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Early in the pandemic, concern that cardiovascular effects would accompany
COVID-19 was fueled by lessons from the first SARS epidemic, knowledge that the
SARS-COV2 entry receptor (Angiotensin-converting enzyme 2, ACE2) is highly
expressed in the heart, early reports of myocarditis, and first-hand accounts by
physicians caring for those with severe COVID-19. Over 18 months, our understand-
ing of the cardiovascular manifestations has expanded greatly, leaving more new
questions than those conclusively answered. Cardiac involvement is common
(»20%) but not uniformly observed in those who require treatment in a hospitalized
setting. Cardiac MRI studies raise the possibility of manifestations in those with mini-
mal symptoms. Some appear to experience protracted cardiovascular symptoms
as part of a larger syndrome of post-acute sequelae of COVID-19. Instances of vac-
cine induced thrombosis and myocarditis are exceedingly rare but illustrate the
need to monitor the cardiovascular safety of interventions that induce inflammation.
Here, we will summarize the current understanding of potential cardiovascular
manifestations of SARS-COV2. To provide proper context, paradigms of cardiovas-
cular injury due to other inflammatory processes will also be discussed. Ongoing
research and a deeper understanding COVID-19 may ultimately reveal new insight
into the mechanistic underpinnings of cardiovascular disease. Thus, in this time of
unprecedented suffering and risk to global health, there exists the opportunity that
well conducted translational research of SARS-COV2 may provide health dividends
that outlast the current pandemic. (Translational Research 2022; 241:25�40)
Abbreviations: ACE2 = Angiotensin-converting enzyme 2; PASC = post-acute sequelae of
COVID-19; CVD = cardiovascular disease; TNF = Tumor necrosis factor; PAMP = Pathogen asso-
ciated molecular patterns; DAMPs = Damage associated molecular patterns; CAR-T = Chime-
ric Antigen Receptor Therapy; DVT = deep venous thrombosis; TF = tissue factor; PSGL = P-
selectin glycoprotein ligand; NETs = neutrophil extracellular traps; LV = Left Ventricular; CRP =
C-reactive protein; LGE = late gadolinium enhancement; CBV = Coxsackie virus B; B19V = Par-
vovirus B12; CAR = coxsackievirus and adenovirus receptor; NS1 = nonstructural protein 1; EC =
endothelial cells; scRNAseq = single cell RNA sequencing; EMBx = endomyocardial biopsy; TTE
= transthoracic echocardiograms; RV = right ventricular; GLS = global longitudinal strain;
hsCRP = high sensitivity C-reative protein; VITT = vaccine-induced immune thrombotic
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thrombocytopenia; DTaP = Diphtheria, Tetanus, and Polio; VAERS = Vaccine Adverse Event
Reporting System
MECHANISMS OF CARDIAC INVOLVEMENT IN
COVID-19

An estimated 20% of those with hospitalized

COVID-19 have biochemical evidence (based upon

retrospective studies of cardiac-specific troponin meas-

urements) of cardiac injury.1 Those with myocardial

injury as a complication of COVID-19 have a marked

increase in mortality,2 an association which may also

link to pre-existing cardiovascular disease. For exam-

ple, one retrospective study observed a mortality rate

of 69% among those with prior CVD and an elevated

troponin, compared to 13% in those with prior CVD

but without COVID-19 related cardiac injury, 37.5% in

those without CVD but with elevated troponin, and

7.6% in those with no prior CVD with COVID-19

uncomplicated by cardiac injury.3

These epidemiologic observations have spurred

intense interest in understanding the relationships

between prevalent cardiovascular risk, COVID-19

severity, and SARS-COV2 related myocardial injury.

Given the heterogeneity of the clinical illness associ-

ated with SARS-COV2 infection and the inherent

mechanistic complexity of acute/critical illness in gen-

eral, it would not be surprising if multiple mechanisms

of cardiac injury are operative during the course of

COVID-19, at the individual level and/or the popula-

tion level. Over a short span of time, a remarkable

amount of information has been generated at the clini-

cal, basic, and translational levels which suggest multi-

ple pathways conspire to induce myocardial damage.

The collateral/indirect effects of SARS-COV2 includ-

ing hyper-inflammation and thrombophilia may be suf-

ficient to explain cardiac injury. However, most (but

not all) hearts examined histologically have viral pro-

tein or transcripts present, but classic lymphocytic

myocarditis or myocardial necrosis is rare. Thus, at the

time of this review, the extent to which cardiac damage

is predominantly an effect of systemic processes indi-

rectly related to the virus versus a direct consequence

of translocated or transported SARS-COV2 virus

remains a major focus.

Systemic hyper-inflammation and cardiac function. In

several clinical settings, pro-inflammatory pathways

triggered during systemic illness appear to be sufficient

to induce acute and chronic changes in cardiomyocyte

and/or cardiac fibroblast gene transcription and func-

tion. Indeed, the heart is well equipped to sense an

inflammatory milieu. For instance, cardiomyocytes

express both tumor necrosis factor (TNF)-a receptors 1

and 2.4 Cardiac myocytes and fibroblasts also express

gp120, which allows for IL6-associated homeostatic
effects including hypertrophy, fibrosis, and cell sur-

vival.5 Pathogen or damage associated molecular pat-

terns can activate NOD-like receptors (ie, NLRP3)

