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Research Article

Symmetry is a salient visual property. People appreciate 
it in nature and create it in art. It influences a variety of 
fundamental perceptual phenomena (Bertamini & Makin, 
2014; Treder, 2010; Wagemans, 1995, 1997). In behavior, 
symmetry is easy to detect (Baylis & Driver, 1994, 2001; 
Corballis & Roldan, 1975; Friedenberg & Bertamini, 2000; 
Makin, Rampone, Pecchinenda, & Bertamini, 2013; 
Wagemans, 1995) and remember (Kayaert & Wagemans, 
2009). Symmetry influences figure-ground organization 
(Baylis & Driver, 1994; Devinck & Spillmann, 2013) and 
improves 3-D reconstruction (Vetter, Poggio, & Bülthoff, 
1994). In the brain, high-level visual areas show stronger 
responses to symmetric than to asymmetric objects 
(Makin et al., 2013; Palumbo, Bertamini, & Makin, 2015; 
Sasaki, Vanduffel, Knutsen, Tyler, & Tootell, 2005; Tyler 
et al., 2005), and perturbing them affects symmetry judg-
ments (Bona, Cattaneo, & Silvanto, 2015; Bona, Herbert, 
Toneatto, Silvanto, & Cattaneo, 2014; Cattaneo, Mattavelli, 
Papagno, Herbert, & Silvanto, 2011). These studies 

demonstrate that symmetry has a special status, yet they 
do not elucidate why this is so.

To address this issue, we drew on the finding that 
the neural response to a whole object can be reliably 
predicted as the sum of responses to each of its parts 
(Sripati & Olson, 2010a; Zoccolan, Cox, & DiCarlo, 
2005). We hypothesized that when identical parts are 
present in an object (making it symmetric), they will 
interact nonlinearly and cause the response to that 
object to deviate systematically from the sum of the 
responses to its parts. We created a set of objects in 
which two arbitrarily chosen parts were connected by 
a stem (Fig. 1a) and targeted single neurons in the 
monkey inferior temporal (IT) cortex, an area critical 
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Abstract
Symmetry is a salient visual property: It is easy to detect and influences perceptual phenomena from segmentation 
to recognition. Yet researchers know little about its neural basis. Using recordings from single neurons in monkey IT 
cortex, we asked whether symmetry—being an emergent property—induces nonlinear interactions between object 
parts. Remarkably, we found no such deviation: Whole-object responses were always the sum of responses to the 
object’s parts, regardless of symmetry. The only defining characteristic of symmetric objects was that they were more 
distinctive compared with asymmetric objects. This was a consequence of neurons preferring the same part across 
locations within an object. Just as mixing diverse paints produces a homogeneous overall color, adding heterogeneous 
parts within an asymmetric object renders it indistinct. In contrast, adding identical parts within a symmetric object 
renders it distinct. This distinctiveness systematically predicted human symmetry judgments, and it explains many 
previous observations about symmetry perception. Thus, symmetry becomes special in perception despite being 
driven by generic computations at the level of single neurons.
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for recognition. To relate these neural representations 
to behavior, we performed parallel psychophysical 
experiments in humans using the same stimuli. Our 
main finding is a remarkable null result: Responses to 
symmetric objects showed no systematic deviation from 
part summation and were no different from responses 
to asymmetric objects according to any other response 
measure in neurons. Yet symmetric objects were more 
distinctive from each other, which we demonstrate is 
due to part summation itself. This neural distinctiveness 
predicts symmetry perception in humans and also 
explains a variety of observations in the literature.

Method

Monkey neurophysiology

All animal experiments were performed according to a 
protocol approved by the Institutional Animal Ethics 
Committee of the Indian Institute of Science and the 
Committee for the Purpose of Control and Supervision 
of Experiments of Animals, Government of India. Surgi-
cal procedures and other experimental details were 
identical to those described in previous reports from 
our laboratory (Ratan Murty & Arun, 2017).

Behavior.  Monkeys were trained to perform a fixation 
task. Each trial began with the appearance of a fixation dot 

(diameter = 0.2°), and after successful fixation, a series of 
seven images appeared on the screen. Each image lasted 
for 200 ms and was followed by a 200-ms interstimulus 
interval. On successfully maintaining gaze inside a 3° win-
dow around the fixation dot throughout the trial, the ani-
mal received a juice reward. Although the fixation window 
was relatively large, post hoc analysis of eye position dur-
ing correct trials revealed that the gaze was closely cen-
tered on fixation (SD = 0.27° and 0.35° along horizontal 
and vertical axes, respectively).

Single-unit recordings.  We recorded neuronal activity 
in the left anterior IT cortex of two adult male monkeys 
(denoted Ka and Sa) using a 24-channel multicontact elec-
trode (U-Probe, Plexon, Dallas, TX). For details of record-
ing sites, refer to our previous study (Ratan Murty & Arun, 
2017). Continuous waveforms were analyzed off-line and 
sorted into clusters using spike-sorting software (Offline 
Sorter, Plexon). This yielded 180 visually responsive neu-
rons that were used for all subsequent analyses (93 from 
Ka and 87 from Sa). All the key results described were 
qualitatively similar in both monkeys.

