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A widely used method for prediction of complex traits in animal and plant breeding is

“genomic best linear unbiased prediction” (GBLUP). In a quantitative genetics setting,

BLUP is a linear regression of phenotypes on a pedigree or on a genomic relationship

matrix, depending on the type of input information available. Normality of the distributions

of random effects and of model residuals is not required for BLUP but a Gaussian

assumption is made implicitly. A potential downside is that Gaussian linear regressions

are sensitive to outliers, genetic or environmental in origin. We present simple (relative to a

fully Bayesian analysis) to implement robust alternatives to BLUP using a linear model with

residual t or Laplace distributions instead of a Gaussian one, and evaluate the methods

with milk yield records on Italian Brown Swiss cattle, grain yield data in inbred wheat lines,

and using three traits measured on accessions of Arabidopsis thaliana. The methods do

not use Markov chain Monte Carlo sampling and model hyper-parameters, viewed here

as regularization “knobs,” are tuned via some cross-validation. Uncertainty of predictions

are evaluated by employing bootstrapping or by random reconstruction of training and

testing sets. It was found (e.g., test-day milk yield in cows, flowering time and FRIGIDA

expression in Arabidopsis) that the best predictions were often those obtained with the

robust methods. The results obtained are encouraging and stimulate further investigation

and generalization.

Keywords: complex traits, prediction, genomic selection, quantitative genetics, genome-enabled prediction

1. INTRODUCTION

Arguably, the most widely used method for genome-enabled prediction of complex traits in
agriculture is “genomic best linear unbiased prediction,” better known by its acronym GBLUP (Van
Raden, 2008). The method adapts a standard mixed effects linear model for obtaining pedigree-
based best linear unbiased predictions (ABLUP, hereinafter) of unknown genotypic or breeding
values of plants or animals, to a situation where each in a set of individuals possesses multiple-
marker DNA information. The molecular markers, typically single nucleotide polymorphisms
(SNP), are used as covariates in the linear statistical model, e.g., the first application of GBLUP
to sequence data was by Ober et al. (2012).
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BLUP (Goldberger, 1962) has been evaluated extensively,
including its properties, computational techniques and
relationships with other methods (Henderson, 1973; Searle,
1974; Harville, 1976; Robinson, 1991). Prior to the advent of
DNA information, genetic evaluation of animals and plants (e.g.,
Bernardo, 2002) had been carried out via BLUP constructed
using a covariance matrix among additive genotypic values of
individuals that was proportional to A, known as numerator
relationship matrix and derived from a pedigree (Henderson,
1976). The innovation in GBLUP is that A is replaced by G, a
marker-based matrix of genomic pair-wise similarities known
as “genomic relationship matrix,” of which there are many
variants (Van Raden, 2008; Astle and Balding, 2009; Legarra,
2016; Wang et al., 2017); further, the additive genetic variance σ 2

a

in ABLUP is replaced by σ 2
g , the “genomic variance” (Yang et al.,

2010; de los Campos et al., 2015; Lehermeier et al., 2017; Speed
et al., 2017). There are two potential advantages of GBLUP over
ABLUP. First, the expected similarities in ABLUP calculated on
the basis of some idealized evolutionary process (e.g., random
mating, absence of selection) are replaced by realized similarities
in GBLUP constructed under weaker assumptions. Second, the
realized similarities can be pair-specific in GBLUP as opposed to
family-specific in ABLUP. In the latter, for example, the expected
additive relationship between members of any pair of full-sibs is
1
2 , whereas in GBLUP similarity may vary over pairs of full-sibs.

BLUP can be used in cross-sectional, longitudinal and
multiple-trait settings. The flexibility of the method, coupled
with concomitant development of a computational machinery
applicable to very large data sets, made BLUP widely adopted in
animal breeding (Gianola and Rosa, 2015; Weigel et al., 2017).
ABLUP and GBLUP can be interpreted as linear regressions of
phenotypes on a pedigree or on a genomic relationship matrix,
respectively (de los Campos et al., 2009). While normality of
the distributions of random effects and of model residuals is not
required for BLUP, a Gaussian assumption ismade implicitly. The
predictor requires information on up to second moments only
and all marginal and conditional distributions induced by the
model can be derived using normal distribution theory. Further,
variance and covariance components needed for BLUP are
often estimated using maximum likelihood or Bayesian methods
employing Gaussian assumptions, making the dependency of
implementations on the multivariate normal distribution patent.
However, neither ABLUP nor GBLUP can be considered as
robust regression methods. A potential downside is that linear
regression methods under Gaussian assumptions are sensitive to
outliers (Hampel et al., 1986; Lange et al., 1989; Seber and Lee,
2003), in our case genetic or environmental in origin.

Much research in statistical science has been devoted to
developing “robust” regression methods, e.g., Rousseeuw and
Leroy (2003). Sensitivity of inference with respect to outlying
data points was also recognized in quantitative genetics, and
some studies evaluated application of thick-tailed distributions
in mixed linear models, especially the t distribution and its
asymmetric versions (Strandén, 1996; Strandén and Gianola,
1998, 1999; Rosa et al., 2003, 2004; Cardoso et al., 2005;
Kizilkaya and Tempelman, 2005; Varona et al., 2006). In animal
breeding outliers are often due to performance records of animals

receiving undeclared (non-random) preferential treatment:
individuals perceived as “better” receive better management.
Outlying observations also arise due to concealed sub-structure
or underlying heterogeneity, e.g., fertility gradients in plant
fields not accounted for in experimental design or spatial model
employed for data analysis. In such instances, Gaussian models
may not provide an accurate representation of data generating
mechanisms.

One property of the t distribution or of any of the members
of the family of scaled normal distributions applied to residuals
(Andrews and Mallows, 1974) is the ability to downweigh
automatically observations perceived (by the model) as outliers.
Instead of removing outliers prior to analysis via ad − hoc rules,
which results in a loss of information, all observations enter into
a robust statistical procedure. An issue associated with removal
of outliers is that the uncertainty associated with the exclusion
process is not taken into account (Lange et al., 1989).

Another statistical distribution that has been suggested for
robust regression analysis is the double exponential or Laplace
(Forsythe, 1972; Draper and Smith, 1998). Forsythe (1972)
searched for a solution that would produce a least-squares
regression mean squared error not much larger than what is
obtained when normality holds, but smaller when it does not.
The Laplace distribution has been used as prior for regression
coefficients in a method called the Bayesian LASSO (Park
and Casella, 2008). However, neither the Bayesian LASSO nor
the “original LASSO” (Tibshirani, 1996) protect from outliers
because normality of the residual distribution is assumed
implicitly or explicitly.

A thick tailed residual distribution may produce results
that differ importantly from those obtained from an analysis
conducted with normally distributed errors. For example,
Cardoso et al. (2005) analyzed over 20,000 postweaning body
weight gains in cattle using Bayesian linear models with Gaussian
or t−distributed residuals and compared the respective pedigree-
based predictions. Rank correlations between posterior means
of additive genetic effects obtained with the two residual
distributions ranged from 0.91 to 0.93 over breed groups, but
were much lower (0.29–0.57) when focus was on the top 10%
of the animals. Their results provide evidence of usefulness of
thick-tailed residual distributions in animal breeding.

The most flexible way of fitting a t or Laplace residual
distribution in a linear or nonlinear model is via a Bayesian
Markov chain Monte Carlo (MCMC) analysis. After priors are
elicited, the three parameters of the t distribution (mean, typically
set to 0, scale and degrees of freedom ν) may be inferred from
posterior samples. However, the sampling process (especially that
for ν) is tricky and computationally intensive and does not lend
itself to routine genetic evaluation in animal and plant breeding
industries, a large scale computing exercise that needs to be
carried out recurrently and fast. Any Bayesian MCMC scheme
requires evaluation of effects of hyper-parameters on inference,
identification of suitable proposal distributions when conditional
posteriors are not in standard form and careful assessment of
Monte Carlo error, as it it may happen that sampling error
overwhelms statistical signals from the data. Bayesian MCMC
methods applied to highly dimensional posterior distributions
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require meticulous convergence analysis, which is often lacking
in practice.

The objective of this paper is to present relatively simple to
implement robust alternatives to BLUP using a linear model
with residual t or Laplace distributions instead of a Gaussian
one, and to evaluate the methods using three distinct data sets,
to provide proof-of-concept. The approach is MAP, standing
for “maximum a posteriori prediction”; TMAP and LMAP are
the respective acronyms when the t or the Laplace distributions
are employed. In section 2 the Gaussian mixed effects linear
model is reviewed to establish notation, followed by a description
of TMAP and LMAP that includes iterative algorithms for
calculating point predictors. Section 3 suggests approaches for
controlling shrinkage that are “best” in predictive settings. DATA
provides a brief description of the information employed in
the analysis: milk yield records on Italian Brown Swiss cattle,
grain yield in inbred wheat lines, and three traits measured on
accessions of Arabidopsis thaliana. Section 5 presents analyses
of model fitting aspects and of predictive power of the various
methods entertained. A discussion and concluding comments are
presented in the section 6. Algebraic details are in Appendices
given at the end of the manuscript and some additional
information is available in Supplementary Files.

2. MODELS AND ASSUMPTIONS

2.1. Linear Model With Gaussian Residuals
A standard univariate mixed effects linear model for quantitative
genetic analysis is

y = Wα + Zg+ e, (1)

where y is an n × 1 vector of phenotypic measurements; α is an
f × 1 vector of fixed regression coefficients and W is an n × f
known incidence matrix with rank f ; g is an r × 1 randomly
distributed vector of genetic (typically additive) effects and Z is
an n × r known incidence matrix, and e is a vector of residuals.
Often, it is assumed that

(
g

e

)
∼ N

([
0

0

]
,

[
Kσ 2

g 0

0 Iσ 2
e

])
, (2)

where K is a positive semi-definite symmetric similarity matrix
(A or G in ABLUP and GBLUP, respectively) and σ 2

g is a genetic
or genomic variance component; I is an n×n identity matrix and

σ 2
e is the variance of the residual distribution. Let h2 =

σ 2
g

σ 2
g + σ 2

e

be the coefficient of heritability (“genomic” heritability, h2g , when

K is built using molecular markers); let λ =
σ 2
e

σ 2
g

=
1− h2g

h2g
, and

V = ZKZ′σ 2
g + Iσ 2

e be the n× n phenotypic variance-covariance
matrix.

Under this model, BLUP
(
g
)
is given by

ĝ = Cov(g, y′)V−1
(
y−Wα̃

)
= σ 2

g KZ
′V−1

(
y−Wα̃

)
, (3)

where α̂ =
(
W′V−1W

)−1 (
W′V−1y

)
is the best linear

unbiased estimator (BLUE) of the fixed effects and also

their maximum likelihood estimator under the normality
assumption (Equation 2). BLUE (α) and BLUP

(
g
)
can also be

computed simultaneously by solving the mixed model equations
(Henderson, 1975)

[
W′W W′Z
Z′W Z′Z+ K−1λ

] [
α̂

ĝ

]
=
[
W′y
Z′y

]
. (4)

If there are no fixed effects in the model and Z = I, then ĝ =(
I+ K−1λ

)−1
y. It is assumed hereinafter that K−1 exists; BLUP

exists even when K is singular, provided that V has a unique
inverse.

