

COLD SPRING HARBOR Molecular Case Studies

Diagnostic utility of genetic testing in patients undergoing renal biopsy

Katherine A. Benson,^{1,9} Susan L. Murray,^{2,3,9} Ross Doyle,⁴ Brendan Doyle,⁵ Anthony M. Dorman,^{5,6,7} Denise Sadlier,⁸ Eoin Brennan,⁴ Margaret Large,³ Gianpiero L. Cavalleri,¹ Catherine Godson,⁴ and Peter J. Conlon^{2,3}

¹School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Stephen's Green, Dublin, Ireland D02 YN77; ²Department of Nephrology and Transplantation, Beaumont Hospital, Dublin 9, Ireland D09 V2N0; ³Department of Medicine, Royal College of Surgeons in Ireland, Stephen's Green, Dublin, Ireland D02 YN77; ⁴Diabetes Complications Research Centre, School of Medicine, University College Dublin, Ireland; ⁵Department of Histopathology, Beaumont Hospital, Dublin, Ireland D09 V2N0; ⁶Department of Pathology, Royal College of Surgeons in Ireland, Dublin, Ireland D02 YN77; ⁷Department of Pathology, Royal College of Surgeons in Ireland, Stephen's Green, Dublin, Ireland D02 YN77; ⁸Mater Misericordiae Hospital, Dublin, Ireland D07 K201

Abstract High-throughput DNA testing is becoming established as a standard diagnostic test in the renal clinic. Previously published studies on cohorts of patients with unexplained chronic kidney disease of a suspected genetic aetiology have suggested a diagnostic yield for genomic sequencing of up to 18%. Here we determine the yield of targeted gene panel in a clinically unscreened cohort of patients referred for percutaneous native renal biopsy. Patients who underwent renal biopsy for investigation of chronic kidney disease were sequenced using a genomic sequencing panel covering 227 genes in which variation is known to be associated with monogenic chronic kidney disease (CKD). Candidate disease-causing variants were assessed for pathogenicity using guidelines from the American College for Medical Genetics and Genomics. Fifty CKD patients were recruited and sequenced. A molecular diagnosis was obtained for two patients (4%). A molecular diagnosis is possible using genomic testing in ~4% of clinically unscreened patients undergoing renal biopsy. Genetic screening may be useful for diagnosis in a subset of CKD patients but is most valuable when applied to patients with suspected heritable forms of kidney disease.

[Supplemental material is available for this article.]

INTRODUCTION

Genetic testing is becoming increasingly available as a viable first-line diagnostic test in chronic kidney disease (CKD) (Bullich et al. 2018; Harris 2018). Recent studies have shown that genomic sequencing may provide a molecular diagnosis in up to 10% of all patients with CKD and 18% of those who have CKD of unknown origin (Groopman et al. 2019). The diagnostic yield from genetic testing may be even higher in patients with a family history of renal disease (Connaughton et al. 2019). These recent studies sequenced patients referred by treating clinicians who suspected inherited kidney disease. Here, we assess the diagnostic yield of targeted genomic sequencing in a patient cohort early in their diagnostic journey, referred for percutaneous native renal biopsy, without clinical screening for suspected inherited kidney disease.

⁹These authors contributed equally to this work.

Cite this article as Benson et al. 2020 Cold Spring Harb Mol Case Stud 6: a005462

Corresponding author: katherinebenson@rcsi.com

© 2020 Benson et al. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits reuse and redistribution, except for commercial purposes, provided that the original author and source are credited.

Ontology terms: acute

tubulointerstitial nephritis; decreased glomerular filtration rate; elevated serum creatinine; glomerulonephritis; heavy proteinuria; hematuria; mild proteinuria; moderate proteinuria; stage 1 chronic kidney disease; stage 2 chronic kidney disease; stage 3 chronic kidney disease; stage 4 chronic kidney disease; stage 5 chronic kidney disease

Published by Cold Spring Harbor Laboratory Press

doi:10.1101/mcs.a005462

RESULTS

In total, 237 biopsy samples were screened, of which 84 were renal transplant biopsies. Of the remaining 153 native renal biopsies, a further 52 were excluded because DNA was unavailable or because sampling was inadequate for diagnosis at the time of biopsy, or biopsy was not ultimately performed. Following review, another 51 samples were excluded (see Fig. 1). Ultimately, 50 samples underwent sequencing.