Stimuli.  We chose seven parts and created 49 two-part 
objects by placing the parts on either side of a stem (Fig. 
1a). This design resulted in 42 asymmetric and 7 symmet-
ric objects. Each neuron was tested using the same shapes 
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Fig. 1.  Stimuli (a) and example responses in monkey inferior temporal (IT) cortex (b). Each neuron was tested with horizontally and vertically 
oriented versions of these shapes, but results are shown here for horizontal objects for ease of exposition (for vertical objects, see Section 
1 in the Supplemental Material). Each object was created by attaching two parts on either side of a stem. Objects along a row or column 
share the same part on the right or left side, respectively. Symmetric objects are highlighted here in red only for the purposes of illustration; 
asymmetric objects are shown in black. All objects were presented in white against a black background. The plot in (b) shows responses of 
an example IT neuron (with neuron ID at the bottom left) to the stimuli in (a). Stimuli are sorted in order of increasing response along rows 
and columns. Each plot consists of a histogram depicting the number of spikes in successive 20-ms bins and raster plots depicting spike times 
elicited during individual trials across the entire 200-ms image-presentation period.
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in a horizontal and vertical orientation, with the latter 
obtained by rotating horizontal stimuli counterclockwise 
by 90°. All stimuli measured 4° along the longer dimen-
sion with each part subtending 1.33°. In all, there were 
98 stimuli tested for each neuron (49 horizontal and 49 
vertical objects). We obtained qualitatively similar results 
for both horizontal and vertical objects. For ease of expo-
sition, results for horizontal objects are described here in 
the main text, and results for vertical objects are detailed 
in the Supplemental Material available online.

Trial design.  Each trial consisted of one symmetric and 
six asymmetric objects presented one at a time, with the 
constraint that no two objects in a trial shared a part at 
the same location on the object (this was done to avoid 
response adaptation). Horizontal and vertical objects 
were presented in blocks of seven trials each (i.e., after 
one repetition of all 49 objects). Trials in which the ani-
mal broke fixation were repeated after a random number 
of other trials. In this manner, we collected neural 
responses to at least eight repetitions of each stimulus.

Human behavior

All human subjects had normal or corrected-to-normal 
vision, were naive to the purpose of the experiments, 
and gave consent to an experimental protocol approved 
by the Institutional Human Ethics Committee of the 
Indian Institute of Science, Bangalore, India.

Experiment 1 (visual search).  A total of 8 subjects (age = 
20–30 years; 5 female, 3 male) participated in this experi-
ment. This number was chosen because this sample size 
yielded visual search times with extremely high split-half 
consistency in our previous studies (Pramod & Arun, 2014, 
2016). The stimuli consisted of the 49 horizontally oriented 
objects used in the neuronal recordings. Subjects were 
seated approximately 60 cm from a computer monitor 
controlled by custom MATLAB programs (The MathWorks, 
Natick, MA) written using the Psychophysics Toolbox 
(Brainard, 1997). Each trial began with a fixation cross at 
the center of the screen, displayed for 500 ms. Following 
this, a 4 × 4 search array containing one oddball item 
among multiple identical distractors was presented; a red 
vertical line ran down the middle of the screen to facilitate 
left/right judgments. Each item measured 3° along the lon-
ger dimension (slightly smaller than the 4° size used in the 
neural recordings). Items were centered at the grid loca-
tions but jittered in position in both x and y directions by 
±0.45° according to a uniform distribution to prevent align-
ment cues from guiding search. Subjects were instructed to 
indicate the side on which the oddball target appeared as 
quickly and accurately as possible by pressing a key (“Z” 
for left and “M” for right). They had to make a response 

within 10 s of the onset of the search array or the trial was 
aborted. Response time for trials with correct responses 
was used for subsequent analyses. Trials on which errors 
were made were repeated randomly later in the task. The 
data from this experiment have been reported previously 
(Pramod & Arun, 2016), but the analyses reported here are 
unique to this study.

Experiment 2 (symmetry task).  A total of 18 subjects 
(age: 19–41 years; 3 female, 15 male) participated in this 
experiment (none of them had participated in Experi-
ment 1). We chose this sample size because it yielded 
response times with good split-half consistency in our 
previous studies (Mohan & Arun, 2012). The stimuli were 
the same 49 horizontally oriented objects used in the 
neural recordings. On each trial of this task, a fixation 
cross was shown for 750 ms at the center of the screen, 
followed by a horizontal object stimulus with the longer 
dimension measuring 4° (similar to the dimensions used in 
the neural experiment). The stimulus was briefly flashed 
on the screen for 200 ms, after which a noise mask mea-
suring 4° × 4° was presented for 4,800 ms or until the sub-
ject made a response. Subjects were asked to report whether 
the briefly presented stimulus was symmetric or asymmetric 
using the “S” or “N” key, respectively. The response time 
(measured from the onset of the stimulus) for each trial was 
used for analyses. To eliminate response bias resulting from 
unequal numbers of symmetric and asymmetric objects, we 
presented each symmetric object 24 times and each asym-
metric object 4 times. Thus, subjects performed 168 trials  
(7 objects × 24 repeats) with symmetric objects and an 
equal number of trials with asymmetric objects (42 objects × 
4 repeats), resulting in a total of 336 correct trials. Error 
trials (either a wrong response or failure to respond within 
5 s of stimulus onset) were repeated after a random num-
ber of other trials. To avoid any effects of familiarity, we 
used only the data from the first four trials with both sym-
metric and asymmetric objects for all analyses.