2.2. Linear Model With Univariate-t
Residuals
2.2.1. Setting
Assume that all components of e are mutually independent but

not necessarily identically distributed as ei ∼ tν

(
0,

τ 2e

ni
, ν

)
;

i = 1, 2, ..., n. Here, 0 is the mean of the t−distribution;
τ 2e

ni
is

a scale parameter specific to observation i such that Var (ei) =
ν

ν − 2

τ 2e

ni
= σ 2

ei
; ni is a measure of intensiveness of recording

on an individual or line (e.g., number of clones) or of degree of
replication (e.g., if yi is some average ni could be the number of
plots in which a line has been planted, or the number of daughters
with milk records of a dairy bull ); ν > 0 is a possibly unknown
positive “degrees of freedom” parameter. When ν → ∞, the t

distribution converges to a normal one and σ 2
ei
−→

τ 2e

ni
(Lange

et al., 1989). Since yi = w′
iα + z′ig+ ei is a linear combination of

ei, conditionally on g one has that yi ∼ tν

(
µi,

τ 2e

ni
, ν

)
whereµi =

w′
iα + z′ig (Zellner, 1971; Box and Tiao, 1973); w′

i and z′i , are the

ith rows ofW and Z, respectively. Note that h2g =
σ 2
g

σ 2
g +

ν

ν − 2
τ 2e

.

Keep the Gaussian assumption made in Equation (2) only for
the distribution of g and continue assuming that g and e are
independent. The joint density of y and g is now

p
(
y, g|α,τ 2e , σ

2
g , ν

)
=
∏n

i = 1

Ŵ

[
(ν + 1)

2

]

√
ν
τ 2e

ni
πŴ

(ν

2

) [
1+

ni

τ 2e ν

(
yi − µi

)2
]− (ν + 1)

2

×
∣∣∣2πKσ 2

g

∣∣∣
− 1

2
exp

(
−

1

2σ 2
g

g′K−1g

)
. (5)

If τ 2e , σ
2
g and ν are taken as known (i.e., given some values) and

a flat prior is adopted for α, (5) leads to the conditional posterior
density (Gianola and Fernando, 1986; Sorensen and Gianola,
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2002)

p
(
g,α|τ 2e , σ

2
g , ν, y

)
∝

n∏

i = 1

[
1+

ni

τ 2e ν

(
yi − µi

)2
]− (ν + 1)

2

exp

(
−

1

2σ 2
g

g′K−1g

)
. (6)

2.2.2. Maximum a Posteriori Point Estimation (TMAP)
It is shown in Appendix A that the α and g components of the
joint mode of the posterior distribution with density function (6)
can be found using the iteration

[
α[t+1]

g[t+1]

]
=



W′D[t]W W′D[t]Z

Z′D[t]Z Z′D[t]Z+
λ′ν

(ν + 1)
K−1



−1 [

W′D[t]y

Z′D[t]y

]
,(7)

where t denotes round of iteration, λ′ =
τ 2e

σ 2
g

= λ
ν − 2

ν
, and D[t]

is an n× n diagonal matrix with typical element

di =
ni

1+

(
yi − µ

[t]
i

)2

τ 2e

ni
ν




; i = 1, 2, ..., n. (8)

Observe that di decreases as yi departs further from its
conditional (given g) expectation µi = w′

iα + z′ig and as
ν decreases. Also, as ν goes to infinity (the t distribution
approaching normality) di moves toward ni, which is the weight
assigned to an observation in a Gaussian regression model.
After λ, ν and τ 2e are elicited in some manner (see the section
3), starting values for the iteration (t = 0) for α and g

could be, e.g., those found with a mixed effects model under
Gaussian assumptions. The representation of the algorithm is as
in Thompson (1979) Gianola (1982), and Gianola and Foulley
(1983).

Appendix A presents the more involved Newton-Raphson
(NR) iteration. NR requires more calculations per iterate
but typically converges faster to a stationary point than
functional iteration (Equation 7). Also, NR provides a basis
for constructing approximate posterior credibility intervals
for linear combinations of α and g using a standard Gaussian
approximation to the conditional posterior distribution
with density (Equation 6): the inverse of the negative
Hessian matrix gives the approximate variance-covariance
matrix of the unknowns. After solutions converge (denoted
as t = ∞)

V̂ar

([
α

g

]
|τ 2e , σ

2
g , ν, y

)
≈



−




∂2L
(
g,α

)

∂α∂α′
∂2L

(
g,α

)

∂α∂g′

∂2L
(
g,α

)

∂g∂α′
∂2L

(
g,α

)

∂g∂g′




α=α[∞]

g=g[∞]




−1

,

(9)

where L
(
g,α

)
is the logarithm of Equation (6). For the t−model

considered here

V̂ar

([
α

g

]
|τ 2e , σ

2
g , ν, y

)

≈ τ 2e
ν

(ν + 1)

[
W′Q[∞]W W′Q[∞]Z

Z′Q[∞]W Z′Q[∞]Z+λ′
ν

(ν + 1)
K−1

]−1

,

(10)

where Q = D − 2DSD, and S = Diag {si} is an n × n

diagonal matrix with si =
(
yi − µi

)2

τ 2e ν
. As ν → ∞, Q → D and

D →Diag {ni}. In the limit,

Var

([
α

g

]
|τ 2e , σ

2
g , y

)
= τ 2e

[
W′NW WNZ

ZNW Z′NZ+λ′K−1

]−1

, (11)

gives the exact variance-covariance matrix of the conditional
posterior distribution for a model with Gaussian residuals; N =
Diag {ni}; at ν = ∞ then τ 2e = σ 2

e .

2.2.3. Special Case: Zero-Means Model
Phenotypes are often pre-corrected for effects of systematic
sources of variation, such as age and sex of the individual, or year-
season of measurement, and then centered so that the sample
mean is 0. There would not be any fixed effects so the model
becomes y = Zg + e. Further, it is not uncommon in genome-
enabled prediction to encounter data sets where all n cases have
been genotyped, so that Z = I and therefore y = g + e. In this
situation iteration (7) takes the form

g[t+1] =
[
D[t]+

λ′ν

(ν + 1)
K−1

]−1

D[t]y =
[
I+

λ′ν

(ν + 1)
D[t]−1K−1

]−1

y,

(12)
whereD[t] now has typical element

di =
ni

1+

(
yi − g

[t]
i

)2

τ 2e

ni
ν




. (13)

If ni = 1, the “weights” di are at most equal to 1. If
ν goes to infinity di → ni and the solution is explicit:

ĝ =
(
I+λD−1K−1

)−1
Dy. Further, if ni = 1 ∨ i, the

expression becomes the standard representation of GBLUP ĝ =(
I+λK−1

)−1
y.

For finite ν, there are three factors in Equation (12) that
control shrinkage of solutions and attenuation of data points:
the variance ratio λ′, the degrees of freedom υ and the scale
parameter τ 2e : shrinkage increases with λ′ whereas attenuation
of phenotypes is stronger when υ and τ 2e are small. The impact
of observation i depends on the discrepancy between observed

yi and fitted (g
[t]
i ) genotypes; if the fitted residual is large,

case i receives less weight in the analysis than otherwise. The
representation to the right of Equation (12) Illustrates how
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regularization and attenuation work together: fitted genotypic
values associated with cases receiving low weights are more
strongly shrunk to 0 (the prior mean of gi) than cases with larger
weights. This feature of TMAP confers robustness relative to
GBLUP.

In the zero-means model, the approximation to the variance-
covariance matrix of the conditional posterior distribution of g
(Appendix A) is

V̂ar
(
g|τ 2e , σ

2
g , ν, y

)
≈ τ 2e

ν

(ν + 1)

[
Q[∞]+λ′

ν

(ν + 1)
K−1

]−1

,

(14)

whereQ = Diag
{
di − 2d2i si

}
and si =

(
yi − gi

)2

τ 2e ν
.

2.3. Linear Model With Laplace Residuals
2.3.1. Setting
Assume now that observations are (conditionally) independently

distributed as yi|µi, σ
2
e ∼ Laplace(µi,

σ 2
e

ni
). Often, the density of

the Laplace or double exponential (DE) distribution is written as

p
(
yi|µi, δ

)
=

√
ni

2δ
exp

(
−
√
ni
∣∣y− µi

∣∣
δ

)
; i = 1, 2, ..., n, (15)

where δ =
√

σ 2
e

2
is a parameter that relates to spread of the

distribution. The probability density function for the sampling
model is then

p
(
y|α, g, σ 2

e

)
=

n∏

i = 1

√
ni

2σ 2
e

exp


−

√
ni
∣∣yi − µi

∣∣
√

σ 2
e

2


 . (16)

Adopting again a flat prior for α and the Gaussian prior in (2),
the log-conditional posterior density of g and α (C is an additive
constant) is

LDE = log
[
p
(
g,α|σ 2

e , σ
2
g , y

)]

= C −
1√
σ 2
e

2

n∑

i = 1

√
ni
∣∣yi − µi

∣∣− 1

2σ 2
g

g′K−1g. (17)

2.3.2. Maximum a Posteriori Estimation (LMAP)
As shown in Appendix B (see Equation 58 in Appendix), a mode
of the conditional posterior density above can be located using
an iterative scheme similar to (7) but with a diagonal matrixM[t]

replacingD[t].M[t] has diagonal elements

mi =
√
ni∣∣∣yi − µ

[t]
i

∣∣∣
; i = 1, 2, ..., n, (18)

and with ω =

√
σ 2
e

2
2σ 2

g

=
δ

2σ 2
g

as a regularization parameter

replacing
λ′ν

(ν + 1)
in Equation (7).

If σ 2
g is a “genomic” variance (de los Campos et al., 2015), h2g

is genomic heritability and σ 2
y is the phenotypic variance

ω =

√√√√
(
1− h2g

)
σ 2
y

2

2h2gσ
2
y

. (19)

The value of ω can be approximated directly from estimates of
σ 2
e and σ 2

g , or from knowledge of trait “genomic heritability” and
of the phenotypic variance. If phenotypes are scaled to have unit
variance, one may set σ 2

y = 1 in the expression above.
The variance-covariance matrix of the conditional posterior

distribution can be approximated (Appendix B) as

V̂ar

([
α

g

]
|σ 2

e , σ
2
g , y

)
=

√
σ 2
e

2
2

[
W′M[∞]W W′M[∞]Z

Z′M[∞]W Z′M[∞]Z+ωK−1

]−1

.

(20)

2.3.3. Special Case: Zero-Means Model
Recall that Z = I and y = g+ e. The iteration becomes

g[t+1] =
[
M[t]+ωK−1

]−1
M[t]y =

[
I+ω

(
M[t]

)−1
K−1

]−1

y

(21)
so phenotype i “effectively” enters into the analysis as

m
[t]
i yi = √

ni
yi∣∣∣yi − g

[t]
i

∣∣∣
. Case-specific regularization is

effected via ω

∣∣yi − gi
∣∣

√
ni

, i = 1, 2, ..., n; genotypic values of

individuals with phenotypic values departing markedly from
their conditional expectation

(
gi
)
aremore heavily shrunk toward

zero.