The median age at biopsy was 48 yr; 60% were male. The most common reason for renal biopsy was a deterioration in renal function (22%) measured as a rise in serum creatinine concentration or a fall in glomerular filtration rate (GFR), and the development of nephritic syndrome (30%), followed by nephrotic syndrome (12%), hematuria and proteinuria (12%), and isolated proteinuria (8%) or hematuria (8%). On biopsy, the most common histological diagnosis was IgA nephropathy, accounting for 20 patients (40%), eight (16%) with other forms of glomerulonephritis, six (12%) with arteriosclerosis, eight (16%) with chronic thrombotic microangiopathy (TMA), five (10%) with thin basement membrane nephropathy (TBMN), and one with Alport syndrome (2%). Two patients (4%) had mixed pathological findings. Diagnostic variants were identified in two patients (2/50, 4%) (see Table 1).

Patient 261

This 40-yr-old female patient had an American College of Medical Genetics and Genomics (ACMG)-classified pathogenic (PVS1, PM2, PP3) heterozygous frameshift deletion in

Figure 1. Schematic showing 237 biopsy samples were screened, of which 84 were renal transplant biopsies. Of the remaining 153 native renal biopsies, a further 52 were excluded because DNA was unavailable or because sampling was inadequate for diagnosis at the time of biopsy, or biopsy was not ultimately performed. Following review, another 51 samples were excluded. Ultimately, 50 samples underwent sequencing.