Experiment 3 (symmetry and visual search with 64 
objects).  This experiment consisted of two tasks—visual 
search and categorization. Eight subjects (age: 22–33 
years; 1 female, 7 male) participated in both tasks, and an 
additional 4 subjects (age: 21–31 years; 3 female, 1 male) 
participated only in the categorization task. We chose 
these sample sizes because in previous studies from our 
lab on visual search (Pramod & Arun, 2014, 2016) and 
object categorization (Mohan & Arun, 2012), they yielded 
data with high split-half consistency. We created a set of 
32 symmetric and 32 asymmetric objects, with the con-
straint that every symmetric object shared one part with 
one of the asymmetric objects. This ensured that subjects 
could not use the memorized identity of any single part 
to determine that an object was symmetric. We chose 32 
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parts of varied complexity: Some objects contained two 
discernible parts (like those in Experiment 1), and others 
were simpler shapes, such as circles and squares, with no 
discernible parts. Each subject performed a visual search 
task followed by a symmetry task. In the visual search 
task, the trials consisted of symmetric objects as targets 
and asymmetric objects as distractors or vice versa. In all, 
there were 1,024 pairs of objects (32 symmetric objects × 
32 asymmetric objects). Each subject performed two cor-
rect search trials involving each pair with either item as 
the target. Thus, we collected visual search data for 2,048 
trials (1,024 pairs × 2 repetitions) from each subject. All 
other details were similar to those in Experiment 1, except 
that the objects measured 4° along the longer dimension. 
All details of the symmetry task were identical to those in 
Experiment 2, except that each object was presented 4 
times, bringing the total number of correct trials to 256 (64 
objects × 4 trials per object).

Data analysis

Part-sum model.  We avoided testing neural responses 
to isolated parts because isolated parts can contain extra 
features that may qualitatively alter the response. Instead, 
our stimulus set consisted of all possible combinations of 
seven parts on either side, which allowed us to estimate 
the underlying response to each part assuming linear 
summation. Since all seven parts could appear indepen-
dently in either location on the object, we estimated the 
contribution of each part on the left or right side inde-
pendently. In all, we modeled the whole object response 
as a linear sum of 15 possible regressors (7 parts × 2 
locations and a constant term). The resulting set of 49 
equations can be summarized as the matrix equation y = 
Xb, where y is a vector of 49 whole-object normalized 
responses (all responses were divided by the maximum 
response), b is a vector of 15 unknown part activations, 
and X is a 49 × 15 matrix whose rows contain 0s and 1s 
indicating whether a particular part is present (1) or 
absent (0) in the corresponding objects. To fit the model, 
we used standard linear regression (using the anovan 
function in MATLAB).

Pixel and V1 models.  In the pixel model, each pixel 
was considered a feature, and the corresponding gray 
level was the feature value. Each 51-by-152-pixel image 
was converted to a 7,752-dimensional-feature vector of 
pixel gray-level values. In the V1 model (Pinto, Cox, & 
DiCarlo, 2008; Ratan Murty & Arun, 2015), each image 
was represented as a vector of outputs of a bank of Gabor 
filters tuned to eight orientations and six spatial frequen-
cies. In addition, each Gabor filter had input contrast and 
output divisive normalization. In all, the V1 model resulted 
in a 372,096-dimensional-feature representation for each 

image. For both pixel and V1 representations, distance 
between images was calculated as the Euclidean distance 
between the feature vectors.

Prediction of behavioral dissimilarity using neu-
ral dissimilarity.  To estimate how behavioral dissimi-
larities measured using visual search in humans matched 
with neural dissimilarities measured in monkey IT neu-
rons, we tried two approaches. First, we directly compared 
the neural dissimilarity between every pair of objects (cal-
culated as the average firing-rate difference elicited by the 
two objects) with the behavioral dissimilarity in visual 
search (calculated as the reciprocal of the average search 
time for the two objects). This revealed a moderate cor-
relation (r = .34, p < .00005) that could be potentially 
biased if some parts elicited little or no activity across 
neurons. To resolve this issue, we fitted a model in which 
the behavioral dissimilarity for each pair of objects was a 
weighted sum of the neural dissimilarities across neu-
rons. This amounted to solving a linear regression of the 
form y = Xb, where y is a vector of behavioral dissimi-
larities for all object pairs, X is a matrix containing abso-
lute differences in firing rate elicited by each pair across 
neurons, and b is an unknown vector specifying the con-
tribution of each neuron to behavior. This model yielded 
excellent fits to the neural data.

Consistency of symmetry detection times.  To esti-
mate an upper bound on the ability of models to predict 
symmetry detection times, we calculated the split-half 
correlation between the average response times of two 
randomly chosen groups of subjects. However, this num-
ber underestimates the true reliability of the data since it 
is based on two halves of the data. To estimate the true 
reliability of the data, we corrected the split-half correla-
tion using a Spearman-Brown correction, given as rc = 
2r/(1 + r) where rc is the corrected correlation, and r is 
the split-half correlation. This corrected correlation is 
reported throughout as rc.

Calculation of distinctiveness using visual search.  
We calculated distinctiveness of an object as its average 
dissimilarity from other objects. To predict symmetry 
detection times in Experiment 2, we used the visual search 
data from Experiment 1. For each object, we calculated its 
distinctiveness as its average dissimilarity from other 48 
objects tested in the experiment.

