 G Novel 2

9 10 c.1163C>T p.A388V B N 0.049 5.981 44/183213 14 0/13847 0 2 G, HM Novel 2, 3, 4

10 11 c.1270A>G p.M424V B D 0.12 6.942 3/182944 0 0/13818 0 1 PHPV Novel 2, 3

11 11 c.1282C>G p.L428V P N 0.129 14.6 35/204797 14 35/14807 14 8(1) G, HM, OA, RP, RD, RRD Known 2, 3, 4, 5

12 11 c.1331A>G p.N444S B N 0.012 0.002 2/183351 0 0/13858 0 1 RRD Novel 2, 3, 5

13 11 c.1367A>G p.Q456R B N 0.016 0.052 1704/205075 594 0/14852 0 1 G known 2, 3, 4

14 13 c.1519A>G p.S507G P D 0.046 22 4/164448 0 4/12070 0 2 LCA, G Novel 1, 2, 4

15 13 c.1561C>G p.Q521E B N 0.046 16.13 5/171108 3 5/12659 3 6 G, MC, RB, HYP, HM Novel 1, 2, 3, 4

16 14 c.1585A>G p.I529V B N 0.006 0.002 2/181278 0 1/13849 0 3 NYS, HM, LCA Novel 2. 3

17 14 c.1622A>G p.N541S B N 0.016 0.343 NA NA NA NA 1 RRD Novel 2, 3, 5

18 14 c.1628A>G p.D543G B N 0.011 4.167 NA NA NA NA 1 RP Novel 3

19 14 c.1630A>G p.S544G P N 0.049 19.15 2/182957 1 1/13858 0 3(1) N, G, HM Known 2, 3, 4, 6

20 14 c.1720A>G p.T574A B N 0.013 0.527 NA NA NA NA 1 LCA Novel 3, 5

21 14 c.1721C>T p.T574M B N 0.008 1.128 23/204508 9 1/14838 0 1 HM Novel 3, 4

22 10 c.1117_1119dupAAA p.K373dup / / / / 12/182610 6 12/13812 6 3 MD, HM, RB Novel 1, 2, 4

AF, allele frequency; CD, corneal degeneration; COD, cone dystrophy; CORD, cone-rod dystrophy; EA, East Asians; G, glaucoma; HM, high myopia; Hyp, Hypermetropia; LCA, Leber congenital amaurosis; LD, lens
dislocation; MC, macular coloboma; MD, macular degeneration; N, normal; NA, not available; NYS, nystagmus; OA, ocular albinism; ONH, Optic nerve hypoplasia; PHPV, Persistent Hyperplastic Primary Vitreous; RB,
retinoblastoma; RD, retinal diseases; RP, retinitis pigmentosa; RRD, Rhegmatogenous Retinal Detachment; /, not applicable; FEVR, familial exudative vitreoretinopathy; †AGAAAGGGAAAAGGAGGG; #ArgGluLysGluGly;
()
¸

Previously reported by our lab. 1, polyphen-2 HVAR; 2, PROVEAN; 3, REVEL; 4, CADD. gnomAD, genome aggregation database; HGMD, the Human Gene Mutation Database.
Evidence that variant is benign or likely benign: 1 = does not segregate with inherited eye diseases in one or more families (males with variants were unaffected); 2 = variant identified in one or more families with eye
disease other than RP, CORD, COD, MD, or HM; 3 = at least two of four predicting tools are benign; 4 = MAF ≥ 4.7 × 10−5 in gnomAD database; 5 = identified other known IRD pathogenic variants; 6 = verified in
controls.
All variants are not recorded in HGMD except the variant c.1630A>G.
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reference using the Burrows-Wheeler Aligner (BWA2). Variants
were detected by SAMTOOLS3 and were annotated and predicted
by SnpEff4, ANNOVAR5, and dbNSFP6, respectively.