leading to inflammasome activation in cardiomyocytes

and cardiac fibroblasts.6 Together, systemic inflamma-

tion can result in a range of cellular effects including

contractile dysfunction7, hypertrophy8, cardiomyocyte

cell death9, and/or fibrosis.8,10 Terminal effects are

mediated by activation of canonical cell death

pathways.11,12 These cells are also capable of paracrine

activity. For instance, pressure overload of the heart

leads to expression of TNF-a cytokine secretion.13 The

expression of chemokines by resident immune cells

and stromal cells result in secondary recruitment of

monocytes and T lymphocytes which can participate in

feed forward inflammation at the tissue level.14

Animal models have generally been supportive that

cytokine signaling can trigger cardiomyocyte dysfunc-

tion. For instance, cardiac-specific TNF-a expression has

been shown to be sufficient to cause cardiomyocyte death

and heart failure.15 Genetic deletion of murine TNF-a

ameliorates the pathophysiologic effects of angiotensin

II, including cardiac hypertrophy.16 Cardiac TNF-a over-

expression leads to a lymphocytic myocarditis and a pro-

gressive dilated heart failure phenotype in mice.9

Observations in human disease systems also support

a potential relationship between systemic inflammation

and ventricular performance. For example, left ventric-

ular dysfunction is commonly observed (and may cor-

relate with blood biomarkers of cardiac necrosis) in

those with cytokine release syndrome following CAR-

T therapy.17-19 Prompt administration of tocilizumab in

this setting may reduce the risk of adverse cardiovascu-

lar events.19

Prevalent heart failure has been association with ele-

vations in plasma levels of pro-inflammatory (TNF-a,

IL6) cytokines20, especially when out of proportion to

counter-regulatory anti-inflammatory mediators.21 This

may stem from both local production (cardiomyocytes

expression, cardiac macrophage expression22) and sys-

temic production (given over-expression in monocyte

supernatants21) in heart failure. Yet, the failure of

phase 3 anti-TNF-a clinical trials (despite favorable

biomarker changes in early phase trials) provides a cau-

tious reminder that the distinctions between physio-

logic and pathophysiologic inflammation in heart

failure remains incompletely understood.23,24,25,26

Thus, despite recently successful trials of anti-inflam-

matory strategies to prevent atherothrombosis,27,28 the

extent to which immune activation is cause, effect, or

https://doi.org/10.1016/j.trsl.2021.11.005


Translational Research
Volume 241 AL-KINDI and ZIDAR 27
epiphenomenon to ventricular dysregulation generally

remains unknown.

Auto-reactive antibodies, including anti-heart anti-

bodies, which correlate with clinical severity have also

been described.29-32 Whether breakdown in peripheral

tolerance is simply a marker of immune activation/dys-

regulation or whether it contributes to disease severity

or persistence will require additional study.

Inflammation and thrombophilia are linked via bi-

directional mechanisms. Venous thrombosis and/or

atherothrombotic cardiovascular events are relatively

common complications in the setting of acute illness

and stem in part from infection and/or inflammation.

Rates of deep venous thrombosis (DVT) in those who

do not receive thromboprophylaxis approach 20% of

general medicine admissions and 50% of those under-

going surgery.33,34 Influenza and other common respi-

ratory infections are accompanied by a 3�6 fold

higher rate of acute myocardial infarction within 1

week of infection.35 Indeed, the magnitude of protec-

tion afforded by influenza vaccination against recurrent

myocardial infarction or cardiovascular death36 is argu-

ably on par with that afforded by medical therapies in

aggregate.37

Decades of research have established several complex

inter-related pathways which connect innate immune

activation to clot formation. These pathways likely

evolved to contain the dissemination of invading patho-

gens, but now account for substantial cardiopulmonary

morbidity, mortality, and need for anti-thrombotic ther-

apy. Upon activation by pathogen-associated molecular

patterns or damage- associated molecular patterns,

monocytes, neutrophils, and their microparticles express

tissue factor, thus promoting the extrinsic clotting

cascade.38,39 Tissue factor-dependent thrombin is a

potent activator of platelets, which themselves bind

monocytes and neutrophils. Platelet-leukocyte interac-

tions, mediated by P-selectin and P-selectin glycoprotein

ligand 1 among others, act to accelerate co-activation

and also can direct these circulating elements to the

endothelium.40-42 Neutrophils further activate the coagu-

lation system via the formation of neutrophil extracellu-

lar traps which contains various pro-thrombotic

constituents (fibrin, histones, DNA, neutrophil elastase,

myeloperoxidase) which entrap platelets, inactivate nat-

ural thrombolytic pathways, and entrap pathogens.43

Inflammatory cytokines can induce additional tissue fac-

tor expression44 and also down regulate thrombomodu-

lin and activated protein C to impair endogenous anti-

coagulate activity.45 The endothelium is also a central

active participant in translating inflammatory processes

into thrombotic events. Pro-inflammatory stimuli upre-

gulate a variety of adhesion molecules on endothelial

cells which promotes capture of circulating leukocytes
and platelets.46,47 The complement system, when

engaged by pathogens or antibodies, can activate plate-

lets48 and platelet-bound complement in turn further

stimulates antigen presenting cells and neutrophils.49

Linkages between hyper-inflammation, thrombophilia,

and cardiac injury in COVID-19. The pro-inflammatory

state caused by SARS-COV2 infection has been well

described and elevations in cytokine levels generally

correspond with risk of mortality.50 The extent to

which inflammation is a pathologic or adaptive

response in this setting has not been fully determined.