In Experiment 3, measuring search dissimilarities was 
experimentally impossible since the total number of pos-
sible objects using these parts was too large (32 × 32 = 
1,024 objects), and the number of pairwise dissimilarities 
was even larger (1024C2 = 523,776 pairs). Accordingly, we 
collected search data for only 1,024 object pairs contain-
ing one symmetric and one asymmetric object and used 
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a computational model described previously (Pramod 
& Arun, 2016) to estimate all possible dissimilarities. 
According to this model, the total dissimilarity between 
two objects AB and CD is given by a sum of part-part 
comparisons at corresponding, opposite, and within-
object locations. Since all the part-part relations were 
strongly correlated, we fitted a part-sum model using 
only corresponding-part terms to estimate the underly-
ing part relations. This amounts to solving a matrix 
equation y = Xb, where y is a vector of 1,024 observed 
search dissimilarities, X is a 1,024 × 496 matrix of 1s 
and 0s indicating the presence (1) or absence (0) of 
each possible pair of parts, and b is a vector of 496 
(32C2) part-part dissimilarities. Having estimated all pair-
wise part dissimilarities at corresponding locations, we 
used the scaling relations observed previously to pre-
dict the full set of dissimilarities as y = Xb + aXab – 
wXwb, where Xa and Xw are the corresponding matrices 
for the opposite-location and within-object compari-
sons, and a and w are scalar values that represent the 
relative contributions of the corresponding terms. This 
modified model yielded comparable predictions of the 
observed data (r = .94, p < .000005) compared with the 
model containing only corresponding parts (r = .94,  
p < .000005). However, it captures additional features 
present in the data, such as mirror confusion and dis-
tinctiveness of symmetric objects, both of which require 
across-object and within-object part relations. To cal-
culate the distinctiveness of each object, we deter-
mined the average dissimilarity between this object 
and all 1,023 other objects using the model-predicted 
dissimilarities.

Simulation of artificial population of neurons.  From 
the neural data, we predicted that symmetric objects would 
be more dissimilar than asymmetric objects purely because 
of part summation. To test this prediction, we created a 
population of 50 artificial neurons and calculated the neu-
ral responses to 7 symmetric and 42 asymmetric hypothetical 
objects. Specifically, each artificial neuron in the population 
had randomly initialized part selectivity (uniformly dis-
tributed from 0 to 1) that was identical on both sides of 
the object. The neural response to all 49 objects was then 
computed simply as the sum of part responses. Neural 
dissimilarities for each pair of objects was calculated as 
the average absolute difference in firing rates elicited by 
the two objects.

Results

We recorded from 180 neurons in the IT cortex of 2 
monkeys while they viewed horizontally oriented sym-
metric and asymmetric objects made by joining two 
arbitrary shapes (Fig. 1a). The responses of an example 

IT neuron are shown in Figure 1b. This neuron had 
similar preferences for parts at both locations and 
responded strongest to objects with its preferred part 
at either end. Importantly, its responses to symmetric 
and asymmetric objects did not differ (average firing 
rate from 0 to 200 ms after stimulus onset: 16.0 and 
15.3 Hz for symmetric and asymmetric objects, respec-
tively; p = .65, rank-sum test across 7 symmetric and 42 
asymmetric objects). This was true across all neurons 
as well: Symmetric objects did not elicit greater 
responses (average firing rate: 15.6 and 15.5 Hz for 
symmetric and asymmetric objects, respectively; p = .49, 
sign-rank test on average firing rates across neurons).

Can the neural response to the whole 
object be explained as a sum of 
responses to its parts?

Because we created a large number of whole objects 
using a small number of parts, we were able to ask 
whether the neural response of each neuron could be 
modeled as a sum of part activations (see the Method). 
We avoided recording responses to isolated parts because 
isolated parts contain extra features (where they are 
separated from the whole object) that make them quali-
tatively different than when they are embedded within 
an object (Pramod & Arun, 2016). The resulting part-sum 
model yielded excellent fits to the neural response for 
the example neuron shown in Figure 1b (r = .93, p < 
.000005). It also yielded a significant correlation for all 
neurons (Fig. 2a; average r = .68 across 180 neurons).

This correlation between the observed and predicted 
response could be low either because the part-sum 
model did not explain all the systematic variation in 
firing across neurons, or because neural firing itself was 
noisy. To assess these possibilities, we calculated the 
correlation between the predictions of the model 
trained on odd-numbered trials and the observed firing 
rate on even-numbered trials. We then compared this 
with the degree with which the firing rate estimated 
from odd-numbered trials predicted the firing rate  
on even-numbered trials. A perfect model would show 
a correlation roughly equal to the reliability of firing. 
The ratio of model correlation and split-half firing cor-
relation, which we defined as normalized correlation, 
then represented the degree to which the part-sum 
model explains the systematic change in firing. The 
normalized correlation was on average close to 1 across 
reliable neurons (Fig. 2b; normalized correlation: M = 
1.07, SD = 0.25 for 85 neurons). We note that some 
normalized correlations were larger than 1, implying 
that model fits were better than the split-half reliability 
itself. On closer investigation, we found that these 
occurred in neurons with noisy firing (average split-half 
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Fig. 2.  Part summation in symmetric and asymmetric objects in monkey inferior temporal (IT) neurons. The histogram 
in (a) shows results across neurons for the correlation between the observed response and the response predicted by 
the part-sum model. The response of each neuron was modeled as a sum of part activations on each side. To estimate 
the degree to which the model captures the systematic variation in firing for each neuron (b), we fitted the part-sum 
model to odd-numbered trials, calculated its predictions on even-numbered trials, and divided the resulting model 
correlation by the observed correlation between odd and even trials. The plot depicts the normalized model correla-
tion calculated in this manner for all neurons with significant split-half correlations (n = 87). The arrows in (a) and 
(b) indicate the average correlation coefficient. The graph in (c) shows part response (normalized to the maximum) 
for left or right parts for neurons showing at least one main or interaction effect (n = 128). The graph in (d) shows 
normalized part response for the right parts arranged according to the left-part preference (and vice versa). Error bars 
in (c) and (d) show ±1 SEM. The scatterplot (e) shows the normalized observed response plotted against the response 
predicted by part summation across all objects and neurons for asymmetric objects and symmetric objects. The dashed 
line represents the least-square fit. Asterisks indicate significant correlations (****p < .00005). The bar graph in (f) shows 
the mean neural dissimilarity for symmetric object pairs and equivalent asymmetric object pairs. The asterisk indicates 
a significant difference between pair types (*p < .05). Error bars represent ±1 SEM calculated on neurons (n = 180).
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reliability: .59 for 35 neurons with normalized correlation 
< 1, .44 for 52 neurons with normalized correlation > 1, 
p = .03, rank-sum test), suggesting that the spuriously 
high normalized correlation arose from poor firing reli-
ability. We conclude that the part-sum model accurately 
explained nearly all the systematic variation in firing 
rate across neurons.