3. PREDICTIVE ASSESSMENT OF
REGULARIZATION PARAMETERS

3.1. Difficulties With Bayesian and
Likelihood-Based Methods
Recall that our objective is to develop procedures suitable
for routine application in a reasonably practical manner. A
fully Bayesian approach (under standard priors) to inferring
α, g, σ 2

g , τ
2
e and ν is straightforward in TMAP because the

fully-conditional distributions needed for implementing a Gibbs
sampler are recognizable, save for that of the degrees of freedom
(Strandén and Gianola, 1999; Sorensen and Gianola, 2002; Rosa
et al., 2003). TheMCMC algorithm in a model with a DE residual
distribution is not easy to run either.
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An alternative to Bayesian MCMC is maximum likelihood,
although it presents difficulties as well. For instance, consider

estimating θ =
(
α, τ 2e , σ

2
g , ν

)′
in the t-model by maximum

likelihood via the EM algorithm (Dempster et al., 1977). It is
well known (Box and Tiao, 1973; Andrews and Mallows, 1974;
Lange et al., 1989) that a t distribution can be generated by
mixing a normal distribution with a randomly varying variance
(σ 2

ei
, say), over inverted Gamma or scaled-inverted chi-square

distributions, depending on the parameterization adopted. Lange
et al. (1989) described the EM algorithm for a fixed linear
regression model with t−distributed residuals, i.e., with both α

and g as fixed parameters, and with the σ 2
ei
variables treated as

“missing” data. In such model, the only “problematic” parameter
is ν. In our setting, the missing data include not only the auxiliary
variances σ 2

ei
used for creating a t distribution but the g vector of

genetic effects as well. The E-step of the algorithm encounters a
difficulty when g is random (even with ν fixed at some value):
the conditional distribution of g given y (at the current value of
the parameters) cannot be written in closed form, so estimation
requires embedding a Monte Carlo step, negating the simplicity
of EM.

The model with a Laplace residual distribution is not
very tractable either. Perhaps this explains why the DE
distribution has not appeared in the literature of non-Bayesian
random effects models more often. In short, neither maximum
likelihood nor Bayesian MCMC are appealing for our purposes.
Approaches that are simpler from a computational perspective
and targeted to prediction tasks are presented later in the
paper.

3.2. Evaluation via Cross-Validation
Assume hereinafter that markers are used for constructing K.

In GBLUP, λ =
1− h2g

h2g
is the counterpart of ω in Equation

(19) for LMAP and of λ′′ = λ′
ν

ν + 1
in TMAP, as shown

in Equation (7). The relationship between heritability and
regularization parameters λ, λ′′ and ω (assuming the phenotypic
variance is 1 in the latter) is shown in Figure S1. At low
heritability (top panel), the DE distribution of LMAP exerts
less regularization (lower ω than λ or λ′′) than the normal or
t−distributions (ν = 4 in Figure S1). At intermediate heritability
(middle panel), regularization is also less strong for LMAP and
TMAP than for GBLUP, and the methods continue approaching
each other as as heritability increases. For heritability larger
than 0.60, LMAP induces less shrinkage than GBLUP or TMAP
until h2g ≈ 0.80, point at which it it intersects with TMAP,
and later with GBLUP. TMAP shrinks solutions less strongly
than GBLUP throughout. Recall, however, that the thick-tailed
models also produce datum-specific attenuation, so Figure S1

does not tell the whole story. In LMAP, the impact of a datum

is proportional to
∣∣yi − µi

∣∣−1
, so observations far from fitted

values are less influential; in TMAP, attenuation is via di whose
value is affected by

∣∣yi − µi

∣∣ and also by ν and τ 2e . Attenuation
has an important effect on predictive outcomes, as illustrated
later.

After some validation or cross-validation (CV) scheme
is chosen, e.g., a training-testing layout, λ in GBLUP
can be varied over a grid of plausible h2g values, using
some focal point from the literature or from estimates
obtained from the training data (see below); in TMAP
and LMAP estimates of σ 2

e and σ 2
g are needed for forming

λ′ and ω. The grid search approach informs about the
sensitivity of predictions when the dispersion structure
changes. The resulting information can be especially
valuable for the small (relative to animal breeding)
populations used in plant breeding, or for experimental
material.

It can be seen in Equations (7) and (8) or in Equations (12) and
(13) that values of λ′, ν and of the scale parameter τ 2e (appearing
“inside” of di) are needed in TMAP. The degrees of freedom
ν could be varied between, say, 3 (to ensure a finite variance)
and 20; values larger than 20 will probably produce predictions
similar to those of GBLUP. The scale τ 2e can be assessed using
a simple method. Suppose twenty and fifteen values are posed
for each of the λ (h2g) and ν parameters, respectively. For each
of the 300 resulting combinations, training and testing sets
can be constructed at random (if feasible) 200 times, say. The
residual variance σ 2

e is estimated at each instance of training;
given σ 2

e and ν in the grid, τ 2e can be assessed readily and
TMAP fitted accordingly. Mean squared errors of prediction
and predictive correlations are then evaluated in testing sets and
the uncertainty of the predictive performance can be measured
from the 200 replications or by using either bootstrapping or by
adapting methods presented by Gianola and Schön (2016) and
Xu (2017).

Since σ 2
e and possibly σ 2

g would need to be estimated
at each training instance, a simple non-iterative method is
required. Rao (1970) proposed MINQUE (minimum norm
quadratic unbiased estimation) for estimation of variance
components using quadratic forms. MINQUE does not
assume normality and can be used for models with any
random effects or residual distributions. Actually, iterating
MINQUE produces REML provided that convergence is
in the parameter space. There is no unique MINQUE
estimator because estimates depend on the choice of some
arbitrary positive weights (e.g., a value of λ or of h2g in
the grid); any of such weights produces unbiased estimates
(Searle et al., 2006). Since, MINQUE produces training
data estimates of σ 2

g as well, ω in LMAP can be formed
directly.

MINQUE also allows for fixed effects but we will consider a
zero-means model, for simplicity. Let y = g + e, such that
E
(
y
)

= 0 and Var
(
y
)

= Gσ 2
g + Iσ 2

e = V; in TMAP

τ 2e =
ν − 2

ν
σ 2
e . Make a “guess” about h2g (or λ) and set

Vguess = Gσ 2
g,guess + Iσ 2

e,guess =
(
Gλ−1

guess + I
)

σ 2
e,guess, (22)

where λguess =
1− h2guess

h2guess
is the guess for a point in the grid.

Actually, σ 2
e, guess is not needed for computing MINQUE. Letting
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V∗
guess =

(
Gλ−1

guess + I
)

MINQUE estimates the unknown

variances by solving in one shot (i.e., non-iteratively)


 tr

(
GV∗−1

guessGV
∗−1
guess

)
tr
(
GV∗−1

guessV
∗−1
guess

)

tr
(
GV∗−1

guessV
∗−1
guess

)
tr
(
V∗−1
guessV

∗−1
guess

)


[

σ̂ 2
g

σ̂ 2
e

]

=
[
y′V∗−1

guessGV
∗−1
guessy

y′V∗−1
guessV

∗−1
guessy

]
. (23)

The expected values of the quadratic forms on the right-hand
sides of Equation (23) are

E
(
y′V∗−1

guessGV
∗−1
guessy

)
= tr

[
V∗−1
guessGV

∗−1
guess

(
Gσ 2

g + Iσ 2
e

)]

= tr
(
GV∗−1

guessGV
∗−1
guess

)
σ 2
g

+ tr
(
GV∗−1

guessV
∗−1
guess

)
σ 2
e

= c11σ
2
g + c12σ

2
e , (24)

and

E
(
y′V∗−1

guessV
∗−1
guessy

)
= tr

[
V∗−2
guess

(
Gσ 2

g + Iσ 2
e

)]

= tr
(
GV∗−2

guess

)
σ 2
g + tr

(
V∗−2
guess

)
σ 2
e

= c21σ
2
g + c22σ

2
e . (25)

Using the preceding in Equation (23)

E

([
σ̂ 2
g

σ̂ 2
e

])
=
[
c11 c12
c21 c22

]−1 [
c11 c12
c21 c22

] [
σ 2
g

σ 2
e

]
=
[

σ 2
g

σ 2
e

]
, (26)

which shows the unbiasedness of MINQUE at any λguess. TMAP
requires eliciting the scale parameter τ 2e of the t−distribution.
An unbiased estimator of τ 2e (given the current ν in the grid) is

τ̂ 2e =
ν − 2

ν
σ̂ 2
e . In LMAP, using (19) one can set ω̂ =

√
σ̂ 2
e

2
2σ̂ 2

g

.

The predictive algorithm for a training-testing layout would
flow as follows:

• Construct a grid of λ and ν values with B two-dimensional
entries.

• Divide data at random into training and testing sets. Repeat
Nrep times, e.g., Nrep = 100.

• Estimate σ 2
g and σ 2

e byMINQUE, estimate τ 2e andω and fit the
models in each of the B× Nrep training instances.

• Evaluate predictive correlation and mean-squared error (or
any other metric) for each testing set.

• Construct prediction error distributions for each of the B
points in the grid and determine the optimum predictive
performance.

3.3. Generalized Cross-Validation
An approach to tuning regularization parameters in ridge
regression, also applicable to GBLUP, consists of employing

all data with “generalized cross-validation”; see Craven and
Wahba (1979) and Golub et al. (1979) for theoretical foundations
in connection with ridge regression and Xu (2017) for an
application. For a zero-means GBLUP model, let

HGBLUP (λ) =
(
I+ K−1λ

)−1
, (27)

and let the prediction error be ǫ (λ) = y − ĝG (λ) =
[I−HGBLUP (λ)] y. The generalized cross-validation criterion is
calculated over the grid of λ−values as

GCVGBLUP (λ) =
1

n
ǫ (λ)′ ǫ (λ) /

{
1

n
tr [I−HGBLUP (λ)]

}2

=
1

n
y′ [I−HGBLUP (λ)]2 y/

{
1− hGBLUP (λ)

}2
;

(28)

where h (λ) is the average of the diagonal elements ofHGBLUP (λ).
While GCV is well established theoretically for ridge regression,
expressions for TMAP and LMAP do not exist. For GBLUP, the
GCV criterion can be calculated at each entry in the grid of values
of λ, to locate the setting producing the best expected predicting
performance in the sense of minimizing (Equation 28).

Thompson (2001) discussed how GCV could be used in a
mixed effects linear model, as well as to how quadratics appearing
in such GCV also arise in an algorithm for REML under Gaussian
assumptions. The implication is that REML could be computed
from the entire data set and used in conjunction with GCV.
However, the analogy is not complete: ridge regression (and
BLUP) are distribution-free procedures whereas REML is not,
and the results may differ. Further, conditioning on a single set of
estimates of the regularization parameters does not inform about
sensitivity of predictions, as noted earlier.

