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Simple Summary: The genome-wide association study (GWAS) approach to common human disease
relies on single nucleotide polymorphisms (SNPs), the most common type of genetic variation in the
human genome, and distinguishes “risk” and “healthy” SNP alleles. In parallel with increasing in-
sights into the non-coding genome, emerging studies reveal that most disease-associated SNPs reside
within a non-coding sequence, including lncRNA genes. These developments lay the foundation for
deciphering the aetiology of complex diseases, including type 2 diabetes (T2D), and its association
with an increased risk of certain cancers. Here, deploying a customized annotation pipeline on GWAS
datasets, we successfully identified, and characterized, six genetic variants significantly associated
with both T2D and cancer in lncRNA or genes and other non-coding regions. These variants suggest
evidential proof of a shared genetic architecture between the two diseases, help to functionally
explain the casual association of diabetes with cancer, and comprise a potential shortlist of candidate
drug targets.

Abstract: Numerous epidemiological studies place patients with T2D at a higher risk for cancer.
Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D
and cancer; however, the biological mechanisms linking the two diseases remain largely unknown.
The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants
associated with both T2D and cancer. Most significant disease-associated variants reside in non-
coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs)
at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer.
Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may
help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA
genetic variants with significant diabetes and cancer associations overlap in the UAE population. We
first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of
variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs
were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical
significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in
the UAE population.

Keywords: T2D; cancer; SNP; lncRNA; UCSC Genome Browser; GWAS

1. Introduction

One of the major revelations of the Human Genome Project was that a mere 1.5%
of our genome encodes proteins, while the remaining 98.5% is non-coding [1]. The HGP
was succeeded by major post-genomic consortia, including ENCODE (Encyclopedia of
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DNA Elements) [2], which built an official GENCODE gene catalog [3], and FANTOM
(Functional ANnoTation Of the Mammalian genome), which enabled the community to
expand the human gene catalog with the addition of tens of thousands of validated and
annotated non-coding RNA (ncRNA) genes [2,4]. The current GENCODE catalog contains
60,000 human genes, of which ~20,000 encode proteins, whereas most of the other 40,000 are
comprised of several types of non-protein-coding RNA (ncRNA) genes. Long non-coding
RNA (lncRNA) genes, generally defined as giving rise to RNA transcripts of more than
200 nucleotides without apparent protein-coding potential, are hence a prevalent class
of human genes responsible for the most abundant and frequent type of transcripts in
humans [4,5]. They have been increasingly recognized in recent years as integrally taking
part in a wide range of biological and physiological processes, including transcriptional
and post-transcriptional regulation of gene expression, protein translation and stability,
cellular differentiation, cell lineage choice, organogenesis, and other key facets of normal
development as well as disease [6]. A massive and growing amount of evidence from
genomic epidemiology and population genetics has definitively indicated the association
of lncRNAs with many common human diseases (e.g., cancer, diabetes, cardiovascular
disease, etc.), but the underlying molecular mechanisms of this association are still poorly
known [7,8]. For some lncRNAs, the connection with human diseases was made by dif-
ferential gene expression analyses or functional studies as well as model organisms. A
universe of other lncRNAs has been discovered from genome-wide association studies
(GWAS), an approach used to statistically associate specific genetic variants with human
diseases [9,10]. GWAS typically focus on associations between single-nucleotide polymor-
phisms (SNPs) and common diseases, but can equally be applied to any other genetic
variants and any other organisms [9]. Single-nucleotide polymorphisms (SNPs) are sin-
gle base-pair differences between the genomes of different individuals that occur every
500–1000 throughout the 3.3 billion bases long genome [11]. While many SNPs appear not
to be associated with specific phenotypes, other SNPs’ alleles can be clearly characterized
as a disease (or risk) allele and a healthy (non-risk) allele upon comparative statistical
evaluation of the incidence of the disease or trait in question in individuals homozygous for
either allele and in heterozygotes. Classically, it was thought that disease-associated alleles
of SNPs did not directly cause disease, and that they were simply genetically-linked to
(in linkage disequilibrium, LD, with) the true causative variant, typically at or controlling
a protein-coding gene in the vicinity that was causing the disease. However, now that
we know that 82% of the genome is functional [2], that dogma is being reassessed: these
simple variants in the genome may directly functionally contribute to the risk of disease,
rather than merely be in LD with a coding functional variant elsewhere. The emerging
post-ENCODE model thus stipulates that disease-associated SNPs may be functional and
contributing to the pathogenesis of the disease. Indeed, contrary to early expectations, the
vast majority (~93%) of disease- and trait-associated SNPs emerging from GWAS lie within
a non-coding sequence, which includes intergenic and intronic regions, promoter regions,
small ncRNA as well as lncRNA genes, antisense transcriptional units, and enhancer or
insulator regions, and therefore they are likely to influence gene regulation [12–14]. Accord-
ingly, in parallel with increased insights into the non-coding genome, emerging studies are
characterizing SNPs that are located within non-coding RNA regions and are associated
with various complex diseases, including diabetes and cancer [14]. The prevalence of
diabetes, especially type 2 diabetes (T2D), and cancer has increased significantly in recent
years, with a huge impact on health worldwide [15]. Epidemiologic evidence indicates that
T2D and cancer often coexist in the same patients, and many risk factors, such as obesity,
a sedentary lifestyle, smoking, and ageing, are common for both diseases [16]. Moreover,
it is commonly understood that, while both genetic and environmental (including nutri-
tional) factors contribute to T2D, the additive effects of common disease-associated genetic
variants—which differ in different populations and parts of the world—are central to the
etiology of this disorder and its relationship to cancer; however, the functional basis of the
biological link between these diseases still needs to be better understood and emphasized.
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Interestingly, the United Arab Emirates (UAE) population has one of the world’s highest
prevalence rates of diabetes (https://diabetesatlas.org/, accessed on 5 January 2022), and
the burden of cancer is ranked as the second leading cause of non-communicable diseases
(NCD)-related mortality in the country [17]. With the aim to highlight the importance of
non-coding variants and lncRNA genes as a causative factor in both T2D and cancer, in this
work we survey the major published UAE T2D GWAS to search for, and identify, putative
new lncRNA-associated genetic etiologies that are shared between T2D and cancer in the
UAE population.