Next, we asked whether neurons showed consistent 
selectivity for part shape at both locations. To assess 
this possibility, we first identified neurons that showed 
significant part modulation by performing an analysis 
of variance (ANOVA) on the firing rate of each neuron 
across trials with left part (seven levels) and right part 
(seven levels) as factors. We then selected a subset of 
128 neurons that showed at least one significant main 
or interaction effect. Next, we ranked the estimated part 
response (from the part-sum model) on a given side 
(left or right) from best to worst and plotted the average 
normalized response across neurons (Fig. 2c). This plot 
depicts the selectivity of the neuron to any given side. 
To assess whether this selectivity was similar on the 
other side, we calculated the normalized response for 
each neuron for parts on the other side (right or left) 
ranked in the same order as before. If neurons showed 
inconsistent selectivity for parts on both sides of the 
object, the response to parts on one side would not 
change systematically when ranked according to the 
part preference on the other side. Instead, part responses 
decreased systematically when ranked according to part 
preferences on the other side (Fig. 2d). This average 
slope was significantly different from zero (average 
slope = −0.043, p < .00005 on a sign-rank test across 
128 neurons). Thus, a part that elicits a strong response 
on one side also elicits a strong response on the other 
side. We conclude that IT neurons showed similar part 
selectivity at both locations in the object.

Do symmetric objects deviate more 
than asymmetric objects from part 
summation?

Next, we asked whether the match between observed 
and predicted responses was different between symmet-
ric and asymmetric objects. Contrary to our expectations, 
the match between the observed and predicted responses 
was no worse for symmetric objects (Fig. 2e; model vs. 
data correlation: r = .86 and .87 for symmetric and asym-
metric objects, respectively, p < .00005 in both cases). 
Likewise, the residual error was no different for symmet-
ric objects (average absolute error between observed and 
predicted responses: .093 and .096 for symmetric and 
asymmetric objects, respectively, p = .64, rank-sum test 
across the average absolute error across 180 neurons).

The above analyses were based on fitting the part-
sum model to all objects and may have been subject to 
overfitting. To rule out this possibility, we fitted the 
part-sum model to a subset of the data and tested it on 
the data that were left out. Specifically, we selected 35 
asymmetric objects to train the model and tested it on 
the remaining 14 left-out objects (7 symmetric and 7 
asymmetric objects). For each neuron, we repeated this 
analysis 6 times so that each asymmetric object was 
used only once in the left-out set. Even here, the resid-
ual error for symmetric and asymmetric objects in the 
left-out set was not different across neurons (average 
residual error: .14 for symmetric objects and .14 for 
asymmetric objects, p = .33, sign-rank test on the aver-
age residual error across 180 neurons). We conclude 
that both symmetric and asymmetric objects are equally 
subject to part summation.

Are symmetric objects more distinctive 
from each other?

The above analyses show that symmetric and asym-
metric objects are both subject to part summation with 
very little nonlinear interactions. In other words, sym-
metric objects have no special status in terms of how 
their parts combine. We then wondered whether sym-
metric objects have any special status in terms of how 
they relate to each other or to other objects.

To examine this possibility, we calculated the neural 
dissimilarity between pairs of objects using the average 
difference in normalized firing rate across neurons and 
compared the neural dissimilarity between symmetric 
objects (which differ in two parts; n = 21) and between 
matched asymmetric objects that also differ in two parts 
(n = 420). Note that including all asymmetric object 
pairs would result in an artificially low dissimilarity 
because of including pairs of objects with shared parts, 
which have low dissimilarity. Comparing symmetric and 
asymmetric object pairs differing in two parts, we found 
a significant difference across the recorded neurons 
(average normalized neural dissimilarity: .159 and .145 
for symmetric and asymmetric object pairs, p = .011, 
sign-rank test across average symmetric pair vs. asym-
metric pair distances across neurons; Fig. 2f).

This difference was also present in both animals con-
sidered separately (average normalized dissimilarity: .17 
and .15 for symmetric and asymmetric pairs, respec-
tively, p = .04, sign-rank test across 93 neurons in Ka; 
.15 and .14 for symmetric and asymmetric pairs, respec-
tively, p = .03, sign-rank test across 87 neurons in Sa). 
It was also present when we calculated the raw neural 
dissimilarity (average raw firing-rate difference: 4.7 and 
4.3 spikes per second for symmetric and asymmetric 
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object pairs; p = .012, rank-sum test). While these firing-
rate differences appear relatively small, it is not uncom-
mon for relatively large effects in behavior to manifest 
as a relatively small difference in firing rates across the 
population (Baker, Behrmann, & Olson, 2002; Kayaert, 
Biederman, & Vogels, 2003; McMahon & Olson, 2007; 
Sripati & Olson, 2010b). In sum, we conclude that sym-
metric objects are more distinctive from each other com-
pared with asymmetric objects at the neural level.

Are symmetric objects more distinctive 
even in behavior?