However, hyper-inflammation appears to contribute in

part to overall morbidity and mortality from COVID-

19 given the protective effects of dexamethasone.51

Therefore, it is plausible that systemically derived pro-

inflammatory cytokines may cause or contribute to car-

diac injury in those who develop cardiac injury and/or

LV dysfunction in COVID-19. However, evidence for

this is circumstantial. For instance, peak troponin lev-

els in those with COVID-19 have been shown to corre-

late with markers of systemic inflammation (eg, IL6,

CRP, neutrophilia).52,53 The absence of classic lym-

phocytic myocarditis54,55 or evident myocardial infec-

tion55 in many with cardiac injury with COVID-19

could be interpreted to support systemic hyper-inflam-

mation as a frequent default cause of cardiac injury.56

Studies in rhesus macaques may support this hyper-

inflammation hypothesis since these animals develop

post-infection cardiac fibrosis after SARS-COV2 infec-

tion, but without evident leukocyte infiltration or infec-

tion of the myocardium.57

Convincing evidence from prospective clinical trials

that hyper-inflammation is the major mechanism of

cardiac injury is currently lacking. Of note, the

RECOVERY trial of dexamethasone did not routinely

evaluate for cardiac injury using troponin levels or

echocardiograms, but the rates of cardiac death (usual

care: 0.2% dexamethasone: 0.1%) and new major car-

diac arrhythmias (usual care: 6.3% dexamethasone:

5.3%) were not significantly different.51 The

GRECCO-19 trial showed a protective effect of colchi-

cine against clinical deterioration in hospitalized

COVID-19, but there was no difference in the primary

biochemical endpoint of peak high sensitivity troponin

levels.58 Randomized trials of IL-6 inhibition have

reported clinical outcomes, but have not yet reported

differences in biomarkers of cardiac injury.59-63 Of

note, a propensity matched retrospective analysis of

COVID-19 patients treated (or not) with Tocilizumab

did not show a reduction in troponin levels,64 question-

ing a causal role for IL-6 in cardiac necrosis in the

COVID-19 setting. Thus, the extent to which systemic

inflammation alone is responsible for cardiac injury is

uncertain, but given the ongoing trials investigating

https://doi.org/10.1016/j.trsl.2021.11.005
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immunomodulation, future analyses may elucidate the

causal position of various inflammatory pathways, rela-

tive to cardiac injury.

COVID-19 associated inflammation may also induce

cardiac injury via the induction of a complex and pro-

found pro-thrombotic state.65 Both venous and arterial

thrombotic events have been frequently observed, often

despite thromboprophylaxis, and independently associ-

ates with the risk of death.66-69 NETosis in this setting

has been described by several groups.70-72 An activated

platelet phenotype has also been frequently

described.73-75 Complement activation is associated

with a severe course characterized by respiratory fail-

ure but whether this contributes to or protects against

disease progression is unclear.76,77 The notion that

thrombophilia is driven by hyper-inflammation is also

suggested by the fact that D-dimers were reduced

(albeit modestly) by dexamethasone.51

The extent to which thrombosis mediates cardiac

injury is also unclear. Cardiac microvascular thrombo-

sis has been described as a prominent feature in

some,78 but not all histologic studies. Given the fre-

quency of thrombosis despite typical pre-pandemic

empiric thromboprophylaxis,68,69 anti-thrombotic strat-

egies have evolved. Therefore, the contribution of

thrombosis to cardiac injury may be a moving target,

but our understanding is likely to evolve as ongoing

studies refine the optimal approach to mitigating the

risk of thrombophilia.79

Therefore, the extent to which systemic inflamma-

tion and its accompanied thrombophilia contribute to

cardiac injury, the specific manifestations and physio-

logic importance, and the best means to provide car-

dio-protection (if needed) from cytokine elevations in

COVID-19 remain critical knowledge gaps.

Viral tropism and myocarditis.Myocarditis (inflamma-

tion of the heart) can be provoked by viral, bacterial

(eg, Borrelia species), or protozoa (eg, Trypanosoma

cruzi) infections, auto-immunity, or cardiotoxins and

has traditionally been defined pathologically using the

Dallas criteria, but the incorporation of clinical features

and cardiac MRI in contemporary practice can often

refine the mechanism of disease and improves esti-

mates of prognosis. By Dallas criteria,80 an endomyo-

cardial biopsy is graded as myocarditis, borderline

myocarditis, or no myocarditis based upon whether an

inflammatory cells infiltrate is present with surrounding

cardiomyocyte degeneration (in a non-ischemic

appearance). The distribution, extent, and type of infil-

trate can provide further subcategorization, and the

appearance of associated fibrosis (and its distribution,

extent, and type) is also analyzed. Immunohistochemis-

try, polymerase chain reaction, and transcriptomics are

able to provide detailed immunologic and mechanistic
information. Clinical features can categorize patients