2. Methods
2.1. Information Sources and Search Strategy

For this analysis, the input datasets were obtained from public GWAS of type 2
diabetes (T2D). The systematic literature search in PubMed was performed using the
terms, “Type 2 Diabetes” and “GWAS” and/or “Genetic Variations” and “UAE” and/or
“United Arab Emirates.” The two most recent datasets [18,19] were included in the analysis.
Manual annotation of all published significant T2D-associated genetic variants outside of
protein-coding genes was conducted by using the public web-based bioinformatic tool,
UCSC Genome Browser [20] (https://genome.ucsc.edu/, accessed on 10 March 2022).
The location of the genetic variant (for example, in an exon or intron of a lncRNA gene),
the epigenetic and expression profile of the region containing the variant, in thousands
of human samples and tissue types surveyed across the datasets (Epigenome Roadmap,
GTEX, FANTOM, mRNA/EST, others) in the Browser, the evolutionary conservation of
the region, all ENCODE Consortium experimental data from all ENCODE data tracks in
the Browser spanning the region and judged in our manual annotation as pertinent to its
function, and all other data necessary to determine the relevance and potential function
of the SNP were all analyzed in the UCSC Genome Browser. The SSTAR functionality
of the FANTOM5 website https://fantom.gsc.riken.jp/5/sstar/Main_Page, accessed on
10 March 2022 [21] was also used to identify the top 10 tissue types, primary cell cultures,
and/or cell lines where the gene/s associated with SNPs have the highest expression. For
genes with multiple promoters in SSTAR, we have aggregated data across the promoters.

2.2. Eligibility Criteria

The tables referenced in our study were obtained from, and correspond to the main
and supplementary tables of, the two major selected GWAS datasets [18,19]. The typical
data set input table format, per line, included a reference SNP number (“rs” followed by
a number) alongside an associated gene, a “mapped gene”, or a “reported gene.” An rs
number is a universal SNP ID, that allows for searching of the SNP in any database. We
manually analyzed all SNPs that were located in lncRNA genes (as evident from the gene
name) or non-coding regions, and also all SNPs that were genomically complex. The latter
was defined as one or more of the following: the presence of discrepancy between the
mapped and reported gene names, or more than one gene (protein-coding and/or non)
associated to the SNPs in the input data, or an alphanumeric gene name that was not
corresponding to a protein family name/function, for example, gene names such as those
that began with “AC” followed by numbers, or those displaying a mixture of letters and
numbers without a gene-family root, and those that began with “Linc” (long intergenic
non-coding RNA) and “Loc” (Locus, of presumably unknown function), which usually
refer to lncRNA genes, and genes of unknown function many of which may be non-coding,
respectively, were considered as indicators of SNPs potentially located in lncRNAs. All
the SNPs in the dataset that met one or more of these criteria were then highlighted and
annotated.

https://diabetesatlas.org/
https://genome.ucsc.edu/
https://fantom.gsc.riken.jp/5/sstar/Main_Page
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2.3. Data Collection and SNP Annotation

A total of 1284 SNPs were extracted from the GWAS input datasets. This number was
then narrowed to 1132 by removing all the redundant SNPs. Next, based on the approach
described in “Eligibility criteria” above, 370 SNPs were highlighted as potentially located
in lncRNA genes (flow chart). Finally, the most promising SNPs (64 total) were thoroughly
analyzed and annotated. The UCSC Genome Browser [20,22] was used to analyze and
manually annotate every GWAS SNP. Upon selecting the GRCh37/hg19 human genome
assembly, the UCSC Genome Browser was configured incorporating all pertinent browser
tracks. The options “pack” and “show” for the selected tracks were chosen. From the default
tracks that are displayed under the “Genes and Gene Predictions” Category, the “UCSC
genes,” “NCBI Ref Seq” and “GENCODE” were chosen. For the “Phenotype and Literature”
category, the “GWAS catalog” and “SNPedia” tracks were chosen. Further, for the “mRNA
and EST” category, “Human ESTs” and “Human mRNAs” were selected whereas for
the “Expression” category, the “Gtex GeneV8” was set to “full”. We used the ENCODE
Regulation track of the UCSC Genome Browser to examine the H3K4Me1 and H3K27Ac
(enhancer) signatures, and we viewed the DNAse I cluster track, to determine whether
the SNPs were located in areas with chromatin signatures consistent with enhancers in
ENCODE Tier 1 cell types and in open-chromatin regions based on DNAseI-seq of 125
ENCODE cell types, respectively. All other settings that are not mentioned were set to
“hide”. To find the SNPs in the genome, the SNP ID was copied into the search box
of the UCSC Genome Browser. Then all the SNPs located in non-coding regions were
annotated as well as assessed for relevance to cancer or T2D. The relationship to cancer
was annotated both in the case of a direct correlation to a specific cancer, and in non-cancer-
specific contexts but still cancer-related, including any mention in the associated literature
of phenomena such as disabling of a tumor suppressor gene, apoptotic factors, and mitotic
activity regulation. Similarly, we qualitatively assessed the relationship to diabetes. Lastly,
when the highlighted SNP was surrounded by a large number of other SNPs that are also
significantly associated with the same disease or trait or with other diseases or conditions
in GWAS data in the NHGRI/EBI track of the Browser (a phenomenon we term a “SNP
cloud”), as shown in Figure 1, the publications and gene names linked to all those nearby
SNPs were analyzed for verifying any potential relevance to both T2D and cancer.
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Figure 1. UCSC Genome Browser view of the human CDKN2B-AS1 gene. CDKN2B-AS1 (CDKN2B 
antisense RNA 1) is a lncRNA gene, also known as ANRIL. The SNP rs2157719 is intronic to 
CDKN2B-AS1 and it is surrounded by a large number of other significantly disease-associated SNPs 
in close proximity on the NHGRI-EBI GWAS Catalog track of the UCSC Genome Browser (a “SNP 
cloud”). Green arrows indicate the SNP rs2157719 associated with T2D and cancer, and the SNPs 
rs1333048, rs4977574, and rs10757278 associated with cancer. 