	Phenotype	IgA nephropathy	Nonspecific	Nonspecific	IgA nephropathy	Arteriosclerosis	Arteriosclerosis	Arteriosclerosis	TMA	TBMN	Nonspecific	IgA nephropathy	IgA nephropathy	TMA	TMA	MPGN	TBMN	Minimal change disease	AIN	Membranous	IgA nephropathy	IgA nephropathy	IgA nephropathy	IgA nephropathy	on next page.)
%	Above 20×	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	tinued
	Average coverage	194.7	310.64	306.53	216.24	212.54	245.25	228.38	232.13	210.28	220.15	232.82	318.13	252.96	212.61	290.19	290.19	266.5	257.48	172.43	151.58	191.2	108.32	170.97	(Con
	Total coverage	77686	75174	94718	3220	35707	51994	79477	53389	35958	146178	46564	74760	63745	148187	944847	944847	176954	75958	27071	31225	74568	105825	42400	
	ClinVar ID	SCV001328294	SCV001328286	SCV001328267	SCV001328270	SCV001328289	SCV001305469	SCV001305364	SCV001328287	SCV001305529	SCV001328284	SCV001328290	SCV001328296	SCV001328277	SCV001328293	SCV001328275	SCV001328297	SCV001328306	SCV001328277	SCV001328274	SCV001328268	SCV001328271	SCV001328307	SCV001328302	
	AA position	p.L198fs	p.R1496W	p.G357E	p.P54L	p.l1567S	p.C839Ter	p.Q1535fs	p.R1530	p.S969Ter	p.131_131del	p.P160fs	p.C208R	р.D926Ү	р.Q192Н	p.R751C	p.G209S	p.R310W	р.D926Ү	p.S703F	p.R415C	p.A547G	p.Q316delinsQHQ		
	HGVS	c.594_595del	c.4486C > T	c.1070G > A	c.161C>T	c.4700T > G	c.2517C > A	c.4603_4604del	c.458G > A	c.2906C > G	c.391_393del	c.480dupA	c.622T > C	c.2776G > T	c.576G > T	c.2251C > T	c.625G > A	c.928C > T	c.2776G > T	c.2108C > T	c.1243C > T	c.1640C > G	c.948_949insCACCAG	c.790 + 1G > A	
	RefSeq	NM_001966.4	NM_212482.4	NM_212482.4	NM_001845.6	NM_000091.5	NM_000186.4	NM_00092.5	NM_004252.5	NM_00092.5	NM_001318018.2	NM_030787.4	NM_030787.4	NM_015375.3	NM_024426.6	NM_015069.4	NM_001318018.2	NM_004924.6	NM_015375.3	NM_001966.4	NM_003361.3	NM_144966.7	NM_022454.4	NM_002113.3	
	Type	Frameshift deletion	Missense	Missense	Missense	Missense	Stop-gain	Frameshift deletion	Missense	Stop-gain	Nonframeshift deletion	Frameshift insertion	Missense	Missense	Missense	Missense	Missense	Missense	Missense	Missense	Missense	Missense	Nonframeshift insertion	Splicing	
	MAF (gnomAD)	7.37E-05	0.0047	0.0024	0.0029	4.47E-05	0	0	0.0019	6.90E-05	0.0002	0.0021	0.0014	0.0009	0	6.92E-05	0	4.51E-05	0.0009	0.0097	2.03E-05	0.0001	0.0072	0.0018	
-	ACMG evidence	PVS1	PP2, PP3, BS1	PP2, PP3, BS1	PP2, PP3, BP6	PP3	PVS1, PM2	PVS1, PM2, PP3	PP3, PP5	PVS1, PS1	PM4, BS1	PVS1, BS1	PP3, PP5, BS1	PP3, BS1	PM2, PP3	PP2, PP3	PM1, PP3	PP2, PP3	PP3, BS1	PP3, BS1	PP2, PP3	PP3, BS1	PM4, BS1	PVS1, PP3	
	ACMG classification	SUV	VUS	NUS	SUV	NUS	Likely pathogenic	Pathogenic	VUS	Pathogenic	SUV	SUV	SUV	VUS	VUS	NUS	VUS	NUS	VUS	VUS	SUV	SUV	SUV	SUV	
Gene	inheritance pattern	AD	AD	AD	AD	AR/AD	AD	AR/AD	AD	AR/AD	AD	AD	AD	AD	AD	AR/AD	AD	AD	AD	AD	AD	AD	AD	AR/AD	
	GT	Het	Comp het (dom)	Comp het (dom)	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Het	Hom	
	Gene	ЕННАDH	FN1	FN1	COL4A1	COL4A3	CFH	COL4A4	SLC9A3R1	COL4A4	APOA1	CFHR5	CFHR5	DSTYK	WT1	ZNF423	APOA1	ACTN4	DSTYK	EHHADH	DOMU	FREM 1	SOX17	CFHR1	
Manu-	script ID	213	œ	ω	249	256	261	261	264	286	14	203	203	16	16	43	20	139	142	152	158	159	159	-	

Table	1. (Contin	(pənu													
Manu- script ID	Gene	GT	Gene inheritance pattern	ACMG classification	ACMG evidence	MAF (gnomAD)	Type	RefSeq	HGVS	AA position	ClinVar ID	Total coverage	Average coverage	% Above 20×	Phenotype
-	COL4A3	Het	AR/AD	SUV	PP3	0.0003	Missense	NM_000091.5	c.1886C > T	p.T629M	SCV001328273	64232	302.98	100	lgA nephropathy
-	FN1	Het	AD	SUV	PP2, PP3, BS1	0.0002	Missense	NM_212482.4	c.5954C > A	p.P1985H	SCV001328295	86861	277.51	100	IgA nephropathy
-	FN1	Het	AD	SUV	PP2, PP3	5.28E-05	Missense	NM_212482.4	c.3130G > A	p.V1044M	SCV001328281	36521	262.74	100	IgA nephropathy
175	PKD1	Het	AD	VUS	PP3, PP5	0.0009	Missense	NM_001009944.3	c.12460C > T	p.R4154C	SCV001328269	141278	263.58	100	TBMN
186	SLC7A9	Het	AR/AD	SUV	PVS1, PM2	0	Stop-gain	NM_001985.3	c.292C > T	p.R98C	SCV001328279	83790	301.4	100	IgA nephropathy
(GT) G€	snotype, (A	(CMG) Am	erican Colleg	te of Medical	Genetics and	Genomics,	(MAF) minor	allele frequency, (F	IGVS) Human Geno	me Variation Society,	(AA)				

amino acid, (AD) autosomal dominant, (VUS) variant of uncertain significance, (AR) autosomal recessive, (Het) heterogeneous, (TMA) thrombotic microangiopathy, (MPGN) membranoproliferative glomerulonephritis, (TBMN) thin basement membrane nephropathy, (Hom) homogeneous, (AIN) acute interstitial nephritis.