The above results show that symmetric objects tend to 
be dissimilar compared with asymmetric objects at the 
level of monkey IT neurons. To establish the behavioral 
correlate of this effect in humans, we performed a visual 
search experiment (Experiment 1) using the same 
shapes. On each trial, subjects saw a search array con-
taining one oddball among identical distractors (as in 
Fig. 3a) and searched for all possible pairs of stimuli 
across trials. We calculated the reciprocal of search time 
as a measure of behavioral dissimilarity to compare with 
neural dissimilarity (Arun, 2012). We then compared the 
behavioral dissimilarity for symmetric and asymmetric 
object pairs as before and found a similar result: Sym-
metric objects were more distinctive from each other 
compared with asymmetric objects with unique parts 
(average dissimilarity for horizontal objects: 1.26 for 
symmetric objects vs. 1.07 for asymmetric objects, p = 
.00017, rank-sum test across 21 symmetric object pair 
and 420 asymmetric object-pair distances; Fig. 3b).

Having shown similar results in behavior and neurons, 
we asked whether the behavioral dissimilarity measured 
in humans could be explained by the neural dissimilarity 
observed in IT neurons across all stimuli. Behavioral dis-
similarity was moderately correlated with neural dissimilar-
ity (r = .34, p < .00005). This correlation could be biased 
because of neural sampling, for example, if very few neu-
rons responded to some parts because of variations in their 
shape selectivity. To address this issue, we fitted a simple 
linear model in which behavioral dissimilarity between 
each pair of stimuli was given by the weighted sum of 
firing-rate differences across neurons (see the Method). 
This weighted neuronal model yielded a strong correlation 
between behavioral and neural dissimilarity (r = .74, p < 
.00005; Fig. 3c). We conclude that symmetric objects are 
more distinct from each other than asymmetric objects, 
both in single neurons and in human visual search.

Are symmetric objects more distinctive 
in low-level image representations?

The above results show that symmetric objects are more 
distinctive from each other compared with equivalent 

asymmetric objects, but this could arise directly from 
the image pixels or from low-level visual processing. 
To rule out these possibilities, we compared symmetric 
and asymmetric object representations in two compu-
tational models: a pixel-based model analogous to the 
retina and a V1 model matched to the properties of 
primary visual cortex (Pinto et al., 2008; Ratan Murty 
& Arun, 2015). We concatenated the output of each 
model and calculated pairwise distances between sym-
metric and asymmetric stimuli as before. These dis-
tances were not significantly different in both models 
(average distances in the pixel-based model for sym-
metric and asymmetric pairs: 0.86 and 0.86, p > .6; 
average distances in the V1 model for symmetric and 
asymmetric pairs = 27.5 and 27.5; p > .6, rank-sum test 
across 21 symmetric object pairs vs. 420 asymmetric 
object pairs). Thus, the greater distinctiveness of sym-
metric objects is an emergent property of high-level 
representations and is not a trivial consequence of the 
input image or of early visual processing.

Why are symmetric objects more 
distinctive?

We have shown that symmetric objects have no special 
status at the neural level in terms of how their parts 
combine, yet they attain a special status by becoming 
distinctive from each other. How does this occur? Con-
sider, for instance, a population of neurons activated 
by parts A, B, and C with response vectors a, b, and c 
containing the responses evoked by each neuron (Fig. 
3d). Then, by part summation, the responses to the 
symmetric objects AA, BB, and CC will be the vectors 
2a, 2b, and 2c, whereas the responses to asymmetric 
objects AB, BC, and AC will be the vectors a + b, b + 
c, and a + c. Because the vector a + b lies exactly at 
the midpoint of the vectors 2a and 2b, it follows that 
these vectors will always have a specific arrangement 
within a plane, as depicted in Figure 3d. It can be easily 
seen that the asymmetric objects AB, BC, and AC will 
be closer together, whereas AA, BB, and CC remain as 
far apart as their constituent parts were originally. In 
other words, just as when mixing paints, adding identi-
cal parts maintains distinctiveness, whereas mixing 
diverse parts diminishes it. Note that the average 
response to symmetric and asymmetric objects remains 
the same (at the centroid of the triangle) even though 
their average dissimilarity is different. The only require-
ment for this to work is similar selectivity for parts at 
either location, a form of position invariance that is true 
for IT neurons (Fig. 2b; Sripati & Olson, 2010b). To 
confirm this prediction further, we simulated an artifi-
cial population of neurons with identical part selectivity 
at both locations and created responses to symmetric 
and asymmetric objects. Distances between symmetric 
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and asymmetric objects belonged to clearly different 
distributions (Fig. 3e).

Does distinctiveness explain symmetry 
perception in humans?

Thus far, we have shown that symmetric and asymmet-
ric objects are both governed by part summation, part 
summation results in symmetric objects becoming more 
distinct, and these effects are present both in monkey 
IT neurons as well as in human visual search. This is 
depicted schematically in Figure 4a. Could this neural 
property influence symmetry perception?

Specifically, if symmetry perception is based on neu-
ral distinctiveness, there must be a criterion level of 
distinctiveness at which objects that exceed this crite-
rion are classified as symmetric, and those that fall 
below it would be classified as asymmetric. This, in 
turn, implies fast and accurate symmetry judgments for 
objects far away from this criterion and slow responses 
for objects close to this criterion, according to common 
models of decision making (Ashby & Maddox, 2011; 
Mohan & Arun, 2012). Put differently, symmetric objects 
that are more distinctive should elicit a fast response, 
whereas asymmetric objects that are more distinctive 
should elicit a slow response (Fig. 4b). We performed 
two behavioral experiments on human subjects to test 
this prediction. Note that this prediction is qualitatively 

different from the pattern expected from salience: 
Salient objects should elicit faster responses regardless 
of their symmetry (as we confirmed—see Section 4 in 
the Supplemental Material).