4. DATA

Three data sets were used to evaluate if TMAP or LMAP could
deliver a better predictive ability than GBLUP. One data set (dairy
cattle) is representative of observational learning, i.e., datamay be
non-random and contaminated due to factors not contemplated
in the model. The second data set (Arabidopsis) is representative
of a situation in which experimental conditions are carefully
controlled, as is often the case with model organisms. The third
data (wheat) reflects agronomic conditions, where experimental
tuning is much finer than in animal breeding because of the
possibility of organizing plots into fields and of randomization.

All Arabidopsis and data necessary for confirming the
conclusions of this article can be downloaded from the R
Synbreed package (Wimmer et al., 2012). The wheat data are
included in the R package BGLR (Pérez and de los Campos,
2014). The Brown Swiss data is proprietary information owned
by private breeders and by Associazione Nazionale Allevatori
Razza Bruna Italiana (ANARB), Bussolengo, Italy.

4.1. Italian Brown Swiss Cattle
The data came from “Cowability–Cowplus”
projects at the University of Padova, Italy. Full descriptions
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are in Dadousis et al. (2016). Briefly, milk samples from 1,264
Italian Brown Swiss cattle from 85 herds were collected at
evening milkings. All samples were collected following milk
recording protocols of the Breeders Federation of Trento
Province.

Cows were genotyped with the Illumina BovineSNP50 v.2
BeadChip (Illumina Inc., San Diego, CA). Markers included in
the analysis were such that call rate> 95%,minor allele frequency
> 0.5%, and no deviation from Hardy-Weinberg proportions
detected (p > 0.001, Bonferroni corrected). Our target trait was
“single test-day” milk pre-corrected as in Dadousis et al. (2016),
i.e., using ordinary least-squares estimates of effects of class of
days in milk of the cow (classes of 30 days each), cow parity (1, 2,
3, ≥4) and herd-day effect (85 levels). See Dadousis et al. (2016)
for full details. After edits, n = 991 cows and p =37,568 SNPwere
retained.Gwas built with function getG from the BGData library
(https://github.com/QuantGen?BGData).

4.2. Arabidopsis
The Arabidopsis thaliana data set described by Atwell et al.
(2010) was used. These authors noted that the sample of
accessions suggested a complex structure in the population.
Such complexity was confirmed by a multi-dimensional scaling
analysis conducted by Gianola et al. (2016). The data, available
in the R Synbreed package (Wimmer et al., 2012), represents
199 accessions genotyped with a custom Affymetrix 250K SNP
chip. As inWimmer et al. (2012), flowering time (n = 194), plant
diameter (n = 180) and FRIGIDA (n = 164) gene expression
were chosen as target phenotypes; marker genotypes are pre-
edited in the package and 215,947 SNP loci were used in the
analysis.

4.3. Wheat Grain Yield
The wheat data in package BGLR (Pérez and de los Campos,
2014) was employed. This data set is well characterized and has
also been used, e.g., by Crossa et al. (2010), Gianola et al. (2011),
Long et al. (2011), Gianola and Schön (2016), and Gianola et al.
(2016). The data came from trials conducted by the International
Maize and Wheat Improvement Center (CIMMYT), Mexico.
There are 599 wheat inbred lines, each genotyped with 1279
DArT (Diversity Array Technology) markers and planted in four
environments. Sample size was n = 599 and p = 1, 279 was
the number of markers. The DArT markers are binary (0, 1)
and denote presence or absence of an allele at a marker locus
in a given line. The data set also includes a pedigree-derived
relationship matrix (A). Grain yield was our target.

5. APPLICATION AND EVALUATION OF
METHODS

5.1. Brown Swiss Cattle
5.1.1. Goodness of Fit and Dispersion Parameters
A QQ plot shown in Figure S2 suggests some departure of pre-
corrected test-day milk yields from normality, so a linear model
with Gaussian residuals may not be adequate. Lack of fit may
be reflective of undeclared (unrecorded) differential treatment of
cows, but other reasons cannot be ruled out.

Maximum likelihood estimates of dispersion parameters were

obtained using the model y = g + e, with g ∼ N
(
0,Gσ 2

g

)

and assuming Gaussian residuals. Estimates were 0.074 (genomic
variance), 0.926 (residual variance), and 0.074 (genomic
heritability); hence λ̂ = 12.5 is the maximum likelihood estimate
of the regularization parameter in GBLUP. Our estimate of
genomic heritability aligns well with knowledge on heritability
of single test-day yield in the population. A grid of 19 genomic
heritability values ranging from 0.05 to 0.95 (h2guess) with
increments of 0.05 was used to obtain MINQUE estimates of
genomic and residual variances, and to assess sensitivity of
predictions with respect to variation in variance partitioning.
Estimates of the h2g parameter (h2guess between parentheses)
ranged between 0.07 (0.05) and 0.47 (0.95); 17 of the 19MINQUE
estimates were lower than 0.25. Estimates of h2g were always

lower than the corresponding “guesses” save for h2guess = 0.05.
As noted, MINQUE produces unbiased estimates of variance
components no matter what h2guess is (provided the model holds),
but their sampling variances increase when guesses depart from
true (unknown) values. Our results flag to situations in which the
data dispute a guess in the grid, e.g., h2guess > 0.15. Our algorithm
produces stronger regularization than what would be indicated
by any given h2guess, save for 0.05.

5.1.2. Regularization (Shrinkage)

We fitted zero-mean linear models with g ∼ N
(
0,Gσ 2

g

)
,

and with e consisting of independent and identically
distributed terms that followed either normal, Student’s-
t (ν = 4, 8, 12, 16) or Laplace distributions. Models were
fitted at all values of the h2guess grid indicated above, using

MINQUE (h2guess) to obtain estimates of the genomic and
residual variance components, for regularization purposes.
For the t−distribution, the scale parameter was estimated

as τ̂ 2e =
ν − 2

ν
σ̂ 2
e where σ̂ 2

e was the MINQUE estimate of

the residual variance for the appropriate grid entry. For the
Laplace distribution, the regularization parameter was formed as

ω̂ =
√

σ̂ 2
e /2

2σ̂ 2
g

, with σ̂ 2
e and σ̂ 2

g being MINQUE (h2guess) estimates.

Hence, there were 19 (Gaussian), 19 × 4 = 76 Student-t
models, and 19 Laplace models fitted to the entire cow data
set.

In TMAP, iteration (Equation 12) converged in 5 or less
rounds for the 76 models fitted, as indicated by the average of
d−values; subsequent analyses used TMAP solutions at iterate
10 as converged. Minimum, median and maximum d−values
at convergence were, for example: 0.20, 0.92 and 1.00 (h2guess =
0.05, ν = 4); 0.50, 0.98 and 1.00 (h2guess = 0.05, ν = 16);
0.21, 0.97 and 1.00 (h2guess = 0.95, ν = 4), and 0.55, 0.99

and 1.00 (h2guess = 0.95, ν = 16). As anticipated, observations

were assigned lower weights at smaller values of ν and of h2guess;
in Gaussian models all observations receive a weight equal to
1. In LMAP, the algorithm converged (average of m−values
monitored) in 15 or less iterations; subsequent analyses used
results from iteration 30.
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Note from Equations (12) and (21) that case-specific effective
shrinkage, i.e., the joint effect of regularization and attenuation,
can be measured and compared using the diagonal elements

of
λ′ν

(ν + 1)
D[t]−1 (TMAP) and of ωM[t]−1(LMAP). The

relationship between the effective shrinkage produced by the
various models depends on several factors, including the value
of ν, h2guess and the closeness of fit. Figure 1 displays relationships
between the diagonal elements mentioned previously in TMAP-
4 or TMAP-16 (T in the plot) and LMAP (L) for the cow data
using h2guess = 0.05 and 0.30. The horizontal lines in the plot
give the values of λ used in GBLUP (homogeneous shrinkage)
as per the appropriate MINQUE estimates; these were 13.72
(h2guess = 0.05, ĥ2g = 0.068) and 7.81 (h2guess = 0.30, ĥ2g =
0.114). T and L values varied concomitantly, but their association
was neither linear nor perfect. L was always larger than T, and
the effective shrinkage produced by the two methods was not
always stronger than in GBLUP, i.e., when paths were below
the horizontal lines. The preceding implies that the joint effects
of regularization and attenuation are subtle. Note that T values
from different specifications of ν were more similar at higher
heritability (bottom panel).

5.1.3. Model Fit
Figure 2 illustrates how the TMAP weights assigned to
data points varied with phenotypic values (in units of
standard deviation, SD) and with the degrees of freedom
parameter as observations departed from the mean; as
expected, d−values increased with ν. Extreme values are
more severely discounted than intermediate ones and,

remarkably, observations falling within the range ± 1 SD
from the mean were also attenuated to varying degrees.
Recall that GBLUP assigns a weight equal to 1 to all
observations. The m−values in LMAP cannot be easily
interpreted as weights, so a similar plot was not made for such
model.

For TMAP, the discussion will focus mostly on ν = 4
since differences between TMAP and GBLUP were often more
marked at the smallest specification of the degrees of freedom.
The scatterplots in Figure 3 depict differences between GBLUP
and TMAP-4 or LMAP estimates of additive genomic effects
obtained with the entire data set at h2guess = 0.05 and 0.30.
GBLUP was more strongly correlated with TMAP-4 than with
LMAP. Correlations between GBLUP and LMAP were 0.824
and 0.832 for h2guess = 0.05 and 0.70, respectively. Correlations

(not shown) between TMAP-4 and LMAP were 0.91 ( h2guess =
0.05) and 0.92 (h2guess = 0.30), and decreased as υ increased.
The lowest correlation betwenn GBLUP and TMAP was 0.965;
the value of the metric increased with ν and with h2guess. Even
though correlations (ρ) were large (as it is most often the
case when prediction models are compared), it must be kept
in mind that estimates of ρ can be driven by extreme points.
Figure 3 further indicated that scatter near the middle of the
distribution was appreciable. If cows were selected toward some
intermediate optimum, perhaps the method of evaluation could
impact selection decisions more markedly than selection for
extremes.

There was no evidence of overfit by any of the models. For
example, correlations between phenotypes and fitted genetic
values with GBLUP were 0.74 and 0.77 for h2guess = 0.05

FIGURE 1 | Joint effect of regularization and attenuation (see text) of milk yield test-day records in Italian Brown Swiss cows at two MINQUE “guesses” of genomic

heritability. GBLUP: genomic best linear unbiased prediction. TMAP-4 (16): maximum a posteriori with residual t—distribution on 4 (16) degrees of freedom. LMAP:

maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic unbiased estimator of variance components. T and L denote

the cow-specific regularization and attenuation in TMAP and LMAP, respectively.
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FIGURE 2 | Weights (at the last round of iteration) assigned to individual cow milk yield test-day records in TMAP-4, TMAP-8, TMAP-12, and TMAP-16. MINQUE

guess for heritability was 0.05. MINQUE: minimum norm quadratic unbiased estimator of variance components.