Targeted-exome sequencing was conducted on 1,785 probands
by our lab as described in our previous study (Wang et al., 2019).
Approximately 200 bp fragments were obtained from genomic
DNA using a Bioruptor Plus (Diagenode, Liege, Belgium).
A paired-end library was prepared using a KAPA HTP Library
Preparation kit (Roche, Basel, Switzerland). Targeted exome was
captured using a designed NimbleGen SeqCap EZ Prime Choice
kit (Roche, Basel, Switzerland). Library quality was assessed using
an Agilent 2100 Bioanalyzer and were then sequenced on an
Illumina Nextseq550 Analyzer using the Illumina NextSeq550
Mild output v2 kit (150 PE) (Illumina, San Diego, CA,
United States) with an average depth of 250-fold. Variant calling
and annotation were analyzed using the StrandNGS software
(Karnataka, India) according to the manufacturer’s instructions.
The UCSC Genome Browser on Human hg19 Assembly was used
as an alignment reference. The dbNSFP was used for predictions
of missense variants. The list of 126 target genes, including
RPGR, in TES has been described in our previous study (Wang
et al., 2019). Variants in RPGR identified through WES and TES
were selected and filtered via multistep bioinformatics analyses
as previously reported (Xu et al., 2014; Li et al., 2015; Sun
et al., 2015; Zhou L. et al., 2018). Additionally, we used CADD7

and REVEL8 to further predict the severity of the missense
variants in RPGR. Data from the Genome Aggregation Database
(gnomAD9) and Human Genome Mutation Database (HGMD10)
were included as references for evaluating the pathogenicity of
the variants in RPGR. Selected remaining variants were verified
by Sanger sequencing. The pedigrees and sequence diagrams of
potential likely pathogenic variants are shown in Supplementary
Figures 1, 2.

Phenotype Analysis in Our Lab
Probands and available family members with variants in RPGR
were recruited for further comprehensive ocular examinations.
All of the examinations were performed by the same experienced
team of ophthalmologists. A detailed family and ophthalmic
history were obtained. The comprehensive ocular examinations
included best corrected visual acuity (BCVA), refractive error
(RE), and spectral domain-optical coherence tomography (SD-
OCT).

Refractive error was measured using an autorefractometer
(Topcon KR-8000, Paramus, NJ, United States) after mydriasis
with tropicamide (Mydrin-P, Santen Pharmaceutical, Japan). An
optical biometer (IOL master V5.0, Carl Zeiss Meditec AG,

2http://bio-bwa.sourceforge.net/
3http://samtools.sourceforge.net/
4http://snpeff.sourceforge.net/
5http://annovar.openbioinformatics.org/en/latest/
6http://varianttools.sourceforge.net/Annotation/DbNSFP
7https://cadd.gs.washington.edu/info
8https://sites.google.com/site/revelgenomics/
9http://gnomad.broadinstitute.org/
10http://www.hgmd.cf.ac.uk/ac/index.php

Germany) was used to detect the ocular biometric axial length.
Full-field electroretinogram (ERG) responses were recorded in
patients in accordance with the standards of the International
Society for Clinical Electrophysiology of Vision for evaluating
retinal disorders, using an Espion ERG system (Diagnosys
LLC, United States). Optical coherence tomography of the
macular and optic disks was performed via SD-OCT (Optovue,
Inc., United States).