according to fulminant, acute, chronic active, and

chronic persistent presentations. Paradoxically, patients

with a fulminant clinical presentation often have a bet-

ter prognosis than those with an acute/subacute

course.81 However, the diagnostic implications of the

histologic findings are limited by sampling error and

intra-observer variation.82 Cardiac MRI is increasingly

used to provide myocardial tissue characterization in

those with suspected myocarditis. The consensus rec-

ommendations for the assessment for myocarditis

(Lake Louise Criteria, updated in 2018) is based on at

least one T1 abnormality (increased myocardial T1

relaxation times, increased extracellular volume frac-

tion, or late gadolinium enhancement) with at least one

T2-based criterion (increased myocardial T2 relaxation

times, visible myocardial edema, or increased T2 sig-

nal intensity ratio).83,84

Coxsackie virus B (CBV) and Parvovirus B12

(B19V) are among the best studied causes of viral myo-

carditis and provide examples of a cardiomyocyte-tro-

pism and endothelial cell tropism, respectively. CBV

directly infects cardiomyocytes via a transmembrane

receptor termed the coxsackievirus and adenovirus

receptor (CAR). After entry CBV undergoes viral rep-

lication and follows a lytic life cycle leading to cardio-

myocyte injury, cell death and consequent local

immune response. In contrast to the cardiomyocyte tro-

pism of CBV, B19V infects cardiac endothelial cells

(EC).85 EC expression of the viral nonstructural protein

1 appears to be sufficient to induce a robust pro-inflam-

matory phenotype characterized by STAT3 phosphory-

lation in vitro.86 B19V infection also leads to EC

apoptosis and subsequent indirect cardiomyocyte toxic-

ity.87 In addition to proposed direct viral effects, auto-

immune responses and molecular mimicry may also

induce subsequent antibody mediated cardiac injury.

Auto-reactive T cells and auto-antibodies to structural

proteins including myosin as well as signaling proteins

including the beta-adrenergic receptors have been char-

acterized in a variety of human settings and animal

models.88-99 Thus, viral exposure can lead to cardiac

injury from direct cytotoxicity but may also occur in

response to host responses. Early phase trials raise the

possibility that anti-viral therapy87 and/or immunomo-

dulation strategies100 may provide clinical benefit, but

the extent to which the persistence of viral pathogens

confer pathogenic effects remains ill defined.

SARS-COV2 tropism: the expression and function of

ACE2 in the heart. Human tissue expression studies have

shown that ACE2 is broadly expressed in the microvas-

culature of hearts and kidneys.101,102 More recent stud-

ies, including single cell RNA sequencing (scRNAseq)

confirm ACE2 is highly expressed in the human
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heart.103-106 For example, Tucker et al performed bulk

and single nucleus RNA sequencing on the left ven-

tricles of 11 individuals with dilated cardiomyopathy,

15 with hypertropic cardiomyopathy, and 16 controls

with nonfailing hearts. In general, ACE2 expression was

expressed on cardiomyocytes and cardiac fibroblasts but

highest in pericytes, cells which are embedded in the

basement membrane to surround and support the micro-

vasculatature.106 Interestingly, heart failure was associ-

ated with downregulation of ACE2 in fibroblasts,

pericytes, and vascular smooth muscle cells but a con-

comitant increase in ACE2 among cardiomyocytes.

Increased ACE2 in those with heart failure reduced ejec-

tion fraction and aortic stenosis was also observed by

Nicin et al.104 Thus, variance in ACE2 expression in

those with heart failure may be best resolved using sin-

gle cell sequencing techniques since such regulation

appears to be cell specific and discordant among cell

types within the heart. The use of angiotensin converting

enzyme inhibitors may also increase ACE2 expression,

especially on cardiomyocytes.104,106

SARS-CoV-2 entry into cells requires protease

activity for priming of the spike protein. The serine

protease TMPRSS2 is largely undetectable in the

heart106, but heart tissue does express high levels of

ITGA5107,108 and cathespins106 which may be capable

of supporting SARS-CoV-2 entry.109

Overall, these data support a hypothesis that the

increased risk of COVID-19 among those with co-mor-

bid cardiovascular disease may stem from upregulated

cardiomyocyte expression of ACE2 which precedes

infection and may pre-dispose to cardiac injury.

Human studies of myocardial infection and injury by

SARS-COV2 virus. Given the cardiac expression of

ACE2, several groups have sought to establish whether

SARS-COV2 infects human hearts as part of the clini-

cal course of COVID-19 using endomyocardial biopsy

(EMBx) specimens from living donors or autopsy

specimens post mortem.

In an early report during the first wave in Italy, Tavazzi

et al. were among the first to document cardiac infection

in a patient with clinically fulminant “myocarditis” and

cardiogenic shock using electron microscopy of EMBx

tissue.110 Viral particles were localized to large vacuo-

lated interstitial cells or macrophages. In contrast, cardio-

myocytes and endothelial cells did not appear to be

infected, and minimal fibrosis was observed without a

pronounced lymphocytic infiltrate.

Escher and colleagues retrospectively evaluated 104

patients who underwent EMBx between February to

March 2020 in Germany due to suspected myocarditis

from unselected causes, and found SARS-COV2 pres-

ent in 5 cases, using RT-PCR of the E gene.78 These 5
cases also had small artery damage, and 1 had evidence

of myocarditis (and 1 borderline) by Dallas criteria.

Autopsies in those who succumb to COVID gener-

ally show high viral loads in the lung in association

with lung damage accompanied by a lymphocytic infil-

trate.111-114 Venous thrombosis and pulmonary embo-

lism are common findings as well.111,115 Despite the

nearly uniformly robust lung pathology, extreme

immune activation, and hypercoagulability in severe

COVID-19, less consistent extra-pulmonary findings

are generally observed.112-114 For instance, in a pro-

spective cohort study including 12 post-COVID-19

autopsies by Wichmann et al, all 12 patients had high

SARS-COV2 virus concentrations in the lung, 6/10

had viremia, and 5/12 had virus identified in other

organs.115 In this series, 1 patient had a lymphocyte

predominant myocardial infiltrate.