Collagen Type IV Alpha 4 Chain (COL4A4) (NM_000092.4:exon47:c.4603_4604del: p.Q1535fs), suggestive of autosomal dominant Alport-type disease (Phenotype MIM number 203780) or autosomal dominant TBMN. This variant was absent from the gnomAD database (Karczewski et al. 2019). The patient presented with microscopic hematuria and proteinuria during pregnancy, along with pregnancy-induced hypertension. Her hypertension resolved postpregnancy, but she had persistent proteinuria and hematuria. Her renal function was preserved. The patient also carried an ACMG- Pathogenic (PVS1 (null variant), PS1 (previously established pathogenic variant), PM2 (absent from controls)) stop-gain variant in Complement Factor H (CFH) (NM_000186.3:exon16:c.C2517A:p.C839Ter). Patient 261 presented with hematuria and proteinuria and notably had a low C3 level (consistent with the presence of the pathogenic CFH variant). Her proteinuria improved with renin-angiotensin-aldosterone-system (RAAS) blockade but did not entirely resolve. Biopsy showed TBMN as well as mild arteriosclerosis and atherosclerosis, prominent double contour formation, and TMA, with 2/10 sclerosed glomeruli. The patient had no history of hearing loss and no family history of kidney disease or hearing loss. Sixty months of follow-up did not reveal significant loss of renal function over time. Parents were unavailable for further testing. We conclude that this patient has a thin basement membrane causing hematuria as a result of a pathogenic variant in COL4A4 as well as low C3 as a result of a pathogenic variant in CFH.

Patient 286

A heterozygous stop-gain variant in *COL4A4* (NM_000092.4:exon32:c.2906C > G: p.S969Ter) was identified in a 39-yr-old female patient that was classified using ACMG guidelines as Pathogenic (PVS1 [null variant], PS1 [previously established pathogenic variant]). The patient had normal renal function, with a history of loin pain and microscopic hematuria. She had been treated multiple times for urinary tract infection on the basis of dipstick hematuria but did not self-report any other symptoms of urinary tract infections. The patient reported an extensive family history of loin pain and at least one relative with advanced CKD. She did not have any self-reported hearing or visual disturbance. Biopsy results indicated TBMN. We conclude that this patient has thin basement membrane nephropathy as a result of the presence of a heterozygous *COL4A4* variant.

Variants of Unknown Significance

Additionally, 25 ACMG-classified variants of uncertain significance (VUSs) were identified in 18 patients, including four loss-of-function variants and two truncating variants (see Table 1). Five patients without a molecular diagnosis carried more than one VUS. An *SLC7A9* (solute carrier family 7, member 9) stop-gain variant (NM_001985:exon3: c.C292T:p.R98C) in patient 186, was classified as Likely Pathogenic using ACMG guidelines, but following clinical review was determined to be a poor phenotypic match and reclassified as a VUS.

DISCUSSION

Genetic testing using DNA from peripheral blood in an undifferentiated population of patients undergoing renal biopsy led to a diagnostic rate of 4% in a cohort of 50 patients. Testing in a larger group of patients is merited. Whole-exome and -genome sequencing may increase the rate of diagnosis; however, panel-based sequencing is already in widespread use as a first-line test for screening those with suspected inherited kidney disease

and reflects current clinical practice (Mallett et al. 2017; Bullich et al. 2018; Lata et al. 2018; Heyne et al. 2019). We expect the diagnostic yield to rise as databases mature and further evidence emerges in the literature.