Literature Review of RPGR Variants and
Ophthalmologic Outcomes
The variants and clinical data of patients with RPGR were
obtained by searching the literature for the keyword RPGR
in three databases: PubMed11, Web of Science12, and Google
Scholar13 (Meindl et al., 1996; Roepman et al., 1996; Andreasson
et al., 1997, 2003; Buraczynska et al., 1997; Fujita et al., 1997;
Jacobson et al., 1997; Weleber et al., 1997; Bauer et al., 1998;
Fishman et al., 1998a,b; Miano et al., 1998, 1999; Dry et al., 1999;
Flaxel et al., 1999; Rosenberg et al., 1999; Zito et al., 1999, 2000,
2003; Liu et al., 2000, 2002; Vervoort et al., 2000; Guevara-Fujita
et al., 2001; Yokoyama et al., 2001; Zhao et al., 2001, 2020; Aguirre
et al., 2002; Ayyagari et al., 2002; Breuer et al., 2002; Demirci
et al., 2002, 2004, 2005, 2006; Pusch et al., 2002; Rozet et al., 2002;
Yang et al., 2002, 2014; Bader et al., 2003; Barnes et al., 2003;
Iannaccone et al., 2003, 2008; Koenekoop et al., 2003; Lorenz
et al., 2003; Rebello et al., 2003; Sharon et al., 2003; Wegscheider
et al., 2004; Adamian et al., 2005; Ebenezer et al., 2005; Jin et al.,
2005, 2006, 2007a,b, 2008; Wang et al., 2005, 2015; Chakarova
et al., 2006; Garcia-Hoyos et al., 2006; Moore et al., 2006; Sullivan
et al., 2006, 2013; Aleman et al., 2007; Banin et al., 2007; Chang
et al., 2007; Duncan et al., 2007; Neidhardt et al., 2007, 2008;
Pelletier et al., 2007; Prokisch et al., 2007; Sandberg et al., 2007;
Shu et al., 2007; Walia et al., 2008; Al-Maskari et al., 2009; Ruddle
et al., 2009; Ji et al., 2010; Sheng et al., 2010; Wu et al., 2010;
Bowne et al., 2011; Fahim et al., 2011, 2020; Glaus et al., 2011;
Li N. et al., 2011; Li Z.L. et al., 2011; Liskova et al., 2011; Thiadens
et al., 2011; Branham et al., 2012, 2018; O’Sullivan et al., 2012;
Acton et al., 2013; Bukowy-Bieryllo et al., 2013; Churchill et al.,
2013; Eisenberger et al., 2013; Huang et al., 2013, 2014, 2015a,b,
2019; Kousal et al., 2013, 2014; Liu and Zack, 2013; Pyo Park et al.,
2013; Zahid et al., 2013; Glockle et al., 2014; Gonzalez-del Pozo
et al., 2014; Hu et al., 2014; Oishi et al., 2014; Pierrottet et al., 2014;
Wang F. et al., 2014; Wang J. et al., 2014; Xu et al., 2014, 2019;
Almoguera et al., 2015; Chassine et al., 2015; Consugar et al.,
2015; Fernandez-San Jose et al., 2015; Ge et al., 2015; Kastner
et al., 2015; Ogino et al., 2015; Sharon and Banin, 2015; Sun et al.,
2015; Haddad et al., 2016; Li et al., 2016; Parmeggiani et al., 2016;
Tiwari et al., 2016; Bellingrath et al., 2017; Hendriks et al., 2017;
Kalitzeos et al., 2017; Stone et al., 2017; Tee et al., 2017; Birtel
et al., 2018a,b; Chiang et al., 2018; Nanda et al., 2018; Talib et al.,
2018, 2019; Wawrocka et al., 2018; Zhou L. et al., 2018; Zhou Q.
et al., 2018; Gill et al., 2019; Koyanagi et al., 2019; Mawatari
et al., 2019, 2020; Sanchez Tocino et al., 2019; Tang et al., 2019;

11https://www.ncbi.nlm.nih.gov/pubmed/
12http://apps.webofknowledge.com/
13https://scholar.google.com/
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FIGURE 1 | The frequency and location of the variants from our lab, previous studies, and the gnomAD database (Ref. NM_001034853). (A) The frequency and
location of pathogenic and likely pathogenic RPGR variants detected in our lab. Missense and in-frame variants are distributed above the structure, and truncation
variants are shown below the structure. (B) The frequency and location of RPGR variants identified in previous studies. Missense and in-frame variants enriched in
the RCC1-like domain are shown above the structure, and truncation variants are indicated below the structure. Gross deletion variants are not shown here. (C) The
frequency and location of RPGR variants from the gnomAD database. Missense and in-frame variants are significantly enriched in the non-RCC1-like domain above
the structure. Truncation variants in all coding regions below the structure. Of the 11 truncation variants, 10 were low confidence truncations (dotted line). (D) The
frequency and location of benign and likely benign RPGR variants identified in our lab. The white regions represent the coding regions. RCC1-like domain:
p.38∼367, BD: basic domain p.1086-1139, Glutamic acid-glycine-rich domain: p.728∼1084.
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Zhang Z. et al., 2019; Dan et al., 2020; Foote et al., 2020; Menghini
et al., 2020; Nguyen et al., 2020; Rodriguez-Munoz et al., 2020;
Salvetti et al., 2020; Zampaglione et al., 2020) on July 01, 2020.
The papers were limited to English-language reports of definitive
variants in RPGR. Variant descriptions based on the work of
Meindl et al. (1996) were converted to descriptions based on
NM_001034853. Variants in RPGR previously reported to be
likely pathogenic were summarized in Supplementary Table 1
based on the literature.