3. Results 
3.1. Customized Annotation Pipeline SNPs Selection 

In this study an in-depth re-annotation of GWAS studies [18,19], in order to identify 
all statistically significant genetic variants residing in non-coding regions of the genome 
or in lncRNA genes, and that are of joint relevance to T2D and cancer in the UAE popula-
tion was performed. The input dataset was obtained from public GWAS of T2D in the 
UAE population. From the few studies performed in this region and field, the two most 
recently published datasets in the UAE population [18,19], as these were applicable to our 
project, were selected. A total of 1284 SNPs associated with T2D and obesity were ex-
tracted from the main and supplementary tables of the GWAS input datasets [18,19]. The 
total number was then reduced to 1132 SNPs because we identified and excluded 152 re-
dundant SNPs within and between the input datasets. This number was further narrowed 
to 370 by removing all the SNPs (762) associated with protein-coding genes. Finally, 67 
SNPs of the 370 marked as potentially located in lncRNA genes or in non-coding regions 
(Figure 2), were selected for further analysis. These SNPs were confirmed (except for those 
otherwise mentioned below) for residing in non-coding regions. It is widely known that 
genetic variants are prone to mis-annotation and there is a substantial bias toward protein-
coding genes in SNP annotations and in the related literature [23,24]; therefore, an unbi-
ased reannotation was essential, and we used the UCSC Genome Browser to implement 

Figure 1. UCSC Genome Browser view of the human CDKN2B-AS1 gene. CDKN2B-AS1 (CDKN2B
antisense RNA 1) is a lncRNA gene, also known as ANRIL. The SNP rs2157719 is intronic to
CDKN2B-AS1 and it is surrounded by a large number of other significantly disease-associated
SNPs in close proximity on the NHGRI-EBI GWAS Catalog track of the UCSC Genome Browser
(a “SNP cloud”). Green arrows indicate the SNP rs2157719 associated with T2D and cancer, and the
SNPs rs1333048, rs4977574, and rs10757278 associated with cancer.

3. Results
3.1. Customized Annotation Pipeline SNPs Selection

In this study an in-depth re-annotation of GWAS studies [18,19], in order to identify
all statistically significant genetic variants residing in non-coding regions of the genome or
in lncRNA genes, and that are of joint relevance to T2D and cancer in the UAE population
was performed. The input dataset was obtained from public GWAS of T2D in the UAE
population. From the few studies performed in this region and field, the two most recently
published datasets in the UAE population [18,19], as these were applicable to our project,
were selected. A total of 1284 SNPs associated with T2D and obesity were extracted from
the main and supplementary tables of the GWAS input datasets [18,19]. The total number
was then reduced to 1132 SNPs because we identified and excluded 152 redundant SNPs
within and between the input datasets. This number was further narrowed to 370 by
removing all the SNPs (762) associated with protein-coding genes. Finally, 67 SNPs of the
370 marked as potentially located in lncRNA genes or in non-coding regions (Figure 2),
were selected for further analysis. These SNPs were confirmed (except for those otherwise
mentioned below) for residing in non-coding regions. It is widely known that genetic
variants are prone to mis-annotation and there is a substantial bias toward protein-coding
genes in SNP annotations and in the related literature [23,24]; therefore, an unbiased
reannotation was essential, and we used the UCSC Genome Browser to implement such a
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reannotation. In this regard, out of the 64 selected SNPs, 13 were classified as “corrections”
because of discrepancies between the previous annotation and our interpretation of the
UCSC Browser results. These discrepancies were mainly related to the name of the nearest
SNP-associated gene and/or the actual location in the genome. Furthermore, five SNPs,
previously annotated in non-coding regions of the genome, were instead confirmed as
located in protein-coding regions; regardless, we proceeded to annotate these SNPs for
any relevance to T2D and cancer. The remaining 59 SNPs were confirmed as residing in
non-coding regions (Figure 2). Finally, six SNPs jointly associated with both cancer and T2D
(rs1495741, rs1061810, rs2521501, rs8042680, rs7526425, rs2157719), implicating a genetic
link between the two diseases, were recognized. Summary of the six SNPs is showed in
Table 1 and in Figure 3 which illustrates the six SNPs, the chromosomal region where the
SNPs are located and the nearest gene.
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Table 1. Summary of the six SNPs jointly associated with T2D and cancer.

SNP ID Chromosomal Region Nearest Gene Nearby Genes Type of Cancer References

rs1495741 8p22 NAT2 NAT2, PSD3 HCC, LC, ESCC, AML,
BC [25–29]

rs1061810 11p11.2 HSD17B12 HSD17B12, AC087521.2,
AC087521.4 BC, OC, MM [30–32]

rs2521501 15q26.1 FES FURIN, FES APL, SARC [33,34]

rs8042680 15q26.1 PRC1, PRC1-AS1 PRC1, PRC1-AS1 HCC [35]

rs7526425 1q32.3 RD3 AC105275.1, SLC30A1,
RD3 APL, NB [36]

rs2157719 9p21.3 CDKN2B CDKN2A,
CDKN2B OC, PC, MM, HNSCC [37–40]

HCC: HepatoCellular Carcinoma; LC: Lung Cancer; ESCC: Esophageal Squamous-Cell Carcinoma; AML: Acute
Myeloid Leukemia; BC: Breast Cancer; OC: Ovarian Cancer; MM: Malignant Melanoma; APL: Acute Promyelocytic
Leukemia; SARC: Sarcoma; NB: Neuroblastoma; PC: Pancreatic Cancer; HNSCC: Head and Neck Squamous
Cell Carcinoma.
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blocks. (A) NAT2 gene and rs1495741; (B) HSD17B12 gene and rs1061810; (C): FES gene and 
rs2521501; (D) PRC1 gene, PRC1-AS1 antisense lncRNA and rs8042680; (E) RD3 gene and rs7526425; 
(F): CDKN2B gene, CDKN2B-AS1 antisense lncRNA and rs2157719. 
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Figure 3. Summary of the chromosomal regions and the nearest genes of the six SNPs jointly
associated with T2D and cancer. SNPs and nearest genes are marked in red. Introns are represented
as lines with arrows indicating the direction of transcription, while coding exons are represented
by blocks. (A) NAT2 gene and rs1495741; (B) HSD17B12 gene and rs1061810; (C): FES gene and
rs2521501; (D) PRC1 gene, PRC1-AS1 antisense lncRNA and rs8042680; (E) RD3 gene and rs7526425;
(F): CDKN2B gene, CDKN2B-AS1 antisense lncRNA and rs2157719.