Both patients carried heterozygous, diagnostic variants in *COL4A4*. Both had histology consistent with TBMN. Although this gene has typically been associated with recessive Alport syndrome, multiple reports (Longo et al. 2002; Marcocci et al. 2009; Hines et al. 2018) have demonstrated that patients with heterozygous *COL4A4* or *COL4A3* variants can develop significant renal disease and can benefit from early initiation of RAAS blockade (Stock et al. 2017).

The diagnostic yield obtained (4%) is lower than that reported in previous studies of CKD patients (10%–18%) (Groopman et al. 2019), but this yield is notable given that these patients are not clinically screened for suspected heritable forms of kidney disease. These results suggest that genetic screening may be useful for diagnosis in a subset of CKD patients. However, without careful selection, clinical acumen, and examination of the pedigree by an experienced clinician or clinical geneticist, the yield of testing in an unscreened cohort may be low. An effort to define the health economic as well as clinical utility of genomic testing in unscreened cohorts of CKD patients may be an area for future research.

METHODS

Samples were obtained from the North Dublin Renal Biobank (NDRBB), which was established in 2010 to obtain tissue samples from patients with renal disease. Blood, urine, and renal tissue samples were collected prospectively from those undergoing percutaneous renal biopsy. We recruited sequential individuals who underwent renal biopsy for investigation of chronic kidney disease in Beaumont Hospital between 2010 and 2018, if they were over the age of 18 and capable of giving informed consent. Patients were excluded from analysis if:

- They underwent transplant renal biopsy.
- They underwent rebiopsy to reassess a known condition.
- They were thought to have an acute kidney injury (AKI) secondary to a defined insult. This was considered to be the case if they had an acute rise in creatinine and a diagnosis on biopsy of acute tubular necrosis (ATN) or acute interstitial nephritis (AIN).
- They had a positive anti-neutrophilic cytoplasmic autoantibody (ANCA) test and a biopsy showing pauci-immune vasculitis.
- They were a known diabetic and had a diagnosis consistent with diabetic nephropathy.

DNA was extracted from blood lymphocytes. Genomic sequencing was performed inhouse, with library preparation using a previously described targeted renal disease gene panel (Supplemental Table 1) (Cormican et al. 2019). This sequencing method is unable to detect small insertions and deletions in the variable number tandem repeat region of *MUC1*. Exonic and splicing variants were prioritized for multidisciplinary team discussion if they had a minor allele frequency (MAF) of <1%. Synonymous variants were excluded from analysis. Variant pathogenicity was classified according to the ACMG guidelines (Richards et al. 2015). A variant was classified as diagnostic if it was categorized by the ACMG guidelines as "Likely Pathogenic" or "Pathogenic" and was a good phenotypic match. Sequencing and variant interpretation was conducted in a research (nonaccredited) capacity; diagnostic variants were confirmed using an accredited test from a service provider and reported back to the patients.

ADDITIONAL INFORMATION

Data Deposition and Access

All variants discussed in this manuscript have been submitted to ClinVar (https://www.ncbi .nlm.nih.gov/clinvar/) (see Table 1) and requests for access to raw sequence data can be made via direct contact with the corresponding author.

Ethics Statement

Written, informed consent was obtained from all participants of this study. Ethical approval was provided from the Ethics committee of Beaumont Hospital, Dublin, Ireland (REC 12/75).

Acknowledgments

We also acknowledge the participation of the patients and their families in this study.

Author Contributions

K.A.B., S.L.M., G.L.C., C.G., and P.J.C. conceived the idea and planned the experiments. S.L.M., P.J.C., and D.S. facilitated recruitment of patients to this study. A.M.D., B.D., and S.L.M. assessed the renal biopsy samples. S.L.M. and K.A.B. drafted the manuscript with support from P.J.C. and G.L.C. K.A.B. conducted the sequencing and bioinformatic analysis of sequencing data. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Funding

This research was funded in part by the Irish Research Council and Punchestown Kidney Research Fund (EPSPD/2019/213) and the Royal College of Surgeons in Ireland STAR Hermitage MD programme.