Using post-mortem tissue from consecutive autop-

sies from COVID-19 patients, Fox et al also report

SARS-COV2 viral particles are common, using elec-

tron microscopy.116 They observed virus associated

with the endothelium, but not cardiomyocytes. In this

series, scattered myocyte death was occasionally seen,

but no lymphocytic infiltrates or myocarditis by Dallas

criteria was reported.

Linder and colleagues detected SARS-COV2 in the

heart of 24 of 39 consecutive autopsies using viral

RNA hybridization (probe V �nCoV2019-S).117 Those

without myocardial SARS-COV2 infection tended to

have lower cytokine gene expression although there

was no difference in the leukocyte density, compared

with heart with high SARS-COV2 viral loads. SARS-

COV2 tended to localize to interstitial cells and macro-

phages, but not cardiomyocytes. There was evidence of

active viral replication (ie, the negative strand of the

RNA genome was datable) in 5 patients. Myocyte cell

death was generally not observed in these COVID-19

non-survivors, irrespective of the presence or absence

of virus in heart tissue.

Post-mortem cardiac specimens from four patients

with clinically severe cardiac injury analyzed by Bailey

et al showed SARS-COV2 spike and nucleocapsid

RNA was identified via immunohistochemistry in each

case.118 Viral antigens were generally observed in car-

diomyocytes, and also occasionally identified in epicar-

dial or perivascular adipocytes and pericytes.

A study of 6 consecutive autopsies from COVID-19

patients without suspected cardiac involvement by Bul-

famant et al each had virus detectable (including both

sense and anti-sense transcripts suggesting active tran-

scription) by multiple modalities.119 Virus was identi-

fied in interstitial macrophages as well as

cardiomyocytes. No vascular injury or endothelialitis

was observed. Cardiomyocytes containing SARS-
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COV2 did not show signs of cell death, but did have

evidence of disrupted cell-cell adhesions.

Pellegrini et al120 examined 40 hearts from patients

who died of COVID19 infection to evaluate the preva-

lence and correlates of myocardial injury. A third of

these hearts (35%) had myocyte necrosis especially in

the LV, with majority showing evidence of cardiac

thrombi (2/14 epicardial coronary thrombi and 9/14

microthrombi). These thrombi had greater fibrin and

terminal complement G5b-9 compared with aspirate

coronary thrombi from patients with MI without

COVID19 infection. These findings suggest that micro-

thrombosis may be partly responsible for the observed

myocardial injury in COVID19.

A literature review of 22 separate studies including

277 autopsies suggests that at least one potential histo-

pathologic abnormality may be present in 47.8% of

cases.121 The rate of myocarditis was reported to be

7.2%, non-myocarditis inflammation was observed in

12.6%, single cell ischemia was seen in 13.7%, small

vessel thrombi in 10.8%, and macrothrombi in

19.1%.121 As such, there may be within and between-

patient heterogeneity of the mechanisms responsible

for myocardial injury.

RAS dysregulation as a potential consequence of

COVID-19. ACE2 has important and non-redundant

peptidase functions in the heart and lung to maintain

vascular integrity and regulate cardiotoxic products of

the renin-angiotensin system. ACE2 converts angioten-

sin II into angiotensin 1�7, thus providing tissue level

protection against angiotensin II-related hypertension,

fibrosis, heat failure, inflammation, vasoconstriction,

and lung injury.122,123 Angiotensin 1-7 also has cardio-

protective activity via the Mas receptor. ACE2 also

degrades des-Arg9-bradykinin which can have pro-

inflammatory and vasocontrictive properties via activa-

tion of bradykinin 1 receptor.124 ACE2 deletion in

mice leads to pathological ventricular hypertrophy in

addition to pulmonary vascular permeability.125 The

fact that ACE2 becomes co-opted by SARS-COV2

raises the possibility that disruptions in angiotensin II

or des-Arg9-bradykinin levels may factor into the car-

diovascular pathophysiology of COVID-19.

SARS spike proteins binds to ACE2 with very high

affinity leading to viral entry.126,127 The possibility that

this interaction could lead to physiologically relevant

local ACE2 depletion is supported by a study from the

first SARS pandemic by Oudit et al.128 In this report,

myocardial ACE2 protein expression was greatly reduced

in hearts with evident SARS-CoV infection, compared to

those with SARS-CoV who had undetectable virus or

controls who died of sepsis (non-SARS). Wu et al have

shown that angiotensin II levels are elevated in severe

COVID-19, a finding which could be explained by
reduced ACE2 expression or function.129 Lui and col-

leagues have also reported elevated angiotensin II plasma

levels in those with COVID-19, which correlated with

viral load.130 In support of ACE2 being relevant to angio-

tensin II levels is that the infusion of human recombinant

soluble ACE2 decreased angiotensin II levels in patient

with COVID-19.131 Thus, ACE2 may be more than a crit-

ical gateway for SARS-COV2 entry- its functional dis-

ruption may participate in the loss of cardiopulmonary

homeostasis during COVID-19.
COVID-19 RELATED CARDIOVASCULAR DISEASE AT
THE POPULATION LEVEL

The exact prevalence of cardiac involvement in

SARS-CoV-2 infection is difficult to estimate, owing

in part to the heterogeneity of clinical severity of this

disease. Cardiac injury rates have tended to be reported

from study cohorts reflecting mostly sicker popula-

tions. There has not been a common definition of

“cardiac involvement” by SARS-CoV-2. Patients who

succumb to severe COVID19 infection often have high

prevalence of cardiovascular co-morbidities and risk

factors, and observed cardiac abnormalities may arise

in part from pre-existing risk due to prior diagnosed or

undiagnosed cardiovascular disease. Blood biomarkers

such as cardiac troponin levels are widely available

and highly sensitive. Imaging studies such as echocar-

diography or cardiac magnetic resonance imaging have

been done less routinely, especially early in the pan-

demic when personal protective equipment was scare.