3.2. Characteristics of SNPs Associated with T2D and Cancer
3.2.1. rs1495741

This SNP was previously reported as associated with the NAT2 (N-acetyltransferase
2) and PSD3 (Pleckstrin and Sec7 Domain Containing 3) genes. According to the NCBI
Ref Seq track in the UCSC Genome Browser, NAT2 encodes an enzyme that functions
to both activate and deactivate arylamine and hydrazine drugs and carcinogens [41,42]
(Table 1 and Supplementary Figure S1). Polymorphisms in this gene are also associated with
higher incidences of cancer (e.g., lung cancer, esophageal squamous cell carcinoma, acute
myeloid leukemia, and breast cancer) and drug toxicity [26–29]. Moreover, a recent study
combining a GWAS meta-analysis of 2764 individuals with direct, reference measures of
insulin sensitivity with functional validation both in vitro and in vivo, identified NAT2 as
a novel insulin sensitivity locus [43]. A second arylamine N-acetyltransferase gene (NAT1)
is located near NAT2 (Supplementary Figure S1). PSD3 is a protein-coding gene associated
with hepatocellular carcinoma (HCC), one of the most common types of primary liver
cancer that often occurs in people with chronic liver diseases [25]. Risk factors generally
include those which cause chronic liver disease, such as viral hepatitis B and C [44] but
also metabolic disorders such as T2D and obesity [45]. The presence of two associated
genes suggested that this SNP could reside in a genomically complex locus [46]; complex
loci often, though not always, contain lncRNA genes. In this case, our analysis confirmed
rs1495741 as an intergenic variant located between PSD3 and NAT2, at approximately
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14 Kb from the 3′ end of the NAT2, and approximately 100 Kb from the 3′ end of PSD3.
NAT2 is thus the nearest gene to the SNP (Table 1 and Figure 3A). The genomic region
within boundaries of NAT2 and PSD3 genes is well-conserved across primates, with the
highest level of conservation in the chimpanzee, as expected. Partial conservation of this
region is observed in pig, mouse and rat; however, the genomic region around the SNP
(100 bp) is not conserved in gorilla, mouse and rat, whereas in the pig it is only partially
conserved. We located NAT2 in the FANTOM5 SSTAR database and reviewed both of the
annotated transcription start sites (TSSs, promoters). The highest expression was in liver
and hepatocytes from different donors, small intestine, colon, and fetal duodenum. The
GTEx RNA-seq track of the UCSC Browser, which shows median gene expression levels
in 52 tissues and 2 cell lines, indicates that NAT2 has the highest median expression in
liver, whereas PSD3 has the highest median expression in the brain. For rs1495741, our
review of the ENCODE Regulation track of the UCSC Genome Browser showed a lack of
DNAse I hypersensitive site signatures overlapping the SNP. The H3K4Me1 and H3K27Ac
ChIP-seq signals were also minimal and arose from different cell types, suggesting a lack of
enhancer signatures overlapping this SNP. No evidence of any transcription factor binding
sites overlapping this SNP was observed in ENCODE ChIP-Seq data for 161 transcription
factors. The only transcription factor binding sites near this SNP was GATA3. Regarding
SNP-disease association as evidenced by the NHGRI-EBI GWAS Catalog track of the UCSC
Genome Browser, rs1495741 is reported in 14 published papers where it is mainly associated
with triglycerides, cholesterol levels and metabolic disorders. Moreover, two GWAS studies
associate this variant with bladder cancer risk. Therefore, summarily, while this is not a
non-coding RNA variant, it is a non-coding (intergenic) variant at a complex locus clearly
associated with diabetes in the UAE population as well as with cancer.