Clinical data were collected to perform further comparisons
between genders, ages, locations and variation types. Spherical
equivalent refraction (SER) was calculated by adding spherical
refraction to half the cylindrical refraction.

Statistical Analysis
Analyses were performed using R software and SPSS version 23.
Logistic regression was used to screen out the factors influencing
BCVA in males and females. Median (IQR, interquartile range)

were used for continuous parameters. Mann–Whitney U test was
used to compare the BCVA and refractive error among groups,
namely (1) patients with variants in exon1-14; (2) patients
with variants in ORF15; (3) patients with variants in RCC1-
like domain; (4) patients with missense and in-frame variants;
(5) patients with truncation variants. The corrected significant
P-value for this study should be less than 0.017 (α = 0.05/3)
according to the Bonferroni method.

RESULTS

Identification of RPGR Variants in 7,092
Probands With Different Eye Conditions
in Our Lab
A total of 121 variants, including 15 polymorphisms, eight
3′UTR variants, one synonymous variant and 97 rare variants,
were detected in 7,092 probands. Of the 97 rare variants, 46

FIGURE 2 | Comparison of phenotypes according to different factors. (A) Comparison of logMAR BCVA between males and females. The BCVA of female carriers
was better than that of male patients. (B) Comparison of refractive error (RE) between males and females. Spherical equivalent refraction represents the severity of
RE. The RE of female carriers was more serious than that of males. (C) Scatterplots of logMAR BCVA and age, the two fitted lines correspond to male (black) and
female (red) patients. A significant reduction of BCVA with increase of age in both males and females. (D) Scatterplots of RE and age, the two fitted lines correspond
to male (black) and female (red) patients. The trends of the two lines are basically smooth. BCVA, best corrected visual acuity. ***, P value less than 0.001.
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likely pathogenic variants (11 novels) and 51 likely benign
variants were identified. Among the 46 likely pathogenic variants,
nine missense variants, one in-frame variant and 17 truncation
variants were located in exon1-14, and the remaining 19
truncation variants were located in ORF15 (Table 1). The 46
likely pathogenic variants were identified in 62 families, of which
truncation variants were identified in 52 (83.9%, 52/62), while
missense and in-frame variants were identified in nine (14.5%,
9/62) and one (1.6%, 1/62) family, respectively. Of the other 51
likely benign variants, 21 missense variants and one in-frame
variant, were identified in exon1-14, while 16 missense and 13
in-frame variants were detected in ORF15 (Table 2).

Review of RPGR Genotypes From Our
Lab and Previous Literature
A total of 585 variants have been reported in previous literature,
including 491 truncations, 84 missenses, and 10 in-frame

variants. Of the 94 missense and in-frame variants, 81 were
located in the RCC1-like domain, while the remaining 13 were
located outside the domain (Supplementary Table 1). A total of
585 previously reported variants, combining 46 likely pathogenic
variants with our laboratory data, a total of 606 variants were
analyzed (25 variants were repetitive).

Pathogenicity Evaluation of Missense and In-Frame
Variants Located Outside of the RCC1
A total of 57 missense and in-frame variants were located
outside of the RCC1 region, including 45 variants from our
in-house cohort and 13 from literature were identified (one
variant was repetitive) (Table 2 and Supplementary Table 1).
The following lines of evidence suggested that these variants
in RPGR might not be disease causing. (1) Missense and in-
frame variants were significantly enriched outside of the RCC1
region according to the gnomAD database, and the frequency
was obviously high (Figure 1). (2) Most of these variants were