Thus, information about cardiovascular complications

is certainly clouded by ascertainment and other forms

of selection bias, and currently estimated by integrating

information from multiple cardiovascular tests reported

retrospectively.

Rates of general myocardial injury by plasma

biomarkers. Cardiovascular complications were

reported early in the pandemic with blood biomarkers,

followed by imaging studies showing a broad spectrum

of cardiac findings. Troponin is a marker of myocardial

injury and is routinely evaluated as part of the work up

for acute coronary syndromes. Studies have shown that

myocardial injury is not uncommon in patients with

COVID19 infection but varies widely based on the

cohort studies. Reported incidence of elevated tropo-

nins ranged between 8% and 62% depending on cohort

characteristic (outpatient, inpatient or those hospital-

ized in the intensive care unit), mostly derived from

retrospective studies which may be subject to referral/

testing bias.132-136 A meta-analysis of 43 mostly retro-

spective studies (9475 patients) showed that the preva-

lence of cardiac injury was 19% (95% CI: 15%�22%)
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in all-comer COVID-19 patients, 36% (25%�47%) in

patients with severe COVID-19, and 48% (30%�66%)

in patients who died from COVID19 infection. Studies

investigating high-sensitivity troponin generally

showed higher percentage of patients with myocardial

injury compared with earlier-generation troponin

assays.1 Similar data on cardiac injury in asymptomatic

or mild COVID19 is lacking. Thus, in general, myocar-

dial injury in the setting of COVID19 infection, when

defined by cardiac-specific troponins, may accompany

1 in 5 symptomatic infections, and is more common

with greater COVID19 severity.

Troponin elevations may stem from a broad spec-

trum of processes including those generally expected

in the setting of respiratory failure (eg, right ventricular

dysfunction,137 demand ischemia/type II myocardial

infarction, stress cardiomyopathy138,139), processes

provoked by hyper-inflammation (atherosclerotic pla-

que rupture, ventricular dysfunction, high output/

demand-supply mismatch), and direct cardiovascular

pathology specific to SARS-COV2 (myocarditis,140

microvascular thrombosis/endotheliailitis,120,141 renin-

angiotensin system dysregulation).

Ventricular dysfunction in the setting of COVID-19. Sev-

eral studies have investigated ventricular function in

COVID19 infection. Overall, the prevalence of ventricu-

lar dysfunction varies widely by cohort, comorbidities,

disease severity and geographic location. Overall, clini-

cal heart failure develops in 1% of hospitalized patients

with COVID19 and 18% of patients in the ICU.142,143 In

patients with COVID19 without prior cardiac history,

severe cardiac disease (severe LV dysfunction or tampo-

nade) was detected in 13% by echocardiography.144 In a

large prospective study of 1,216 144 from 69 countries

undergoing transthoracic echocardiograms (TTE), 55%

had abnormal findings. 39% had left ventricular (LV)

abnormalities and 33% had right ventricular (RV)

abnormalities. Severe ventricular dysfunction (RV, LV,

or biventricular) was found in 14% and tamponade was

present in 1%. In this cohort, the indication for TTE was

left sided heart failure (HF) in 40%, 26% had elevated

cardiac biomarkers, and 20% had suspected right HF.

In another retrospective study of 870 patients with

acute COVID-19 infection admitted to 13 hospitals in 4

continents, 17% had LV dysfunction (LV ejection frac-

tion < 50%) and 29% had RV dysfunction (RV free wall

strain >-20%). Patients admitted to the intensive care

unit (ICU) generally had worse LV and RV function.145

Small studies have also shown that subclinical

biventricular dysfunction as measured by strain echo-

cardiography is common and is associated with poor

outcomes in COVID19. In a prospective study of 218

patients with COVID19 (52 critically ill), LV dysfunc-

tion measured by reduced LV global longitudinal strain
(GLS, <-21%) was observed in 83% of patients, and

was more common in critically ill patients (98% vs

78%). GLS correlated with oxygen saturation, high

sensitivity C-reative protein (hsCRP), and interleukin

(IL)-6.146

Cardiac MRI abnormalities in patients with COVID-19.

Cardiac magnetic resonance imaging (MRI) provides

unprecedented insight into cardiac involvement owing

to its ability to decipher fibrosis, inflammation/edema,

in addition to structure and function. A prospective

study by Puntmann et al of 100 patients recovered

from COVID-19 (33% severe illness, >2 weeks post

recovery) identified cardiac MRI abnormalities in

78%.147 MRI evidence of fibrosis, myocardial edema/

inflammation, and pericardial involvement were each

more frequently found in those recently recovered

from COVID-19, compared to healthy controls and

those matched for cardiovascular risk factors. Changes

among those with a non-severe/non-hospitalized clini-

cal course were only modestly less severe than those

who required hospitalization.147

Another study in patients with severe COVID19

infection and evidence of myocardial injury by serum

troponin, cardiac MRI revealed a higher percentage of

abnormalities, including scar or ischemia (54%), with

26% having myocarditis-like scar, 22% with infarction

or ischemia, and 6% with dual pathology.148

In those with less severe illness, rates of cardiac MRI

abnormalities have been more varied. Rajpal et al

reported 8 of 26 athletes with mild to asymptomatic

COVID-19 had late gadolinium enhancement and 4

had myocarditis by cardiac MRI.149 In a prospective

study of 1597 US competitive athletes who underwent

screening with cardiac MRI,150 only 2.3% had findings

suggestive of myocarditis. It is important that to note

that many of these patients had no clinical evidence of

myocarditis, making these MRI findings of unknown

significance. Another study investigating patients with

only mild symptoms showed no difference in the prev-

alence of cardiac MRI abnormalities compared with

matched controls.151

A systematic review of 22 studies (2,954 patients)