FIGURE 3 | Predicted additive genomic values of milk yield test-day records in Italian Brown Swiss cows and inter-correlations between predictions at two MINQUE

“guesses” of genomic heritability. GBLUP: genomic best linear unbiased prediction. TMAP-4: maximum a posteriori with residual t—distribution on 4 degrees of

freedom. LMAP: maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic unbiased estimator of variance components.

and 0.30, respectively. For TMAP4 (TMAP8) the corresponding
correlations were 0.75 and 0.79 (0.78) and, for LMAP,
estimates of ρ were 0.67, and 0.72. The lower correlations
obtained with LMAP are consistent with the larger scatter
and range of fitted values for LMAP (Figure 3). TMAP-
4 produced a larger range than GBLUP but smaller than
LMAP.

Sampling distributions of training mean-squared error
(MSEF), mean absolute error (MAE) and squared correlation
between fitted values and phenotypes were examined using a
simple bootstrapping scheme. Here, 50,000 samples were drawn
by sampling with replacement rows from a matrix with cows in
rows and phenotypes and fitted values (in columns); the metrics
were computed for each of the bootstrap samples. Density
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estimates are shown in Figure 4 for h2guess = 0.05 (left panels) and
0.70 (right panels). LMAP had the lowest MSEF and MAE, but a
smaller ρ2

Fit than GBLUP or TMAP4. The density plots reaffirm
(e.g., González-Recio et al., 2014) that correlation (reflecting
association) and mean squared or mean absolute error (reflecting
accuracy or closeness) measure different aspects of a model.
Saliently, GBLUP fitted the data worse than TMAP-4 and TMAP-
8 for the three end-points considered, and was also worse than
LMAP in the MSE and MAE senses. However, the ability of a
model to describe current data is not necessarily indicative of its
predictive performance, an issue of main interest in our study.

5.1.4. Leave-One Out Cross-Validation
Generalized cross-validation (GCV) was used to locate the h2guess
expected to deliver the best predictive performance in the MSE
sense of (28) and to examine sensitivity; the formulae apply to
GBLUP only. The criterion was computed for each of the 19 h2guess
values. Guesses of genomic heritability of 0.15 and 0.20 seemed
adequate for attaining the best possible predictive MSE; such
guesses corresponded to MINQUE estimates of h2g of 0.09 and
0.10, which are not far from the maximum likelihood estimate of
0.07. As noted by Thompson (2001) a cross-validatory approach
may suggest a different value of a regularization parameter than
the one attained by using likelihood or Bayesian methods applied
to the entire sample available.

Next, we carried out a leave-one-out (LOO) cross-validation,
a typically conservative setting (Seber and Lee, 2003; Gianola and
Schön, 2016) that is widely applied in carefully and extensively
controlled and measured experiments resulting in small samples,

e.g., Drosophila, Arabidopsis or Caenorhabditis genome projects.
The same grid of h2guess was used in LOO but, instead of running
991 implementations, formula in Gianola and Schön (2016) were
employed to obtain LOO metrics indirectly from the analysis
of the entire sample of cows. Parameter λ was evaluated at the
MINQUE estimates obtained with the entire data set, as it was
reasonable to expect that removal of a single data point would
not have appreciable effects on variance component estimates.
Briefly, note that GBLUP, TMAP or LMAP have the general form
C−1y, where C = [I+ sP]−1 . In GBLUP s = λ and P = K−1;
in TMAP s = λ′′ and P = (KD)−1; in LMAP s = ω and
P = (KM)−1 . Under this representation, the MAP LOO estimate
of the additive genomic value of cow i can be calculated for any
of the three methods as

ĝi,LOO

(
h2guess

)
=

ĝi − ciiyi

1− cii
, (29)

where ĝi is the estimate obtained with the entire data set and
cii is the ith diagonal element of C−1. The LOO predictive
mean-squared error is

PMSELOO(h
2
guess) =

(
y− ĝLOO

)′ (
y− ĝLOO

)

n
. (30)

Predictive correlations between ĝi,LOO and yi and the regression
of yi on ĝi,LOO were calculated as well; the intercept (α) and slope

(β) of such regressions can be viewed as measures of prediction
bias: an “unbiased” prediction machine would be expected to
produce a null intercept and a slope equal to 1. However, α and β

FIGURE 4 | Density of training bootstrap distribution (50,000 samples) of three measures of goodness of fit of various models to milk yield test-day records in Italian

Brown Swiss cows at two MINQUE “guesses” of genomic heritability. MSE: mean-squared error of fit. MAE: mean absolute error of fit. Corr(**2): squared correlation

between fitted and observed phenotypes. GBLUP: genomic best linear unbiased prediction. TMAP-4 (8): maximum a posteriori with residual t—distribution on 4 (8)

degrees of freedom. LMAP: maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic unbiased estimator of variance

components.
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may be near 0 and 1 even when there is a non-linear relationship
between predictions and targets; as for the correlation, a straight
line fit can be driven by extreme data points.

Figure 5 depicts predictive LOO MSE (PMSE) and predictive
correlations (PCOR) at each of the h2Minque estimates resulting

from the h2guess levels in the grid. Clearly, LMAP had the
best predictive performance throughout whereas GBLUP had

the smallest predictive correlation and typically the largest

MSE. Differences between GBLUP and TMAP were small, but
TMAP-4 had the second best predictive performance. LMAP

behaved differently from GBLUP and TMAP with respect to
the strength of regularization, illustrating that the guideline

(MSE sense) prescribed by GCV was reasonable for GBLUP
and perhaps TMAP, but not for LMAP. For example, PMSE
decreased in LMAP until h2Minque was 0.19 (corresponding to

h2guess = 0.65 ) and then started to increase, and PCOR increased

monotonically until h2Minque = 0.31 (for h2guess = 0.90).

Predictive association (measured as correlation) and closeness
or accuracy of predictions were not proxies for each other, as
observed by Gianola (2017).

Figure 6 displays the behavior of the estimates of predictive α

and β . Regularization affected “bias”: for instance, GBLUP and

TMAP-4 produced estimates of α practically not departing from
0, whereas LMAP was “on target” until h2Minque was slightly larger
than 0.10, but had a clear downwards bias thereafter. Estimates of

β were near 1 for GBLUP and TMAP-4 when h2Minque was about
0.10, but had a downwards bias as heritability increased further.

For LMAP, the “bias” for β was smaller than for either GBLUP
and TMAP at the heritabilty levels where predictive performance
was best in the MSE sense, i.e., h2Minque ≈ 0.20. In a nutshell,

no method was uniformly best for all four metrics used (PMSE,
PCOR, α and β), making patent that goodness of predictions and
“unbiasedness” do not necessarily align, a result that is consistent
with literature in statistical and machine learning (e.g., James
et al., 2013).

Density estimates were obtained from 15,000 bootstrap
samples of the LOO cross-validation, conditionally on the
training set; these densities are presented in Figure 7 (only
TMAP-4 is shown because TMAP-8-TMAP-16 were similar to
GBLUP). For PMSE there was some overlap between densities
(especially between GBLUP and TMAP-4) but LMAP appeared
better at both h2guess = 0.05 and 0.50. For PCOR the best
performance was attained by LMAP followed by TMAP-4 and
then by GBLUP. In short, LMAP appeared as the best prediction
machine for this data set when using these metrics, but at the
expense of some empirical bias when PMSE was smallest and
PCOR largest.

Reviewer 2 suggested that consideration be given to an
information retrieval measure (Blondel et al., 2015; Järvelin and
Kekäläinen, 2017, Ma et al., in review) for comparing the various
procedures. In our context, the “highly relevant” items in a search
of items might be the targets having the “best” phenotypes or true
breeding values (if observed, which is never the case), and the
“retrieval score” is the prediction produced by any of themethods
entertained. The “best” items are deemed to be more valuable
than those down in an ordered list of targets, so a discount
factor is introduced, discounting members of a pair as one moves
from the top to the bottom of a list of graded items (cows
in our case). We employed a metric called “mean normalized
discounted cumulative gain” (MNDCG) as implemented in the R
package DeepGS (Ma et al., in review). After adding a constant to

FIGURE 5 | Leave-one-out cross-validation predictive mean-squared error (PMSE) and predictive correlation (PCOR) at each of 15 MINQUE guesses of genomic

heritability (0.05–0.95, increments of 0.05). GBLUP: genomic best linear unbiased prediction. TMAP-4: maximum a posteriori with residual t—distribution on 4

degrees of freedom. LMAP: maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic unbiased estimator of variance

components.
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FIGURE 6 | Leave-one-out cross-validation predictive intercept (Alpha) and slope (Beta) of the regression of phenotype on prediction at each of 15 MINQUE guesses

of genomic heritability (1: 0.05, 2: 0.10,…, 15: 0.95). GBLUP: genomic best linear unbiased prediction. TMAP-4 (8, 12, 16): maximum a posteriori with residual

t—distribution on 4 (8, 12, 16) degrees of freedom. LMAP: maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic

unbiased estimator of variance components.

FIGURE 7 | Density of bootstrap distribution (15,000 samples) of leave-one-out cross- validation predictive mean-squared error (PMSE) and predictive correlation

(PCOR) at two MINQUE guesses of genomic heritability. GBLUP: genomic best linear unbiased prediction. TMAP-4: maximum a posteriori with residual t—distribution

on 4 degrees of freedom. LMAP: maximum a posteriori with a double exponential residual distribution. MINQUE: minimum norm quadratic unbiased estimator of

variance components.

targets and to predictions, in order to produce positive numbers,
the MNDCG ranges between 0 and 1, with values closer to
1 indicating higher ability of a prediction machine to identify
predictands deemed as most valuable (e.g., individuals with top

breeding values), as suggested by Blondel et al. (2015). Table 1
shows that GBLUP had the worst performance with respect to
the MNDCGmetric applied to the top 5, 10, 20 and 50 ranks, and
LMAP had the best performance, followed by TMAP-4.
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TABLE 1 | Mean normalized discounted cumulative gain (MNDCG) values for

various methods of genome-enabled prediction of test-day milk yield in Brown

Swiss cattle, at two levels of genomic heritability guess (0.30 and 0.70).

GBLUP LMAP TMAP4 TMAP8 TMAP12 TMAP16

h2g = 0.30

k = 5 0.01 0.23 0.12 0.08 0.08 0.07

k = 10 0.02 0.24 0.10 0.08 0.08 0.07

k = 20 0.05 0.24 0.12 0.10 0.10 0.09

k = 50 0.08 0.23 0.13 0.11 0.11 0.10

h2g = 0.70

k = 5 0.06 0.26 0.13 0.11 0.10 0.10

k = 10 0.06 0.26 0.12 0.12 0.09 0.09

k = 20 0.08 0.27 0.13 0.13 0.11 0.10

k = 50 0.10 0.26 0.14 0.14 0.12 0.12

Methods are GBLUP, LMAP1, TMAP42, TMAP82, TMAP122, and TMAP162. k = 5, 10, 20,

50 is the number of top ranked individuals at which MNDCG is calculated. The MNDCG

criterion has a value equal to 1 when a prediction is perfect (the ranks of predictors and

predictands are identical), provided predictor and predictand are positive.
1LMAP, Laplace’s maximum a posteriori; 2TMAP4–8-12-16: t—distribution on 4, 8, 12,

16 degrees of freedom.