FIGURE 3 | (A) The logMAR BCVA of male patients with variants in exon1-14 and ORF15 showed that patients with variants in exon1-14 have a better visual acuity.
(B) Patients with variants in RCC1-like domain were no significant difference compared to those in ORF15. (C) Comparison of logMAR BCVA between M + I and T,
there was no significant difference in variation type. (D) ROC curves suggested that our model shows high sensitivity and specificity in distinguishing different
degrees of BCVA. The datasets used for AUC analysis were from available males’ data and were randomly divided into two independent datasets (training and test
datasets) by the R-software. BCVA, best corrected visual acuity; E1-14, exon1-exon14; RCC1, RCC1-like domain; M + I, missense and in-frame; T, truncation. ns,
no statistical significance; **, P value less than 0.01.
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identified in one or more probands with different eye conditions
other than RP or closely relative early onset high myopia
(HM), cone-rod dystrophy (CORD), cone-dystrophy (COD), or
macular degeneration (MD) (Table 2). (3) All but two missense
variants (c.37G > A and c.1519A > G) located outside of the
RCC1 were predicted to be benign by at least two of four
prediction tools (90% cutoff score: 0.29 in REVEL and 21.5 in
CADD) (Table 2). (4) A few patients showed variants in other
known IRD genes, and some variants were verified in unaffected
controls. (5) Segregation analysis contributed further evidence
that missense and in-frame variants in non-RCC1 regions are not
disease causing, and the corresponding pedigrees are shown in
Supplementary Figure 3. (6) A previous study reported frequent
in-frame deletions of 3–36 bp in healthy controls, suggesting that
in-frame variants are benign (Karra et al., 2006). In addition,
Zhang Q. et al. (2019) developed an in vitro assay illustrating
that some variations located outside of the RCC1 region might
be non-disease-causing polymorphisms.

RPGR-Associated Phenotype Analysis of
Based on Our Data and the Literature
BCVA in Patients With RPGR Variations
The clinical data of the probands and available families with
pathogenic variants from our database and previous studies are
summarized in Supplementary Tables 2, 3. The statistical results
table were shown in Supplementary Table 4. BCVA showed a
significant reduction with increase of age in both males and
females (r = 0.479 and r = 0.216, respectively) (Figure 2C).
Better BCVA in female carriers (0.10 [0.00, 0.30] logMAR)
than in male patients (0.40 [0.17, 0.60] logMAR) (P = 7.41E-
25) (Figure 2A). Logistic regression was used to screen out
the factors influencing BCVA in males and females, and the
receiver operating characteristic (ROC) curves suggested that our
model showed high sensitivity and specificity in distinguishing
the different degrees of BCVA (Figure 3D). For males, the
variation type was not associated with BCVA (P = 0.183)
(Figure 3C). The BCVA of male patients with variants in
exon1-14 (0.36 [0.17, 0.48] logMAR) was significantly better
than that of male patients with variants in ORF15 (0.40 [0.20,
0.70] logMAR) (P = 0.005) after age adjustment, however,
the comparison between RCC1 and ORF15 was no significant
difference (P = 0.048) (Figures 3A,B). BCVA was not associated
with location or variation type in female carriers (all P > 0.05,
respectively) (Supplementary Figures 5A–C).

Refractive Error in Patients With RPGR Variations
Spherical equivalent refraction was used to assess the severity
of the RE. The percentage of female carriers with high myopia
was significantly greater than that of males (109/165 and 51/179,
respectively). Females with variants in RPGR showed a more
serious of SER than males (−8.00 [−12.00, −4.19] in female
carriers and−3.72 [−6.99,−1.28] in male patients, P = 5.46E-10)
(Figure 2B). Logistic regression showed that RE was unrelated
to age, location or variation type in both male patients and
female carriers (all P > 0.05) (Figure 2D and Supplementary
Figures 4, 5D–F).

In addition, the fundus changes vary widely among patients
with RPGR variants, including gray-white fundal spots,
tessellated fundus, retinal degeneration to macular degeneration
in males and female carriers.

DISCUSSION

In this study, 97 rare RPGR variations were detected in
our in-house exome sequence data. A total of 585 variants
were identified from previous studies. All in-house data and
previous literature data were combined for further genotype–
phenotype analysis.