recovered from COVID19 illustrate this wide variation

of CMR abnormalities.152 Fibrosis (late gadolinium

enhancement) was observed in COVID-19 survivors

with rates ranging from 4 to 100%. Myocardial edema

(T2 elevation) was not detected in 4 of 15 studies, and

in 2%�60% of those enrolled in the other 11 studies.153

These studies using cardiac MRI to understand

potential cardiac manifestations have been provocative,

but have not included corroboration with endomyocar-

dial histology, have had limited clinical follow-up, and

lack of baseline/pre-COVID19 cardiac MRI compari-

sons. The variability of these observations reflects
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heterogeneity of study populations and highlights the

need to harmonize MRI techniques and protocols in

future multi-center trials.154

Arrhythmias are frequent in those with COVID-19. Both

atrial and ventricular arrhythmia have been seen

observed in patients with COVID19 infections. In a

meta-analysis of 31 studies (mostly retrospective

cohort studies) that investigated prevalence of atrial

and ventricular arrhythmia in 187,716 patients with

COVID, the prevalence of atrial fibrillation (AF) varied

widely (1%�34%), with a pooled prevalence of 8%.

The heterogeneity of AF prevalence was partly

explained by age, geographic location, prevalence of

hypertension and diabetes.155 Among studies that

reported outcomes, AF was associated with 4-fold

increase in mortality (pooled OR: 3.97, 95% CI:

2.76�5.71).155 It is important to note that these studies

included new onset and prior AF. Limited evidence

investigating new onset AF showed that the incidence

ranged between 4 and 7%.156,157 Compared with

patients with historical AF, patients with new-onset AF

had higher levels of inflammation (leukocyte count,

higher C-reactive protein levels), and poorer oxygen-

ation (lower PaO2/FiO2) reflective of more severe

disease.157

In another meta-analysis of 56 mostly retrospective

studies (17,435 COVID19 patients) showed that 16.8%

had arrhythmia (8.2% for atrial fibrillation/atrial flut-

ter/atrial tachycardia, 10.8% for conduction disorders,

8.6% for premature contraction and 3.3% for ventricu-

lar fibrillation/ventricular tachycardia.158 Possible

mechanisms linking COVID19 with arrhythmia

include systemic inflammation, myocardial injury, neu-

rohormonal activation, hypoxia, or more rarely myo-

carditis. Similar to other cardiovascular manifestations,

the extent to which arrhythmias are provoked by sys-

temic illness or as direct consequence of SARS-COV2

remains unknown.

Predictors of cardiovascular involvement in COVID19.

In general, studies have shown that myocardial involve-

ment in COVID19 is associated with COVID19 severity

and traditional cardiovascular risk factors and conditions.

For instance, troponin elevations during COVID19 hospi-

talizations were associated with preexisting cardiovascu-

lar morbidity, including hypertension, diabetes, chronic

kidney disease, atrial fibrillation, coronary artery disease,

and heart failure.135,159-161 SARS-CoV-2 viremia has also

associated with higher troponin levels.162

Similar associations between COVID-19 severity,

pre-existing cardiovascular disease, and cardiac

involvement have been established using cardiac imag-

ing. For example, myocardial edema/inflammation

seen on cardiac MRI was more common in patients

with severe COVID19, compared with non-severe
COVID19 and healthy controls. Higher T2 signal

reflective of myocardial edema was associated with

markers of COVID19 severity such as D-dimer, C-

reactive protein, and lymphopenia.163 Prior history of

ischemic heart disease or heart failure were associated

with abnormalities on transthoracic echocardiogram in

patients with COVID19.144 Similarly, a history of dys-

lipidemia and coronary disease were associated with

cardiac MRI abnormalities.148 Together, these findings

suggest that cardiac abnormalities seen during

COVID19 may partly reflect prior cardiovascular dis-

ease as well as the severity of acute COVID-19 illness.