3.2.2. rs1061810

The variant, rs1061810, was previously reported associated with two GENCODE
Transcript annotations, ENST00000530450.1_3 (AC087521.2), and ENST00000637427.1_3
(AC087521.4) described as lncRNA and the protein-coding HSD17B12 (hydroxysteroid
17-beta dehydrogenase 12). Our analysis found this SNP exonic to the protein-coding
gene HSD17B12, specifically it falls in the 3′ UTR (Figure 3B); whereas, relative to the
two non-coding genes at this locus, rs1061810 is intronic to AC087521.2, and exonic to
AC087521.4, which is antisense to HSD17B12 (Table 1, Figures 3B and S2). Based on the
NCBI Ref Seq track in the UCSC Genome Browser, HSD17B12 encodes for the enzyme
17 beta-hydroxysteroid dehydrogenase (17beta-HSD) that converts estrone into estradiol
(E2) in ovarian tissue, but it is also involved in fatty acid elongation. The fatty Acyl-CoA
biosynthesis and metabolism of steroid hormone pathways are both related to this gene and
they are both linked with cancer. In fact, estrogen is well-known as a proliferative hormone
and a driver of oncogenic and proliferative gene networks in estrogen receptor positive
breast cancer, where it serves as a nuclear hormone; indeed, upon binding its receptor, it
leads to the internalization of the receptor which in turn serves as a transcription factor,
transitioning to the nucleus where it binds the promoters of the oncogenes that it activates
(and of the tumor suppressors that it represses) [47,48]. Fatty acids are key players in cellu-
lar processes (cellular bioenergetics, membrane biosynthesis and intracellular signaling)
involved in cancer development and progression [49]. In this regard, a study in human
breast carcinoma suggested that involvement of HSD17B12 in the growth of carcinoma
cells is not necessarily linked to the peripheral E2 biosynthesis but rather to the synthesis of
very long chain fatty acids (VLCFAs), such as arachidonic acid, which contributes to breast
carcinoma progression [30]. Furthermore, HSD17B12 is a marker of poor prognosis in
ovarian carcinoma [31] and it is also associated with cutaneous melanoma [32] (Table 1 and
Supplementary Figure S2). Rs1061810 is associated with T2D in two GWAS studies in the
European population [50,51], highlighting the importance of this locus in T2D susceptibility
in diverse populations and not only in the Middle East. The conservation of the locus
where the variant rs1061810 resides is high across primates, and partial in the mouse, pig
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and dog. The conservation level is low in rat. We located HSD17B12 in the FANTOM5
SSTAR database and reviewed all five TSSs (FANTOM5-annotated clustered promoters).
The top ten cell lines where HSD17B12 is mostly expressed are: mast cells, the gall bladder
carcinoma cells, smooth muscle cells from the aorta, mesenchymal stem cells, macrophages,
adipocytes from two different donors, melanocytes, fibroblasts from aortic adventitial
and fibroblasts from skin. For rs1061810, our review of the ENCODE Regulation track
of the UCSC Genome Browser showed a lack of DNAse I hypersensitive site signatures
overlapping the SNP. A strong signal was observed in the RNA-seq subtrack in all nine
ENCODE Tier 1 cell lines. The signal was weak in the H3K4Me1 and H3K27Ac ENCODE
histone modification ChIP-seq data for ENCODE Tier 1 cell types. No evidence of any
transcription factor binding sites overlapping or near this SNP was observed in ENCODE
ChIP-Seq data for 161 transcription factors.

3.2.3. rs2521501

Previously mapped to the FURIN-FES locus, rs2521501 is intronic to FES
(Figure 3C), whereas FURIN is the second nearest gene (approximately 10 kb) to this
SNP (Table 1 and Supplementary Figure S3). According to the NCBI Ref Seq track in the
UCSC Genome Browser, the proto-oncogene FES (Feline Sarcoma) encodes the human
cellular counterpart of a feline sarcoma retrovirus protein with transforming capabilities.
The gene product has tyrosine-specific protein kinase activity, which is required for the
maintenance of cellular transformation. Its chromosomal location is linked it to a specific
translocation event identified in patients with acute promyelocytic leukemia [33]; sarcoma
is another type of cancer associated with FES [34]. The FURIN gene encodes for a calcium-
dependent serine endoprotease which is expressed in many tissues, and it is involved in
various physiological and pathophysiological processes ranging from embryonic develop-
ment to carcinogenesis [52]. This endoprotease has rocketed to prominence in the past two
years as a consequence of its role as a SARS-CoV-2/COVID-19 co-factor (which cleaves
the S-protein) [53]. Several reports suggested that FURIN inhibition can suppress the tu-
morigenic properties of various cancer cell types, while other studies reported instead that
FURIN inhibition may lead to a more aggressive phenotype of cancer cells [54]; however,
despite these controversies, it is well established that FURIN plays a key role in cancer [54].
The intronic region of the FES gene where the SNP is located (approximately 1400 bp) is
well conserved only in some primates, such as the chimpanzee, gorilla, rhesus monkey,
crab-eating macaque, and green monkey. In rat, mouse and pig the conservation level is
very low with a partial conservation only in the region around the SNP (70 bp). We located
FES in the FANTOM5 SSTAR database and reviewed all four TSSs (FANTOM5-annotated
clustered promoters). The highest expression was in different cell lines of CD14+ mono-
cytes (from different donors), CD14+CD16−monocytes (different cell lines from different
donors), biphenotypic B myelomonocytic leukemia cells, acute myeloid leukemia (FAB M5)
cells, and eosinophils (different cell lines from different donors). The GTEx track indicates
FURIN has the highest median expression in the liver, followed by the pancreas (organs
directly relevant to T2D and obesity pathogenesis), whereas FES has the highest median
expression in the spleen followed by the lungs. In several GWAS studies, as evidenced by
the NHGRI-EBI GWAS Catalog track of the UCSC Genome Browser, rs2521501 is associated
with diastolic and systolic blood pressure as well as with the interaction of blood pressure
with alcohol consumption and/or cigarette smoking. The ENCODE Regulation track of the
UCSC Genome Browser shows a lack of DNAse I hypersensitive site signatures overlapping
the SNP. A low level of expression was observed in the RNA-seq data from the ENCODE
Tier 1 nine cell lines, consistent with the intronic localization of the SNP, as the signal was
greater in the gene’s exons as expected. The signal was also weak in the H3K4Me1 and
H3K27Ac ENCODE histone modification ChIP-seq data for ENCODE Tier 1 cell types. For
rs2521501, there was no evidence of any transcription factor binding sites overlapping, or
near this SNP in ENCODE ChIP-Seq data for 161 transcription factors.
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3.2.4. rs8042680