In Experiment 2, subjects performed a standard 
symmetry-judgment task using the same 49 stimuli as 
in the previous experiments. Subjects were faster to 
judge an object as symmetric than to judge it as asym-
metric (Fig. 5a; average response times: 354 ms and 377 
ms for symmetric and asymmetric objects; p = .00002 
for the main effect of symmetry in an ANOVA on 
response times with subject and symmetry as factors). 
We then used the visual search dissimilarity from the 
earlier experiment (Experiment 1) to calculate the dis-
tinctiveness of each object as its average dissimilarity 
relative to all other objects. Distinctiveness also was 
significantly different between symmetric and asym-
metric objects (Fig. 5b; mean distinctiveness = 1.11 and 
0.94 s–1 for symmetric & asymmetric objects; p < .005, 
rank-sum test on average distinctiveness for 7 symmet-
ric and 42 asymmetric objects). Importantly, response 
times in the symmetry-judgment task were negatively 
correlated with distinctiveness for symmetric objects 
(Fig. 5c; r = −.89, p = .012) and positively correlated 
for asymmetric objects (Fig. 5d; r = .50, p < .0005). 
These correlations approached the consistency of the 
data itself (see the Method; rc = .91 and .53 for sym-
metric and asymmetric objects, p < .05).
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Specifically, this hypothesis predicts that symmetry detection time should decrease as symmetric objects become 
more distinct but should increase as asymmetric objects become more distinct. Note that this is qualitatively dif-
ferent from the pattern expected from salience: Salient objects would produce faster responses for both symmetric 
and asymmetric objects.
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The above findings are all based on testing a small 
group of objects. To confirm the generality of our find-
ings, we performed an additional behavioral experi-
ment (Experiment 3) using a much larger group of 
objects, which included unitary objects, such as circles 
and squares, with no discernible parts. As before, sub-
jects performed a symmetry-judgment task on a set of 
32 symmetric and 32 asymmetric objects (created using 
32 possible parts) and a visual search task to measure 
perceptual dissimilarities. In the symmetry-detection 
task, subjects responded faster to symmetric objects 
than to asymmetric objects (Fig. 5e; average response 
time: 431 ms for symmetric objects, 470 ms for asym-
metric objects; p < .000005 for the main effect of sym-
metry in an ANOVA on response times with subject and 
symmetry as factors). In the visual search task, subjects 

performed 1,024 searches involving all possible 
symmetric-asymmetric object pairs. However, calculat-
ing the distinctiveness posed a problem: In the previous 
experiment (Experiment 2), we were able to estimate 
the average distinctiveness of each object by averaging 
its dissimilarity with all 48 other objects in the set. 
However, this was simply not feasible here because it 
requires measuring 1,023 (32 × 32 − 1) dissimilarities 
for each object. Instead, we fitted the data to a part-sum 
model (see the Method), used the model to predict all 
1024C2 pairwise dissimilarities, and used them to calcu-
late the distinctiveness of each object relative to all 
other objects. Model-predicted distinctiveness was 
again significantly larger for symmetric objects (Fig. 5f; 
mean distinctiveness = 1.21 and 1.06 s–1 for symmetric 
and asymmetric objects; p < .00005, rank-sum test on 
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32 symmetric object distinctiveness scores vs. 32 asym-
metric object distinctiveness scores). Importantly, as we 
predicted, response times in the symmetry-judgment 
task were negatively correlated with distinctiveness for 
symmetric objects (Fig. 5g; r = −.41, p = .02) and posi-
tively correlated for asymmetric objects (Fig. 5h; r = 
.39, p = .03). These correlations were close to the con-
sistency of the data itself (rc = .48 and .59 for symmetric 
and asymmetric objects). These correlations were 
weaker but remained significant even when distinctive-
ness was calculated purely on the basis of taking the 
average dissimilarity of each object with the 63 other 
objects tested in the experiment (r = −.44, p = .013 for 
symmetric objects and r = .36, p = .045 for asymmetric 
objects). However, we note that there are some asym-
metric and symmetric objects that elicited similar 
response times and also showed similar distinctiveness, 
indicating that distinctiveness by itself may not explain 
all of symmetry perception (see the Discussion).

To summarize, in human behavior, distinctiveness 
speeds up the response to symmetric objects but slows 
down the response to asymmetric objects. These pat-
terns are consistent with the possibility that distinctive-
ness strongly influences symmetry perception.

Discussion

In this study, we set out to investigate symmetry in 
visual objects using a combination of neural recordings 
from monkey IT neurons and matched behavioral 
experiments in humans. Contrary to our initial expecta-
tions, symmetric objects did not show deviations from 
part summation or nonlinear part interactions. Instead, 
symmetric objects became distinctive as a direct conse-
quence of part summation in neurons. This distinctive-
ness accurately predicted human symmetry judgments. 
Thus, the special status of symmetry in perception is 
driven by generic computations at the neural level that 
make symmetric objects distinctive. Below, we discuss 
and reconcile the existing literature in relation to our 
findings.

Symmetry and distinctiveness

Our finding that symmetry can be explained by a 
generic computation in neurons is consistent with the 
idea that symmetry perception is automatic and graded 
(Bertamini & Makin, 2014; Wagemans, 1997). However, 
there may be two distinct mechanisms that operate 
during symmetry detection, particularly in tasks such 
as detection of regular dot patterns (Wagemans, 1995). 
The first mechanism is automatic and graded, resulting 
in extremely fast responses to overall symmetry. We 
propose that this process is driven by distinctiveness. 