REFERENCES

- Bullich G, Domingo-Gallego A, Vargas I, Ruiz P, Lorente-Grandoso L, Furlano M, Fraga G, Madrid Á, Ariceta G, Borregán M, et al. 2018. A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. *Kidney Int* **94:** 363–371. doi:10.1016/j.kint.2018.02.027
- Connaughton DM, Kennedy C, Shril S, Mann N, Murray SL, Williams PA, Conlon E, Nakayama M, van der Ven AT, Ityel H, et al. 2019. Monogenic causes of chronic kidney disease in adults. *Kidney Int* **95:** 914–928. doi:10.1016/j.kint.2018.10.031
- Cormican S, Connaughton DM, Kennedy C, Murray S, Živná M, Kmoch S, Fennelly NK, O'Kelly P, Benson KA, Conlon ET, et al. 2019. Autosomal dominant tubulointerstitial kidney disease (ADTKD) in Ireland. *Ren Fail* **41:** 832–841. doi:10.1080/0886022X.2019.1655452
- Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, Li Y, Zhang J, Nestor J, Krithivasan P, et al. 2019. Diagnostic utility of exome sequencing for kidney disease. *N Engl J Med* **380**: 142–151. doi:10.1056/NEJMoa1806891
- Harris PC. 2018. The time for next-generation molecular genetic diagnostics in nephrology is now! *Kidney Int* **94:** 237–239. doi:10.1016/j.kint.2018.03.025
- Heyne HO, Artomov M, Battke F, Bianchini C, Smith DR, Liebmann N, Tadigotla V, Stanley CM, Lal D, Rehm H, et al. 2019. Targeted gene sequencing in 6994 individuals with neurodevelopmental disorder with epilepsy. *Genet Med* **21:** 2496–2503. doi:10.1038/s41436-019-0531-0
- Hines SL, Agarwal A, Ghandour M, Aslam N, Mohammad AN, Atwal PS. 2018. Novel variants in *COL4A4* and *COL4A5* are rare causes of FSGS in two unrelated families. *Hum Genome Var* **5:** 15. doi:10.1038/s41439-018-0016-8

Competing Interest Statement

The authors have declared no competing interest.

Referees

Andrew Mallett Hugh J. McCarthy Anonymous

Received April 21, 2020; accepted in revised form July 16, 2020.

- Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. 2019. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv doi:10.1101/531210
- Lata S, Marasa M, Li Y, Fasel DA, Groopman E, Jobanputra V, Rasouly H, Mitrotti A, Westland R, Verbitsky M, et al. 2018. Whole-exome sequencing in adults with chronic kidney disease: a pilot study. *Ann Intern Med* **168:** 100–109. doi:10.7326/M17-1319
- Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusco A, Bosio M, Massella L, Lavoratti G, et al. 2002. *COL4A3/COL4A4* mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. *Kidney Int* **61**: 1947–1956. doi:10.1046/j.1523-1755.2002.00379.x
- Mallett AJ, McCarthy HJ, Ho G, Holman K, Farnsworth E, Patel C, Fletcher JT, Mallawaarachchi A, Quinlan C, Bennetts B, et al. 2017. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders. *Kidney Int* **92**: 1493–1506. doi:10.1016/j.kint.2017.06.013
- Marcocci E, Uliana V, Bruttini M, Artuso R, Silengo MC, Zerial M, Bergesio F, Amoroso A, Savoldi S, Pennesi M, et al. 2009. Autosomal dominant Alport syndrome: molecular analysis of the *COL4A4* gene and clinical outcome. *Nephrol Dial Transplant* **24**: 1464–1471. doi:10.1093/ndt/gfn681
- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* **17**: 405–424. doi:10.1038/gim.2015.30
- Stock J, Kuenanz J, Glonke N, Sonntag J, Frese J, Tonshoff B, Hocker B, Hoppe B, Feldkotter M, Pape L, et al. 2017. Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations. *Pediatr Nephrol* **32**: 131–137. doi:10.1007/s00467-016-3452-z