Enrichment and the frequency analyses showed that
the benign variants were enriched in non-RCC1 regions.
Multistep bioinformatics analyses provided evidence that the
corresponding prediction scores were lower than those of
variants in the RCC1 region. In addition, segregation and
phenotypic consistency analyses further confirmed the benign
nature of the variants. A few families also showed variants
in other known IRD genes, and some variants were verified
in unaffected controls. In previous studies, three families
with compound heterozygous variants in RPGR, one allele
was an in-frame variant in ORF15, and the other allele was
a truncation variant (Pelletier et al., 2007; Neidhardt et al.,
2008). Moreover, in-frame variants in ORF15 (spanning 3–
36 bp) in healthy individuals were reported in a previous
study, suggesting that at least some in-frame variants in
ORF15 of RPGR might not be causative (Karra et al., 2006).
An in vitro assay developed in a previous study illustrated
that some variations located outside of the RCC1 regions
might be non-disease-causing polymorphisms (Zhang Q.
et al., 2019). Taken together, these findings suggest that at
least some missense changes and in-frame variants in the
non-RCC1 region might not be pathogenic. Interestingly,
several truncation variants at C-terminal region of RPGR had
a high frequency in the gnomAD database, but all of them
were low-confidence. If the high frequency of these truncations
were validated, the pathogenicity of truncations around and
downstream of these variants should be considered with
greater caution.

More than 85% of the patients with pathogenic RPGR variants
had RP. The remainder were diagnosed with a variety of X-linked
retinal diseases, including IRD, CORD, COD, high myopia, and
MD, among others. The BCVA of the probands with RPGR was
age depended, and the BCVA of female carriers was better than
that of male patients. In addition to age, the location of the
variants in RPGR might play important roles in male patients
with BCVA but not in female patients. Male patients with variants
in exon1-14 retained better BCVA.

Based on our analysis, there were no significant differences
in the SER with regard to the variation type, location or age in
either males or females. These results suggest that progression
of myopia is relatively slow in patients with variants in RPGR.
Because some probands exhibited high myopia in the early
stage, the specific screening of RPGR was initially not carried
out in many of these patients. This emphasizes the importance
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of performing a comprehensive examination of patients with
early-onset high myopia and of considering the possibility that
RPGR variants may exist in these patients. RE was only associated
with gender and was more serious in females than in males.

In summary, the results of this study suggested that missense
and in-frame variants located outside the RCC1-like domain are
likely benign. The pathogenicity criteria for RPGR should be
considered with greater caution. Increase of age and location
of variants in ORF15 contribute to the reduction of BCVA in
males. These results are valuable for understanding genotypes
and phenotypes of RPGR.
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Supplementary Figure 1 | Pedigrees of 51 families with likely pathogenic variants
in RPGR. Previously reported of RPGR variants identified in families by Sanger
sequencing are not shown. The family ID is provided above each pedigree. The
probands and available family members were analyzed by Sanger sequencing.
Arrows, probands of each family; filled symbols, patients with different eye
diseases; M, mutation; +, wild type; square, male; circle, female.

Supplementary Figure 2 | Sanger sequencing of 51 unrelated families with likely
pathogenic variants. Pedigrees are shown in the left column. Diagrams of the
mutant sequence and the corresponding normal control sequence diagram are
shown in the columns on the right. Sites of sequence changes are shown above
the sequence and indicated by a black arrow.

Supplementary Figure 3 | Pedigrees with likely benign variants. The family ID is
provided above each pedigree. The probands and available family members were
identified by Sanger sequencing. Arrows, probands of each family; filled symbols,
patients with different eye diseases; M, mutation; +, wild type; square,
male; circle, female.

Supplementary Figure 4 | Comparison of phenotypes according to different
factors in male patients. (A–C) Refractive error were not associated with location
and variation type, there was no statistical significance. M + I, missense and
in-frame; T, truncation; E1-14, exon1-exon14; ns, no statistical significance;
RCC1, RCC1-like domain.

Supplementary Figure 5 | Comparison of phenotypes according to different
factors in female carriers. (A–F) The severity of BCVA and refractive error show no
correlation with different location, variation type, there was no statistical
significance. M + I, missense and in-frame; T, truncation; E1-14, exon1-exon14;
BCVA, best corrected visual acuity; ns, no statistical significance; RCC1,
RCC1-like domain.
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