The second mechanism, which may involve local scru-
tiny and pattern matching across the image, may be 
initiated only when the overall pattern is not distinctive 
enough. The facts that distinctiveness explains most but 
not all of the variance in symmetry responses, and that 
some symmetric and asymmetric objects have the same 
distinctiveness, imply that both fast and slow processes 
are involved. However, our results place limits on the 
contribution of the second process. Understanding the 
second mechanism will require using patterns equated 
for distinctiveness so as to rule out the contribution of 
the first mechanism.

Our proposal that distinctiveness underlies symmetry 
perception offers a possible explanation for why sym-
metry judgments slow down with contour complexity 
(Kayaert & Wagemans, 2009): As a contour becomes 
more complex, its disparate parts undergo part sum-
mation, making them less distinctive. Conversely, sim-
ple contours contain many similar features that also 
undergo part summation, causing them to remain dis-
tinctive. This explanation requires that part summation 
occurs at multiple scales. Indeed, throughout the ven-
tral visual pathway, the response to multiple stimuli in 
the receptive field is roughly equal to the average of 
the individual responses, a phenomenon known as divi-
sive normalization (Carandini & Heeger, 2011; Sripati 
& Olson, 2010a; Zoccolan et al., 2005). This explanation 
also requires that neurons respond similarly to parts at 
multiple locations and across mirror reflection, proper-
ties that are certainly present in monkey IT (Connor, 
Brincat, & Pasupathy, 2007; Rollenhagen & Olson, 2000) 
and its homologue, human lateral occipital complex 
(Dilks, Julian, Kubilius, Spelke, & Kanwisher, 2011; 
Grill-Spector, Kourtzi, & Kanwisher, 2001). Thus, sym-
metric objects may become distinct only in high-level 
visual areas where receptive fields are large and invari-
ant enough for part summation to benefit symmetry. 
This explains why only high-level visual areas show 
differential responses to symmetry (Sasaki et al., 2005; 
Tyler et al., 2005) and causally affect symmetry judg-
ments (Bona et al., 2014, 2015; Cattaneo et al., 2011). 
It is also supported by our computational analysis 
showing that symmetry is not distinctive in the retinal 
image or models of low-level visual cortex.

The finding that symmetry perception can be par-
tially explained using neural distinctiveness raises sev-
eral potential problems. First, if distinctiveness drives 
symmetry perception, it would predict that any distinc-
tive object can be potentially mistaken as being sym-
metric. This was indeed the case in our experiments, 
where some objects took unusually long times to be 
judged as asymmetric even though they did not appear 
anywhere close to being symmetric (Fig. 5). Second, 
could distinctiveness simply be bottom-up salience? 
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While this is consistent with the fact that distinctive 
symmetric objects elicit faster responses, it is contra-
dicted by the fact that distinctive asymmetric objects 
elicit slower (not faster) responses. In a separate experi-
ment, we further confirmed that changing salience (by 
altering image contrast) produces uniformly slower 
responses for both symmetric and asymmetric objects 
(see Section 4 in the Supplemental Material). Thus dis-
tinctiveness is qualitatively different from salience. 
Third, it might be argued that a novel object may elicit 
a larger neural response (Meyer, Walker, Cho, & Olson, 
2014; Woloszyn & Sheinberg, 2012), making it distinc-
tive. However, it might not be mistakenly identified as 
being symmetric provided that its distinctiveness results 
from comparisons with other objects that share its parts 
or with other neurons representing the same object. 
This is consistent with norm-based accounts in which 
object responses are based on referencing an underly-
ing average (Leopold, Bondar, & Giese, 2006; Leopold, 
O’Toole, Vetter, & Blanz, 2001).

Relation to symmetry responses  
in the brain

Our results offer a novel interpretation of previous obser-
vations regarding brain responses to symmetry. Stronger 
neural responses to symmetric objects have been 
observed in blood-oxygen-level-dependent (BOLD) acti-
vations over extrastriate visual areas (Sasaki et al., 2005; 
Tyler et  al., 2005). This could arise from symmetric 
objects being more distinctive from each other, leading 
to lower BOLD signal adaptation and consequently 
larger signal levels. Stronger responses to symmetry have 
also been observed in event-related potential studies 
(Makin et al., 2013; Palumbo et al., 2015). However, these 
differences arise relatively late (~400 ms after stimulus 
onset), consistent with symmetric objects attracting 
bottom-up attentional modulation because they are dis-
tinctive and consequently salient. Finally, stronger neural 
responses to symmetric than asymmetric objects have 
been observed in IT cortex of monkeys performing a 
symmetry-judgment task (McMahon & Olson, 2007). 
However, this facilitation may have arisen later in the 
response, which is consistent with attentional modula-
tion arising because symmetric objects are distinctive or 
because they are task-relevant targets.

Vertical versus horizontal symmetry

It is well known that symmetry about the vertical axis 
is detected fastest compared with other symmetries 
(Bertamini & Makin, 2014). Our argument for symmetric 
objects being more distinct is based on neurons show-
ing similar part selectivity at both locations in an object. 

Thus, the faster detection of symmetry in horizontal 
objects may ultimately arise from more consistent part 
selectivity across locations within these objects.

To assess this possibility in our data, we first estab-
lished that humans detect vertical symmetry faster than 
horizontal symmetry for our stimuli (see Section 2 in 
the Supplemental Material). While part responses are 
indeed more consistent for horizontal compared with 
vertical objects (cf. Fig. 2d and Fig. S2d), this difference 
was not robust. This discrepancy is difficult to interpret, 
especially given the absence of behavioral data in the 
monkey experiments and other experimental limitations 
(see Section 3 in the Supplemental Material). Evaluating 
these possibilities will therefore require further study. 
We propose that differences in symmetry detection 
across contour reflections and translations arise ulti-
mately from intrinsic differences in generalization of 
shape tuning across these manipulations.
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