PRC1 and PRC1-AS1 were previously reported as the closest genes to rs8042680;
we found that this SNP is intronic to both genes (Table 1, Figures 3D and S4). PRC1
(protein regulator of cytokinesis 1) encodes for a protein involved in cytokinesis and
microtubules organization. PRC1 is overexpressed in human hepatocellular carcinoma
cells and it is associated with the increased chemoresistance of these cells [55]. PRC1-
AS1 is an antisense lncRNA and, similarly to PRC1, is associated with hepatocellular
carcinoma [35]. The intronic region where the SNP is located is conserved only in primates
with the exception of marmoset and squirrel monkey, while in rat, mouse and pig it is not
conserved. We were unable to find PRC1-AS1 antisense lncRNA in the FANTOM5 SSTAR
database, and therefore visually reviewed that lncRNA gene in FANTOM CAGE data via
the graphical browser (testis, tongue, mesothelioma, chondrocyte, and mesenchymal stem
cells were the top expressors). We located PRC1 in the SSTAR database and reviewed
all four clustered TSSs that have precomputed FANTOM5 expression data. The highest
expression was in reticulocytes, hepatoblastoma, osteosarcoma, bone marrow, and CD14+
monocytes (the latter were in the top 15 expressors for the antisense too). With regards
to tissue expression, PRC1 has the highest median expression in fibroblasts and EBV-
transformed lymphoblastoid cell lines, while PRC1-AS1 has the highest median expression
in testis. For rs8042680, our review of the ENCODE Regulation track of the UCSC Genome
Browser shows a lack of DNAse I hypersensitive site signatures overlapping the SNP. The
H3K4Me1 and H3K27Ac ChIP-seq signals were also minimal and arose from different
cell types, suggesting a lack of enhancer signatures overlapping this SNP. No evidence
of any transcription factor binding sites overlapping or near this SNP was observed in
ENCODE ChIP-Seq data for 161 transcription factors. As evidenced by the NHGRI-EBI
GWAS Catalog track of the UCSC Genome Browser, two papers reported the association
of rs8042680 with T2D. Summarily, hence, this is another SNP that is associated both with
T2D in the UAE population and with cancer.

3.2.5. rs7526425

From the input datasets’ published annotations, rs7526425 was reported as mapped
near three genes: AC105275.1, SLC30A1, and RD3. The SNP is not found in the “NHGRI-
EBI Catalogue of Published GWAS” track of the UCSC Genome Browser (Table 1 and
Supplementary Figure S5). RD3 is the closest gene to the SNP (Figure 3E); this gene
encodes a retinal protein that is associated with promyelocytic leukemia-gene product
(PML) bodies in the nucleus. Moreover, RD3 plays a regulatory role in neuroblastoma
progression and its loss is associated with aggressive neuroblastoma and poor clinical
outcomes [36]. The gene AC105275.1 encodes a lncRNA and is antisense to RD3. The gene
SLC30A1 encodes a zinc transporter protein, which is involved in maintaining cellular zinc
homeostasis in mammalian cells. This gene is therefore relevant to diabetes, since zinc is an
essential co-factor for insulin metabolism in the pancreatic β-cell [56]. Moving on to the
tissue expression of the genes, RD3 has the highest median expression in the pituitary and
SLC30AL has the highest median expression in the liver; both organs are directly relevant to
diabetes pathogenesis and etiology. The genomic region around the SNP (100 bp) is highly
conserved across most primates, as expected and is well-conserved in rat, mouse, rabbit,
pig and dog. We found RD3 in the FANTOM5 SSTAR database and reviewed all three
TSSs (FANTOM5-annotated clustered promoters). The highest expression was in the pineal
gland, retinoblastoma cell line Y79, fetal eye, lung carcinoma cells, and medulloblastoma
cells. Finally, the UCSC Browser shows a large SNP cloud surrounding the SNP. This is
hence yet another SNP with a dual diabetes and cancer association, and is a UAE T2D
susceptibility risk variant per the input datasets. A compelling case can be made for a
non-coding regulatory region encompassing this SNP (Supplementary Figure S5) as being
even more relevant than RD3 as an explanation for the SNP’s functional significance: the
SNP falls directly into a prominent ENCODE DNAse I hypersensitive region that also
corresponds to a transcription factor binding (ChIP-seq) consensus signature across 13
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of the 125 ENCODE cell types directly overlapping the SNP. In addition, there was a
strong H3K4Me1 signal and weak H3K27Ac signal in the ENCODE histone modification
ChIP-seq data for ENCODE Tier 1 cell types, also directly overlapping the SNP. The two
enhancer histone modifications occurred only in GM12878 cells, which were also one of
the 13 DNAse I hypersensitive cell types in the region. Summarily, there is evidence for
open chromatin and putative enhancer modifications directly encompassing this SNP in
GM12878. For rs7526425, there are three ENCODE TFBS ChIP-seq hits directly overlapping
and encompassing the SNP: RELA, POU2F2, and MEF2A. While all three contain consensus
recognition sites for the respective TFs, none of the consensus sequences overlaps the SNP
(whereas the rest of the ChIP-seq-detected binding site contains the SNP). Therefore, the
SNP is in TFBSs, but is unlikely to affect binding affinity, due to its location outside of
the consensus. Interestingly, all three binding signals include GM12878 cells, where the
DNAse I and enhancer signatures also occurred. The regulatory significance of the region
containing this variant in GM12878 is also supported by the multiple Hi-C interactions
found ~130 bp away with multiple nearby genomic regions in the UCSC Genome Browser’s
Rao et al. 2014 Hi-C track.