5.2. Arabidopsis
5.2.1. Descriptive Aspects
QQ plots (Figure S3) suggested that a normal process did not
fit adequately any of the three phenotypes, but more appreciably
flowering time and FRIGIDA expression. Maximum likelihood
(MINQUE) estimates of genomic heritability were 0.9186
(0.9187) for flowering time; 0.4738 (0.4739) for FRIGIDA, and
0.4864 (0.4864) for plant diameter. In spite of departures from
normality, maximum likelihood (with Gaussian assumptions)
and MINQUE estimates were similar, which is remarkable in
view of the small sample sizes (n = 194, 164, and 180 for the
three traits above, respectively). Genomic heritability near 1 for
flowering time may be due to existence of genes (unknown) of
major effects on the trait (Chiang et al., 2009). Salomé et al. (2011)
studied 18 Arabidopsis accessions and 17 derived F2 populations
and concluded that much of the variation in flowering time
appeared to be due to large-effect mutations.

5.2.2. Leave-One Out Cross-Validation
Models (zero-mean) fitted were GBLUP, LMAP and TMAP
with υ = 4, 8, 12, 16, or 20. Analyses with the entire data
set indicated that TMAP converged in less than 15 iterations.
LMAP needed additional rounds but, after 50–100 iterations, the
average m−value was changing after the second-third decimal
place only. As expected, average d−values in TMAP increased
with ν, although the pattern was not monotonic for flowering
time, a trait for which major genes underlie variation, as noted.
Averagem−values in LMAP were much larger for flowering time
than for FRIGIDA expression or plant diameter, suggesting better
fit of the DEmodel for the former trait.

Correlations between phenotypes and fitted values from
all methods using the entire data set were nearly perfect
for flowering time, ranged between 0.93 (TMAP-4) and 0.94
(TMAP-8) for FRIGIDA, and between 0.92 (GBLUP) and 0.96

(TMAP-8) for plant diameter. The correlations suggested over-
fitting especially for flowering time. Inter-correlations between
predictions were close to 1 for flowering time and were not lower
than 0.93 for the other two traits.

Given the small n, removal of a single datum could have
a marked impact on estimates of variance components so it
would have not been reasonable to use formulae in Gianola and
Schön (2016) that assume constancy of regularization parameters
in LOO. Therefore, we carried out a “brute force” LOO cross-
validation by re-estimating variance components by MINQUE
(ML estimates from the overall data used as “guess”) at each
training instance; e.g., for flowering time there were 194 sets of
MINQUE estimates. At any such instance, whenever a negative
MINQUE estimate of a variance component was encountered
(it happened only once for the residual variance of flowering
time), it was replaced by the ML estimate found with the
entire data set. The range of LOO estimates of h2g was 0.8979–
0.9326 (flowering time), 0.3925–0.7307 (FRIGIDA) and 0.4523–
0.5930 (diameter), so removal of a single observation was indeed
influential in regularization, especially for FRIGIDA. In the light
of what had been found with the entire data set, all LOO
cross-validation implementations of LMAP and TMAP were
run for a conservative 200 iterations, assuming convergence at
that point. For each trait, a matrix was formed by column-
wise concatenation of phenotypes and of their corresponding
predictions. The n rows of each of thesematrices were re-sampled
with replacement b = 50,000 times to construct bootstrap
distributions of PMSE, PCOR and of the intercept (α) and
slope (β) of the regression of targets on predictions. These
distributions describe uncertainty, conditionally on the training
set.

Figure 8 presents estimates of the density of bootstrap
distributions of PMSE (left panels) and PCOR (right panels),
respectively, for the three “most different” methods (GBLUP,
LMAP, TMAP with ν = 4) for each of the three traits. Flowering
time was the only trait for which a marked difference was
observed (LMAP being the most different fromGBLUP). For this
trait, LMAP displayed the smallest PMSE and the largest PCOR;
bootstrap distributions for LMAP were clearly sharper than for
other procedures. The second best method for flowering time
was TMAP4. For FRIGIDA and plant diameter the distributions
overlapped considerably with LMAP slightly better as per the
PCOR criterion.

Figure 9 shows that LMAP was both intercept and slope
“biased” for flowering time, whereas α = 0 was assigned
appreciable density in the bootstrap distributions of the other two
methods; slopes were “biased” upwardly for all three methods.
For FRIGIDA and plant diameter, bootstrap distributions of
estimates of α and β overlapped some for all models, and
evidence of departure from 0 and 1 was not as compelling as for
flowering time.

A desirable property of a prediction machine is exhibiting a
consistent performance over many samples. Our bootstrapping
emulated random sampling from the distribution of testing set
(conditionally on the training set), so it provided a means for
evaluating consistency of predictions. Since we run all methods
in each of the samples, paired comparisons, more precise than
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FIGURE 8 | Density of bootstrap distribution (50,000 samples) of leave-one-out cross- validation predictive mean-squared error (PMSE) and predictive correlation

(PCOR) of flowering time, FRIGIDA gene expression and plant diameter in Arabidopsis. GBLUP: genomic best linear unbiased prediction. TMAP-4: maximum a

posteriori with residual t—distribution on 4 degrees of freedom. LMAP: maximum a posteriori with a double exponential residual distribution.

FIGURE 9 | Density of bootstrap distribution (50,000 samples) of leave-one-out cross- validation predictive intercept (ALPHA) and predictive slope (BETA) of the

regression of phenotype on prediction for flowering time, FRIGIDA gene expression and plant diameter in Arabidopsis. GBLUP: genomic best linear unbiased

prediction. TMAP-4: maximum a posteriori with residual t—distribution on 4 degrees of freedom. LMAP: maximum a posteriori with a double exponential residual

distribution.

gross comparisons, could be carried out. The outcome of paired
comparisons of GBLUP vs. the six thick-tailed models fitted
is given in Table 2. The entries of the table are the relative
frequencies (over the 50,000 bootstrap samples) with which
GBLUP had either a smaller PMSE or a larger PCOR than LMAP

or any of the TMAP models. For flowering time, LMAP gave
a smaller PMSE than GBLUP in 87% of the samples and had
a larger PCOR 100% of the time (it also had a larger PCOR
than any of the TMAP specifications in 100% of the samples,
not shown here). For FRIGIDA, PMSE for GBLUP was smaller
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TABLE 2 | Fraction of bootstrap samples (50,000) in which genomic best linear unbiased prediction (GBLUP) attained a smaller prediction mean-squared error (PMSE) or

a larger predictive correlation (PCOR) than either LMAP1, TMAP42, TMAP82, TMAP122, TMAP162, or TMAP202.

GBLUP vs. LMAP GBLUP vs. TMAP4 GBLUP vs. TMAP8 GBLUP vs. TMAP12 GBLUP vs. TMAP16 GBLUP vs. TMAP20

FLOW

PMSE 0.13 0 0 0 0.00 0.00

PCOR 0 0 0 0 0 0

FRIG

PMSE 0.54 0.53 0.33 0.35 0.36 0.37

PCOR 0.06 0.30 0.27 0.29 0.31 0.33

DIAM

PMSE 0.52 0.65 0.59 0.57 0.58 0.55

PCOR 0.39 0.81 0.82 0.81 0.80 0.80

Target traits are flowering time (FLOW), FRIGIDA gene expression (FRIG) and plant diameter (DIAM) in Arabidopsis thaliana.
1LMAP, Laplace’s maximum a posteriori; 2TMAP4–8-12-16-20: t—distribution on 4, 8, 12, 16, or 20 degrees of freedom.

in 54% (LMAP) and 53% (TMAP-4) of the samples; however,
TMAP8-12-16-20 had a better performance than GBLUP about
65% of the time. PCOR in FRIGIDA was larger for GBLUP than
for LMAP only 6% of the time, and in 27–33% of the draws
when compared with the t-models. For plant diameter, GBLUP
was better most of the time, save for PCOR when compared with
LMAP.

These findings indicated (most notably for flowering time and
to a lesser extent for FRIGIDA) that a robust residual distribution
may deliver better predictions than GBLUP most of the time for
some traits, even though the procedures are not unbiased, neither
theoretically nor empirically. Results for flowering time suggest
that, when unknown major genes are suspected to underlie
genetic variation and an “infinitesimal genomic” model is fitted,
use of a thick-tailed residual distribution protects against model
mis-specification and produces better predictions at a lower level
of uncertainty (sharper bootstrap distributions). On the other
hand, when trait residuals conform close but not perfectly to a
Gaussian distribution, such as in the case of plant diameter, a
robust method can yield an equivalent and, sometimes, a better
performance thanGBLUP, as seen in the case of the PCORmetric.

5.3. Wheat
Grain yield in cereals is a multifactorial trait affected by non-
additive gene effects, strong environmental forces and genotype
by environment interaction (Singh et al., 1986; Sleper and
Poehlman, 2006; Huang et al., 2010). Further, the wheat data
set employed here was found (Gianola et al., 2016) to have
a complex underlying sub-structure, e.g., a multi-dimensional
scaling analysis of a genomic relationship matrix constructed
with 1,279 markers indicated that the first coordinate separated
the n = 599 lines into two groups whereas the second
coordinate stretched lines over the y-axis. Janss et al. (2012)
argued (from a random effects model perspective) that use
of G automatically corrects for substructure, but there is no
general agreement on the matter. If such heterogeneity were
associated with variation in mean values, a simple additive
zero-mean Gaussian model fitted to grain yield could still
produce outliers because marker effects would be shrunk to a

common mean, thus ignoring existence of strata with potentially
different means (as in “grouping” of ancestors in animal
breeding).

The predictand chosen was wheat grain yield with all 599
lines planted in four distinct environments; the corresponding
vectors of phenotypes are denoted as y1, y2, y3, and y4. We
also formed “composite” traits by summing pairs, triplets and
tetraplets of yields in different environments, i.e., y1+2, y1+3,...,
y1+2+3,..., y2+3+4, y1+2+3+4, so the total number of response
variables was 15. For the “yield sums,” the expectation was that
their distribution would be more nearly Gaussian than those of
elementary yields, thus providing a challenge to the thick-tailed
models in situations in which normality probably holds. QQ plots
for the 15 yield traits are in Figures S4–S7; the closest conformity
with the Gaussian assumption seemed to be for sums of pairs of
yields, but no improvement in fit was observed for triplets or for
the tetraplet yield.

A training (n = 300)-testing (n = 299) layout was
repeated 200 times, completely at random. At each training
instance, variance components were estimated by MINQUE
using maximum-likelihood estimates as guesses; models fitted
were BLUP, LMAP and TMAP (ν = 4, 6, or 8). Analyses were
done using pedigree (A) or genomic kinship (G) matrices.

Boxplots of the distributions of PMSE and PCOR are in
Figures 10, 11, respectively, for each of the four “elementary”
yields. Predictions based on G were better than those obtained
with A for yields 1 and 2, but not for y3 and y4. Within
environment and type of kinship matrix, the five models did not
differ by much in predictive performance, especially in the light
of the large variability among replicates. The DE model (L in the
figures) tender to deliver larger PMSE and smaller PCOR than
other methods.