3.2.6. rs2157719

As previously reported, rs2157719 is within the CDKN2B-CDKN2A gene cluster. The
closest protein-coding gene to this SNP is CDKN2B (cyclin dependent kinase inhibitor 2B)
(Figure 3F) which is adjacent to the tumor suppressor gene CDKN2A (Cyclin-Dependent
Kinase 4 Inhibitor A) in a region that is frequently mutated and deleted in a wide variety
of tumors (Table 1 and Figure 2). Both genes are associated with several cancer types,
including ovarian cancer, pancreatic cancer, melanoma and, head and neck squamous
cell carcinoma [37–40]. Rs2157719 is also intronic to the non-coding RNA, CDKN2B anti-
sense RNA 1 (CDKN2B-AS1), also known as ANRIL (Figure 3E), which is linked to the
progression of diabetic nephropathy, one of the most common T2D complications [57];
however, the prominence of CDKN2B-AS1 in the literature to date is mostly due to its
role in cancer, where it can enhance cell proliferation, cell cycle progression, and inhibit
apoptosis and senescence. Moreover, CDKN2B-AS1 is overexpressed in many cancer types
and is a well-recognized prognostic and diagnostic biomarker in cancer [58–60]. A close
examination of the “SNP cloud” surrounding rs2157719 (Figure 1) reveals that several SNPs
in this region are significantly associated with other cancer risks; while consistent with
the linkage disequilibrium expectation that a genetic region containing multiple SNPs is
associated with the risk, this is surprising because of the diversity of these cancers. For
instance, rs1333048 (Figure 1) is a biomarker of breast cancer susceptibility, and it is asso-
ciated with the risk of toxicity after chemotherapeutic drug (cisplatin) treatment in lung
cancer patients [61,62]. Moreover, rs4977574 is associated with kidney cancer development
in the Ukrainian population [63] while rs10757278 is associated with ANRIL expression
levels and cisplatin resistance in cancer [58,61] (Figure 1). The GTEX track of the UCSC
Genome Browser shows that CDKN2B-AS1 has the highest median expression in the colon
and small intestine. From GWAS studies reflected in the NHGRI-EBI track of the UCSC
Browser, rs2157719 itself is associated with diverse cancers; the SNP has been referenced
in several papers as related to glaucoma and glioma [64–67]. The intronic region where
the SNP is located is highly conserved across most primates, as expected. Moreover, the
region is partially conserved in rat, mouse, rabbit, pig and dog. We located both CDKN2B
and CDKN2B-AS antisense lncRNA in the FANTOM5 SSTAR database. For CDKN2B we
reviewed all two TSSs (FANTOM5-annotated clustered promoters) and found that the high-
est expression for this gene was in lens epithelial cells, preadipocytes, mesenchymal cells,
cardiac fibroblasts, adipocytes, differentiated osteoblast, and melanoma cells. Meanwhile,
for the CDKN2B-AS antisense lncRNA, we reviewed all three promoters and found the
highest expression in carcinosarcoma cells, gastrointestinal carcinoma cells, osteosarcoma
cells, lens epithelial cells and gall bladder carcinoma cells. For rs2157719, there was a
DNAse I hypersensitive region in 8 of the 125 ENCODE cell types directly overlapping the
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SNP. In addition, there was a strong signal in the transcription track showing the transcrip-
tion levels assayed by RNA-seq on nine cell lines, with the highest signal for the HeLa-S3
cells. There was a modest H3K4Me1 signal (highest in the Epidermal Keratinocyte Cells
NHEK), and weak H3K27Ac signal in the ENCODE histone modification ChIP-seq data for
ENCODE Tier 1 cell types also directly overlapping the SNP. Summarily, there is evidence
for open chromatin and putative enhancer modifications directly encompassing this SNP in
HeLa-S3 and NHEK cells. No evidence of any transcription factor binding sites overlapping
or near this SNP was observed in ENCODE ChIP-Seq data for 161 transcription factors.

4. Discussion

Traditionally, proteins and small molecules, and the molecular pathways and reg-
ulatory networks containing them, have given rise to the majority of drug targets. For
this reason, GWAS projects, despite being an inherently unbiased approach, have been
historically biased toward the identification of protein-coding regions and genes carrying
disease risks. Meanwhile, data on non-coding SNPs has either not been pursued or has
been consistently misinterpreted in favor of distant protein-coding variants, while ignoring
the nearby or overlapping lncRNA genes or non-coding regulatory regions that can be more
likely causal determinants of the disease phenotype. Simply because 98.5% of the human
genome is non-coding, and also because two-thirds of the approximately 60,000 human
genes are lncRNA genes, most significant disease-associated variants are in non-protein-
coding regions of the genome. Therefore, most GWAS studies that have limited their
analysis to previously known, hence primarily protein-coding risk variants, despite having
genotyped patients and controls on a whole-genome level, contain frequent and abundant
mis-annotations, and encompass numerous lncRNA genes and non-coding regions in raw
data, which are often subsequently not interpreted [68,69]. An unbiased reannotation of
disease-associated SNPs is therefore essential and moreover, re-annotation from previous
research findings can potentially result in a different knowledge outcome [70]. For example,
in our work, we have uncovered previously-unknown dual diabetes–cancer associations
of specific non-coding variants based on GWAS signals specifically from the UAE popula-
tion. In this study, we performed an integrated re-annotation of recent UAE population
specific T2D datasets, we highlighted numerous SNPs in non-coding regions and several
in LncRNA genes, and we computationally defined the relevance to cancer of a subset
of those regions. Previous studies, mainly observational epidemiological studies, have
established associations between T2D and cancer in terms of shared common risk factors
such as, hyperglycemia, hyperinsulinemia, obesity, a lack of physical activity and diet, but
the biological mechanisms supporting these associations have remained poorly known [71].
Similarly, genetics studies, such as those based on the identification of the same genetic
variant and risk allele that independently predisposes to both type 2 diabetes and cancer,
are still insufficient to explain the increased risk of cancer in people with T2D [71]. Here, we
addressed the knowledge gap in functionally and genetically understanding the diabetes–
cancer connection: we successfully discovered six significant disease-associated genetic
variants that signify new biological links between T2D and cancer. All six SNPs reside
in non-coding regions: specifically, two SNPs (rs1495741, and rs7526425) are intergenic,
three SNPs (rs1061810, rs8042680, and rs2157719) reside in lncRNA genes, and one SNP
(rs2521501) is intronic to the FES gene. All six SNPs show a clear and strong association
with both T2D and cancer; this is demonstrated not only by the GWAS studies reported in
the NHGRI-EBI GWAS Catalog track, but also by the direct involvement, in both diseases,
of the nearby, or overlapping, SNPs-associated genes. For instance, the variant rs1495741
is directly correlated with bladder cancer [72], elevated triglyceride levels, T2D risk [73],
and liver injury [74]. Additionally, both the proximal and the distal gene to the SNP, NAT2
and PSD3, respectively, are strongly correlated with both cancer and T2D [26,43,75–78].
Another SNP significantly associated with T2D and cancer is rs2157719; this variant is
indeed directly correlated to glaucoma and glioma [64–67] and resides in a genomic region
that is frequently mutated and deleted in a wide variety of tumors. Moreover, it is intronic
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to the lncRNA CDKN2B-AS1, which is aberrantly expressed in various malignancies and it
is also implicated in numerous non-malignant diseases, including diabetes and its com-
plications [79]. Several SNPs are associated with genes that play a key role in T2D and,
according to the GTEx RNA-seq track of the UCSC Genome Browser, have the highest
median expression in the liver; this is the case of NAT2 (rs1495741), FURIN (rs2521501), and
SLC30A1 (rs2157719). NAT2 is a cellular enzyme involved in the metabolism of a variety of
different compounds, including carcinogens. Deficiency of this gene causes mitochondrial
dysfunction with decreased cellular respiration and ATP generation, suggesting that NAT2
may mediate insulin resistance and mitochondrial dysfunction by binding key regulators
of energy balance [80]. FURIN is a membrane-bound protease broadly involved in the
maintenance of cellular homeostasis. A recent study showed that individuals with high
plasma furin levels concentration have an elevated risk of diabetes mellitus and premature
mortality [81]. Moreover, furin protein upregulation results in worse outcomes in diabetic
patients with SARS-CoV-2 infection [82]. Finally, SLC30A1 plays a key role in maintaining
the cellular zinc levels within a physiological range [83]. Zinc is a second messenger that
controls many processes associated with insulin signaling [84,85]. Furthermore, all these
genes are mostly expressed in the liver, an organ that plays a key role in the regulation of
glucose metabolism [86]. T2D is an excellent setting for RNA therapeutics because much of
the pathogenesis occurs in the liver, and RNA drugs injected into the bloodstream naturally
go to the liver but not to any other organs [87]. RNA therapeutics target mRNA as well as
non-coding RNAs, including lncRNAs, with small interfering RNAs (siRNA), antisense
oligonucleotides (ASO), modified-backbone oligonucleotides (MBO), and other RNAi-
based drugs [88]. RNA drugs are highly sequence-specific, as each drug has only one target,
can distinguish the risk and the non-risk alleles and hence can be used in patients that have
the causal disease-risk variant. Therefore, RNA-based drugs have fewer side effects and are
very stable. For these reasons, RNA drugs are destined to change the way disease is treated
in a more targeted and personalized manner [87,88]. For example, the milestones achieved
with the development and approval of Inclisiran as a synthetic siRNA drug against an RNA
target, specific to the liver, illustrate the potential for the development of similar drugs
targeting diabetes and cancer, deployed against other, including lncRNA, targets. Many
diabetes genes are indeed expressed in the liver, which is easily targeted by this approach,
and the GWAS-empowered discovery of non-coding, liver-expressed diabetes and cancer
candidates can generate a target list for future development of Inclisiran-class drugs.