We also examined consistency of predictive performance
over the 200 replications by calculating the frequency with
which a given method delivered the best predictions. Tables 3, 4
present results for PCOR when predictions for the 15 yield traits
were either pedigree-based (e.g., ABLUP) or genome-based (e.g.,
GLMAP), respectively. For A-based predictions (Table 3), BLUP
had the largest frequency of appearing as the best method in
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FIGURE 10 | Box plots of the distribution (200 randomly reconstructed training-testing layouts) of predictive mean-squared error (PMSE) of wheat yield in four different

environments (Y1, Y2, Y3, Y4). B: best linear unbiased prediction. L: maximum a posteriori with a double exponential residual distribution. T4, T6, T8: maximum a

posteriori with residual t—distribution on 4, 6, or 8 degrees of freedom, respectively.

FIGURE 11 | Box plots of the distribution (200 randomly reconstructed training-testing layouts) of predictive correlation (PCOR) of wheat yield in four different

environments (Y1, Y2, Y3, Y4). B: best linear unbiased prediction. L: maximum a posteriori with a double exponential residual distribution. T4, T6, T8: maximum a

posteriori with residual t—distribution on 4, 6, or 8 degrees of freedom, respectively.

only in 1 of the 15 comparisons (yield trait 10). LMAP was
best in 2 out of 15, and TMAP8 had the largest frequency of
attaining the top PCOR in 8 such evaluations. Summing yields
did not ameliorate the performance of BLUP relative to the robust
methods.

For genome-based predictions (Table 4), BLUP was the most
frequent “winner” (14 of the 15 traits), notably for sums
of yields; for example, for yield trait 13 GBLUP produced
the largest PCOR in 73% of the 200 replications); for the

4 elementary yields, BLUP was best in 50.5, 30, 26, and
46.5% of the replications, respectively. We conjecture that when
pedigree is used, the robust distributions mitigate somehow
the impact of genomic sub-structure, strong in this wheat
ensemble of lines. When markers are used for constructing
the kinship matrix, this sub-structure is partially accounted for
(Janss et al., 2012), perhaps rendering the Gaussian assumption
less vulnerable to the effect on means of ignoring population
stratification.
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TABLE 3 | Frequency with which a given method had the largest predictive

correlation for wheat grain yield over 200 replications of a training-testing layout:

pedigree (A) based model, (“winning” method in boldface).

YIELD TRAIT ABLUP1 ALMAP2 ATMAP43 ATMAP64 ATMAP85

1 0.230 0.390 0.225 0.045 0.110

2 0.085 0.025 0.185 0.185 0.520

3 0.115 0.105 0.230 0.220 0.330

4 0.190 0.100 0.280 0.130 0.300

5 (1+2) 0.265 0.045 0.105 0.060 0.525

6 (1+3) 0.185 0.460 0.170 0.060 0.125

7 (1+4) 0.160 0.185 0.320 0.095 0.240

8 (2+3) 0.175 0.055 0.130 0.355 0.285

9 (2+4) 0.130 0.025 0.250 0.310 0.285

10 (3+4) 0.290 0.035 0.105 0.255 0.315

11 (1+2+3) 0.130 0.170 0.170 0.180 0.350

12 (1+2+4) 0.115 0.060 0.155 0.140 0.530

13 (1+3+4) 0.135 0.110 0.235 0.160 0.360

14 (2+3+4) 0.185 0.030 0.140 0.350 0.295

15 (1+2+3+4) 0.145 0.055 0.150 0.255 0.395

1ABLUP: best linear unbiased prediction.
2ALMAP: Laplace’s maximum a posteriori.
3ATMAP4: t—distribution on 4 degrees of freedom maximum a posteriori.
4ATMAP6: t—distribution on 6 degrees of freedom maximum a posteriori.
5ATMAP8: t—distribution on 8 degrees of freedom maximum a posteriori.

TABLE 4 | Frequency with which a given method had the largest predictive

correlation for wheat grain yield over 200 replications of a training-testing layout:

genome (G) based model, (“winning” method in boldface).

YIELD TRAIT GBLUP GLMAP GTMAP4 GTMAP6 GTMAP8

1 0.505 0.060 0.220 0.065 0.150

2 0.300 0.175 0.245 0.125 0.155

3 0.260 0.075 0.175 0.135 0.355

4 0.465 0.015 0.245 0.065 0.210

5 (1+2) 0.460 0.045 0.255 0.100 0.140

6 (1+3) 0.550 0.055 0.175 0.065 0.155

7 (1+4) 0.460 0.030 0.220 0.080 0.210

8 (2+3) 0.345 0.105 0.155 0.175 0.220

9 (2+4) 0.330 0.095 0.170 0.185 0.220

10 (3+4) 0.510 0.030 0.090 0.110 0.260

11 (1+2+3) 0.495 0.070 0.190 0.085 0.160

12 (1+2+4) 0.560 0.025 0.190 0.075 0.150

13 (1+3+4) 0.730 0.020 0.085 0.025 0.140

14 (2+3+4) 0.450 0.075 0.125 0.105 0.245

1GBLUP: best linear unbiased prediction.
2GLMAP: Laplace’s maximum a posteriori.
3GTMAP4: t—distribution on 4 degrees of freedom maximum a posteriori.
4GTMAP6: t—distribution on 6 degrees of freedom maximum a posteriori.
5GTMAP8: t—distribution on 8 degrees of freedom maximum a posteriori.

6. DISCUSSION

Best linear unbiased prediction (pedigree or genome-based) is
routinely employed for genetic evaluation of candidates for
selection in breeding of crops and livestock. The method has
many attractive features, such as flexibility, because it can be
used in longitudinal, cross-sectional, incomplete and missing
data situations and also extends to multivariate problems. The

structure of the linear model is easy to amend, e.g., adding
or removing fixed and random effects, and computations are
deterministic, although large implementations require advanced
iterative numerical methods. There is publicly available software
for massive amounts of data, such as DMU (Madsen and Jensen,
2013).

In the era of genome-enabled prediction, a plethora of
Bayesian linear regression models have emerged (Meuwissen
et al., 2001; Gianola et al., 2009; de los Campos et al.,
2013; Gianola, 2013). These Bayesian models proposed differ
mainly in the specification of the prior distribution assigned
to regression coefficients, so observed variation in performance
is due to the prior assumptions, as expected from Bayesian
theory for finite samples; the influence of priors on inference
is exacerbated further by the “large p, small n” problem
encountered with massive genomic data. Further, Bayesian
MCMC methods require very careful calibration, some do
not extend easily to multivariate situations (e.g., the double
exponential prior in the Bayesian Lasso), contain Monte Carlo
error and sometimes experiment difficulties in converging to
the equilibrium distribution. Quite often, results may “look
good” even when convergence has not been attained. In view
of the preceding considerations it is not surprising that ABLUP
and GBLUP continue being methods of choice for prediction
of complex traits, as exemplified by it use in national and
international evaluations of dairy cattle (Weigel et al., 2017).

All BLUP models, as well as Bayesian specifications, implicitly
or explicitly pose a Gaussian distribution for the residuals, a
process known to be sensitive to outliers and whose presence
is pervasive in observational (as opposed to experimental) data.
Outlying observations are typically due to missing covariables
such as information on preferential treatment of animals, or
ignoring presence of unknown segregating QTL and genotype
× environment interactions. In the absence of a correct
specification, the neglected effects are lumped most often
into the model residual. The standard Gaussian assumption
makes the regression function incapable of recognizing aberrant
observations, unless outliers are removed ex ante or ex post.
On the other hand, some thick-tailed residual distributions can
recognize and differentially mitigate the impact of outliers via
an automatic attenuation of phenotypes associated with the
corresponding data points. The thick-tailedmodels, such as those
based on the t or Laplace’s distribution, confer differential weights
to phenotypes and provide model-derived diagnostics of sources
of discrepancy with outcomes.

In this paper we used a certain Bayesian logic, i.e., MAP
instead of MCMC, for incorporating thick-tailed residual
distributions while retaining a BLUP-type computational
framework. The methods, which are non-linear, use re-iteration
of linear mixed-model equations and can be viewed as belonging
to the class of quantitative genetics generalized linear models
(e.g., Thompson, 1979; Gianola and Foulley, 1983). Since TMAP
and LMAP are not linear functions of the data predictions cannot
be claimed to be unbiased or “best” in the standard or idealized
senses. A predictive (as opposed to inferential) approach
was employed here for tuning regularization parameters for
these models by adopting a combination of grid search and
non-iterative variance component estimation via MINQUE.
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The study focused on conceptual rather than on computing
matters: our primitive codes were not optimized in any sense
of the word. Since reviewers expressed interest in knowing
computing times, some information is provided hereby. With the
cow data set (n = 991), the following clock time was needed
for the following: (1) computing all GBLUP in the heritability
grid with 15 entries: 8.51 s. (2) Ten iterations of TMAP-4 for a
single heritability value: 10.82 s; (3) 30 iterations of LMAP for
a single heritability entry: 49.02 s. All computations were run
using a mundane laptop computer under the Windows 10 64-bit
operating system; the dual processor employed was Intel (R) Core
(TM() i7-5500U CPU @2.40 GHz and 2.39 GHz, and installed
memory was 12.0 GB. Most calculations were completed in a
few minutes of clock time, with the exception of the wheat study
where, in each of the 200 replications, five different models (some
iterated for 200 rounds) were fitted to each of 15 traits. Such
calculation was completed overnight. A rough rule of thumb is
that, if GBLUP requires x hours, TMAP would probably take
20x, and LMAP probably 100x. For comparison, a Bayesian
MCMM method using a Gibbs sampler would probably require
at least thousands of x for the thick tailed-methods, assuming
that such an amount of sampling is adequate for reaching the
equilibrium distribution and attaining a small Monte Carlo error.
The efficiency of our computations could be markedly improved
if the code had been written by a computing expert or written in
a faster language.

Reviewer 3 suggested that we discuss use of thick-tailed
distributions for modeling the “genetic” part of the linear
model. Bayes A and Bayes B of Meuwissen et al. (2001)
actually use independent t−distributions for markers effects
included in a regression vector β (at least for non-zero state
in Bayes B), and the Bayesian LASSO (Park and Casella, 2008)
assigns independent DE distributions to each of the regression
coefficients. However, the distributions of g = Xβ are intractable:
linear combinations of independent t or DE random variables
have unknown distributions. On the other hand, assigning a
multivariate t—distribution to the entire g vector with G as scale
matrix is feasible (Strandén, 1996), but using a grid search for
h2g and νg since these two parameters cannot be separated in the
likelihood function; on the other hand, independent univariate
t -distributions with the same parameters could be assigned to
each of the members of series of “clusters,” as in a sire model
(Strandén, 1996). It is doubtful, however, that a multivariate
t−distribution would protect against genetic outliers because the
attenuation operates on the entire g and not on its individual
elements (Strandén, 1996). Further the independent t−model
for clusters would introduce an extra parameter in the grid: the
“cluster” degrees of freedom.