Limitations of our study include how the GWAS data had been analyzed by the teams
that provided the input datasets, and the incomplete availability of biological data types
as well as experimental datasets from specific cell and tissue types in the UCSC Genome
Browser. We focused on published GWAS datasets of SNPs deemed jointly relevant to T2D
and cancer, analyzing these variants’ relevance to the non-coding regions of the genome,
specifically lncRNA; however, GWAS approaches are inherently prone to false positives and
false negatives with regards to the association of a variant with a phenotype: there is a pos-
sibility of SNPs in the datasets that are unrelated to the diseases (false positive) or SNPs that
are related that were not included at all (false negative). This could be due to ascertainment
biases, weak association in a common disease/common variant context where a single SNP
fails to reach significance, a population-specific lack of genotype–phenotype association
that exists in other population, a smaller study population and, thus, sample sizes utilized
by the authors of these published papers on GWAS, or other factors. Additionally, most
GWAS studies, including those that performed high-throughput genotyping rather than de-
novo sequencing of multiple individual genomes, are based on previously known variants,
resulting in the exclusion of newer variants that may have a stronger association or may be
located nearer to the actual functional feature in the genome. The impact of this limitation
leads to the exclusion of relevant and possibly targetable SNPs (false negative) and the
inclusion of SNPs that are unrelated (false positives) to T2D. The UCSC Genome Browser
may not contain expression data for certain low-abundance transcripts that lack cDNA/EST
and ENCODE RNA-seq representation. In addition, the UCSC Genome Browser lacks
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representation of certain datasets that could be essential to our study and that have been
published but are not reflected in the Browser’s tracks. While our work should facilitate
the development of targeted therapies, a limitation is that the identified genes would
need to be the direct functional causes of the phenotype (pending functional validation
experiments) in order to be targeted; the specific risk alleles of the SNPs should be targeted
in a sequence-specific fashion if causative; and the expression of the target would have to
be confined to tissues and organs where it directly underlines the disease phenotype, so
as to avoid off target effects when sequence-based, such as RNAi, therapies are deployed.
Despite possibly being limited to the specific populations of the UAE, this work provides
genetics-based evidence of novel non-coding biological links between T2D and cancer,
which feature specific putative regulatory regions and lncRNA genes. This work lays the
foundation to further explore the shared genetic architecture between these two common
diseases, as well as to expand the study to multiple populations [89]. Functional studies
will be needed in order to understand the functional implications of these SNPs, and to
provide new insights about the mechanisms leading to the progression of the two diseases.

5. Conclusions

In conclusion, we have gathered genetic-based evidential proof of a biological link
between T2D and cancer. Our major findings include the successful discovery of six
significant disease-associated genetic variants, identified in the UAE population, that have
established a previously unknown biological link between T2D and cancer. The novelty
of our study is in leveraging upon UAE-origin GWAS T2D data (given the relative lack
of metabolic-disease GWAS in the Gulf and Middle East region) to identify variants of
joint relevance in cancer and diabetes. These variants suggest specific functional links
between those two common diseases, links that help to better explain their casually-known
co-occurrence. These variants resided in lncRNA genes and at or near protein-coding
genes. Genetic heterogeneity is central in common diseases (such as diabetes and cancers)
that have a partly-genetic etiology; therefore, it is crucial to understand the genetic basis
of a disease in a specific population, in addition to considering risk variants common to
multiple populations. They provide an early foundation for a shortlist of possible drug
targets, including those personalized toward variants occurring in the Gulf and Middle
East/North Africa regions but not globally.
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