Reviewer 1 encouraged us to discuss a method (called “R”)
presented by Reverter et al. (1994a,b), developed with the aim of
detecting “prediction bias” and estimating variance component
in a mixed effects linear model. Method “R” takes the view
that such model holds true, and it forces the regression of
predictands on predictors to be equal to 1, implicitly produceing
“empirically unbiased” predictions. Although ingenious, “R” can
be deceiving: it forces predictions and parameter estimates to
comform to a given model, as to opposed to searching for a
specification that reflect the nature of the data, which arguably

is what one ought to do in science. “R” should not be prescribed
unless there is complete certainty that a mixed effects linear
model provides the best prediction machine. Thompson (2001)
provided a discussion of “R” and a comparison with some of
the cross-validation approaches used in our paper, and wrote:
“These cross-validatory techniques are useful when a prescription
for prediction exists but no formal variance structure exists.”
While genetic relatedness provides information about part of
the “variance structure,” one should keep in mind that there are
other issues that also deserve consideration in analysis of complex
traits, e.g., skweness, kurtosis, outliers, hidden structure, non-
random missing data, unknown major genes, non-additive gene
action, epigenetics, etc. In short, one should not claim or believe
(given the current state of knowledge) that a “formal variance
structure” always holds while ignoring many other aspects
of model building. Quantitative genetics (and science, more
generally) goes beyond y = Xβ + Zu+ e, the standard general
linear model under Gaussian assumptions. Our perspective is
representative of the perspective taken in the fields of statistical
and machine learning, i.e., one of caution with respect to making
strong assumptions concerningmechanisms generating data sets.

Using dairy cattle, Arabidopsis and wheat data, proof-of-
concept was provided that models with t or Laplace residual
distributions can often deliver closer (e.g., in the sense of PMSE
and PCOR) predictions to targets than BLUP. In particular,
we found that the robust methods outperformed GBLUP in
data sets representing Brown Swiss cattle (test-day milk yield)
and Arabidopsis (notably flowering time and FRIGIDA gene
expression). Our relatively simple tuning of regularization
parameters permited emulation of conceptual repeated sampling
(bootstrapping) as well as replication of a training-testing layout.
It was also found that the robust alternatives to BLUP were often
more stable over conceptual repeated sampling, e.g., displaying a
lower PMSE consistently.

We also verified empirically that the best predictions were
not necessarily associated with “unbiasedness,” an obsession of
(many) animal breeders since the introduction of BLUP. Our
study focused on a univariate linear model, but the robust
distributions can also be used with any non-linear model in
which residuals enter additively into the model structure, e.g.,
growth and lactation curve models. Typically it is unreasonable
to expect that non-linear predictors derived from a growth or
lactation curve are unbiased, and such property is irrelevant
if the objective of an analysis is to obtain the best possible
predictions. Although the “best predictor” (conditional mean) in
themean squared error sense is unbiased, the property holds only
if the joint distribution of random effects (e.g., genotypic values)
and of phenotypic values is known without error (Henderson,
1973; Fernando and Gianola, 1986). Hence, any time model
assumptions are violated, the “best predictor” must give away the
“yellow jersey,” a term well known by followers of the Tour de
France.

Reviewer 1 expressed that the treatment of unbiasedness
dispensed in the preceding paragraph was “unfair,” and argued
that unbiased estimation of differences between age cohorts
is needed for “correctly ascertaining” genetic trends in animal
breeding, as if this were possible (true genetic trend is unknown).
The current state of statistical science refutes such view: the
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objective of any statistical model is to get as close as possible
to estimands (good “Oracle” properties in modern lingo), which
is seldom accomplished by unbiased procedures. For example,
the so called “James-Stein” phenomenon shows that the best
linear unbiased estimator of a location vector with at least
two unknown parameters is inadmissible. Judge et al. (1985)
discussed the issue from an econometrics perspective, a field in
which finding good estimates of parameters is no less important
than in animal breeding. Further, ridge regression (a biased
estimator) was developed to reduce Euclidean distance between
the estimator and the true regression vector relative to what
would be attained with ordinary least-squares (an unbiased
procedure); see Hoerl and Kennard (1970). More recently, Meyer
(2016) deliberately introduced bias (via penalty functions) in
maximum likelihood estimation of variance and covariance
components simply because the biased estimates can often be
closer to the true values. Returning to BLUP: it is well known
that in a simple model in which the regression vector is declared
random, BLUP and ridge regression produce exactly the same
results at the same level of regularization. Then, how can BLUP
be unbiased and biased at the same time? The explanation is
that animal breeders often fail to note that BLUP is unbiased
with respect to the mean of the distribution of the random
effects, but not with respect to their realized values in an extant
data set. The problem is with the frequentist definition of BLUP
and not with what the method does. In fact, one can interpret
BLUP as a Bayesian estimator (biased, unless the prior were
“true”); as a penalized maximum likelihood estimator (biased
in small samples); or as a reproducing kernel Hilbert spaces
regression (RKHS) or as a linear single-neuron network with an
identity activation function. For the last two interpretations, what
matters is the variance-bias trade-off, and the best settings are
typically those in which some bias is accepted in order to decrease
variance. In a nutshell, the importance of unbiasedness has been
overstated in the field of animal breeding as clearly pointed out
in many papers and textbooks, e.g., Blasco (2001, 2017).

Our approach can also be used in single-step BLUP (e.g.,
Legarra et al., 2009) and in RKHS (e.g., Gianola et al., 2006;
Gianola and Van Kaam, 2008). For a single-step BLUP mixed
effects model with t-residuals, for example, the iteration has the
same form as Equation (7) except thatK is replaced by a matrixH
(involving A and G relationship matrices) that is also a function
of the degree of similarity between individuals with and without
marker genotypes. In the case of RKHS, the matrix K in, e.g., de
los Campos et al. (2009) and Gianola and Schön (2016), would
be replaced by a more general kernel matrix, such as a linear
combination of Gaussian kernels.

As pointed out earlier, multiple-trait models can be fitted
with reasonable ease in ABLUP or GBLUP with main challenges
being their computation. There is a fairly widespread view
that multiple-trait models can account for some forms of bias
in inference of breeding values and of genetic parameters
(Thompson, 1979; Gianola et al., 1988; Im et al., 1989).
Multivariate outliers aremore subtle and delicate than single-trait
model discrepancies, so extensions of TMAP and LMAP might
be useful. If a t−distribution is used, extension to multiple-traits
with imputation of missing records is fairly straightforward.
Actually, Strandén (1996) fitted additive models with univariate

and bivariate residual t—distributions to data on milk yield of
Finnish Ayrshire cattle (Bayesian MCMC was used) and found
stronger support for the thick-tailed processes. TMAP for the
multiple-trait case has not been developed yet, but it should not
be difficult, at least conceptually (Strandén, 1996).

On the other hand, there is not much theory or literature
on multivariate Laplace distributions, so additional research is
needed. A starting point could be a generalization of the power
exponential (PE) family of distributions (Gómez et al., 2007).
Suppose the linear model includes T traits, and assume that
residuals are distributed as ei ∼ PET (0,6T×T ,β) where 6 is
a positive-definite matrix and β > 0 is a parameter relating
to kurtosis and reflecting disparity from a multivariate normal
distribution. A simple multiple-trait model can be represented as

yi = γi + gi + ei; i = 1, 2, ..., n, (31)

where yi and gi are T × 1 vectors of phenotypes and of genotypic
values for individual i, respectively, and γi is a fixed T × 1 vector.
Conditionally on the genotypic values gi, one could assume that
yi has a PET ∼

(
yi|µi,6,β

)
distribution where µi = γi + gi,

and also that all yi are conditionally independent. The sampling
model would have density
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(32)

If β = 1 andT = 1 the density above becomes that of a univariate
N (µi,6) random variable as
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which is the density of a Laplace or DE distribution with mean
µi and homogeneous (across observations) parameter m =
2
√

6. It follows that the PET ∼ (µi,6,β) process provides
a multivariate generalization of the DE distribution. However,
developing a multi-trait LMAP is an item for future research and
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is beyond the scope of this paper. We also note that, if assigned
to genotypic values or to markers in a whole-genome regression
model, the distribution PET ∼

(
gi|0,6,β = 1

2

)
provides a prior

for a multivariate Bayesian Lasso, which has not appeared in
the quantitative genomics literature so far. Developing such a
Bayesian model is an additional item for research although, given
the notorious complexities of the single trait Bayesian Lasso, it is
unlikely that such an approach (if and when developed) would
lend itself to routine genetic evaluation of plants and animals.

Most traits in animal breeding have a heritability lower than
50% and, as already mentioned, many priors have been invented
to better account for “genetic architecture” while retaining a
naïve assumption for the error distribution. Also, there have
been many attempts at enhancing predictive ability by including
(not always with marked or fruitful results) non-additive genetic
effects in the specification. Perhaps there is more opportunity
for improving predictions by working on the residual part than
on the genetic structure of a model. Super-dimensionality and a
massive number of records can seldom cope with bad data, but
robust models can mitigate damage stemming from concealed
structure or by unknown sources of bias. Selection is not the
only source of distortion in quantitative genetic analysis and
the process is not always “ignorable” as almost always there
is non-randomly missing data (Henderson et al., 1959; Rubin,
1976).

We underline that the data sets used in the present
study were not “cherry picked,” i.e., there was no intentional
bias or pre-selection of species or of traits that could be
construed as favoring the thick-tailed distributions. Since
every prediction exercise represents a different problem,
it is impossible to anticipate how the proposed robust
methodology will behave if applied to other traits and species.
However, our results are encouraging and stimulate further
investigation.

Our concluding statement, inspired by a famous Chinese book
on military science (Sun Tzu, 6th century BC)1, and appropriate
for the current “big data” environment, is

“One can have an army with millions of soldiers, but if their

weapon is just a fork, a smaller and better equipped rival can be

more effective in battle." [In other words, bigger is not necessarily

better].

1Sun Tzu. 6th Century BC. The Art of War. Boulder, CO: Shambhala Publications.
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Figure S1 | Relationship between heritability and value of regularization

parameters (Factor) in GBLUP (black open circles), TMAP4 (t—distribution with 4

degrees of freedom, red triangles) and LMAP (solid green circles). GBLUP:

genomic BLUP with residual Gaussian distribution; TMAP4: maximum a posteriori

with residual t—distribution on 4 degrees of freedom; LMAP: maximum a

posteriori with double exponential residual distribution.

Figure S2 | Quantile-quantile plot of milk yield in Italian Brown Swiss cows.

Figure S3 | Quantile-quantile plot of flowering time, FRIGIDA gene expression and

plant diameter in Arabidopsis.

Figure S4 | Quantile-quantile plot of wheat yields 1–4.

Figure S5 | Quantile-quantile plot of sums of pairs of wheat yields 1+2,...,3+4.

Figure S6 | Quantile-quantile plot of sums of triplets of wheat yields

1+2+3,...,2+3+4.

Figure S7 | Quantile-quantile plot of sums of tetraplet of wheat yields 1+2+3+4.
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