Clinical consequences of cardiac involvement. Re-

gardless of manifestation, myocardial involvement (ie,

troponin elevation, arrhythmia, ventricular dysfunc-

tion) is associated with poor outcomes. For instance, a

meta-analysis of myocardial injury by blood bio-

markers was associated with a staggering 14-fold

increase in mortality in COVID19 patients.2 Prior car-

diovascular disease and acute myocardial injury seem

to have synergistic effects to increase risk in

COVID19. One study showed that COVID19 patients

with prior CVD and elevated troponin had 69% mortal-

ity, compared with CVD without troponin (13.3%),

without CVD but with elevated troponin (37.5%), and

no CVD and no elevated troponin (7.6%).3

A significant percentage of patients with COVID19

who require ICU care develop heart failure. Overall, clini-

cal heart failure develops in 1% of hospitalized patients

with COVID19 and 18% of patients in the ICU.142,143 In

a prospective study of 214 patients with COVID19, meas-

ures of RV function and LV function were significantly

associated with mortality.164 Small studies suggest that

even subclinical ventricular dysfunction (LV and RV

strain by echocardiography) is associated with mortality

in patients with COVID19.164-166

Arrhythmia in COVID19 also portend higher risk of

mortality. In a meta-analysis of 23 mostly retrospective

studies including 108,745 patients with COVID19, AF

was associated with a 13% relative increase in mortal-

ity and 14% relative increase in unfavorable out-

comes.167 Another meta-analysis showed that cardiac

arrhythmia were noted in 19% of COVID19 and 48%

of COVID19 with poor outcomes (mortality, severe ill-

ness, or ICU admission).168

The duration of cardiac involvement remains

unknown. Studies have reported persistent cardiac

symptoms (termed Post-Acute Sequelae of SARS-

CoV-2 infection) can extend 6 months and beyond after

infection. In a prospective study of 1733 patients who

recovered from COVID19 (75% requiring supplemen-

tal oxygen during acute illness), 5% reported chest

pain and 9% reported palpitations at 6 months post

recovery.169 No robust data exist for long-term follow-
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up of patients with cardiac injury or abnormal cardiac

MRI and thus the clinical significance of these abnor-

malities remains to be elucidated.

Cardiovascular events after SARS-COV2 vaccination.

In comparison to the cardiac injury which result from

natural infection by SARS-COV2, cardiovascular man-

ifestations after SARS-COV2 vaccination (myocardi-

tis, pericarditis, and unusual thrombotic events) are

exceedingly rare events, but are important to identify.

A syndrome of unusual thrombosis (ie, central

venous sinus, portal vein) in combination with severe

thrombocytopenia, termed vaccine-induced immune

thrombotic thrombocytopenia has been reported as a

rare complication of SARS-COV2 vaccination.170-172

The mortality rate associated with this complication

may approach 40%. Patients tend to present 5 to

24 days after immunization, are predominantly young

females, with platelet counts as low as 10,000 per cubic

millimeter. An association with anti-platelet factor 4-

polyanion auto-antibodies has been consistently

reported, despite the absence of previous heparin

administration.173 Treatment with intravenous immune

globulin and corticosteroids improves platelet counts

and may improve the safety of anti-coagulation. The

incidence may approach 1 case per 100,000 patients

immunized with an adenoviral based ChAdOx1 nCoV-

19 (AstraZeneca) vaccine, and is less frequently

reported after mRNA-based vaccines.

In contrast to the high mortality associated with car-

diac injury in the setting of natural infection, myocardi-

tis and pericarditis after immunization leads to

hospitalizations which are frequently brief and symp-

toms which often resolve, treated with standard anti-

inflammatory therapies. Myocarditis has been reported

after mRNA vaccination at a rate ranging between 5

and 160 per million recipients.174-177 In Diaz et al,

myocarditis occurred early (median 3.5 days) after vac-

cination, was more likely in young male adults (75%

males, median age 36) and more often after the second

dose.178 In two recent large studies of individuals who

received mRNA vaccine in Israel,179,180 there was a

significant preponderance of post-vaccine myocarditis

towards young males with most myocarditis occurring

after second dose, and most were mild. Pericarditis was

more delayed (20 days after vaccination) and tended to

affect older adults (median age 59). Patients tend to

have elevated blood biomarkers of myocardial injury

and cardiac MRI findings including regional LV dys-

function, late gadolinium enhancement and elevated

native T1 and T2 signals.175 Yet, the clinical course for

these patients was typically benign in the short term

without reported late sequelae.

It is important to note that myocarditis has also been

described after other vaccinations such as small pox
(eosinophilic-lymphocytic),181 DTaP (Diphtheria, Tet-

anus, and Polio) which are thought to be due to hyper-

sensitivity reactions,182 and even seasonal influenza

vaccines.183 Data on the incidence of myocarditis with

non-COVID19 vaccinations are limited and are mostly

reported in case reports and small series. In a recent

review of myocarditis in the Vaccine Adverse Event

Reporting System from 1990 to 2018,184 most reports

were in males and most occurred within 2 weeks of

vaccination. Implicated vaccines varied by age group,

but overall were due to vaccinations for smallpox

(59%) and anthrax (23%), but other vaccinations were

also implicated including influenza, zoster, hepatitis B

and Haemophilus influenzae type b.

Impact of COVID19 pandemic on patients with

cardiovascular disease. The COVID19 pandemic has

affected all aspects of healthcare delivery and even

impacted those without COVID-19, especially those

chronic diseases. For example, during various times in

the pandemic, the strain on healthcare resources by

COVID19 infected patients has led to deferral of elec-

tive procedures, including cardiac catheterizations and

cardiac surgeries.185-187 Several trends were observed

from large registries and single center studies which

illustrate how the systems of care required for the rou-

tine management of cardiovascular disease has been

disrupted for the worse. For example, patients with

myocardial infarction more often had delayed presenta-

tions and poorer outcomes compared with pre-pan-

demic era.188-190 Other changes in healthcare delivery

such as greater capacity for telehealth may ultimately

lead to neutral or even beneficial effects. In patient

with suspected coronary artery disease, there has been

a shift from exercise stress testing to anatomic testing

with coronary CT angiography due to the concern for

exercise aerosolization and infection risk for the staff

of the stress laboratories.191 Thus, studies which exam-

ine the long-term impact of these changes in care deliv-

ery may allow for data-driven optimization of chronic

disease management which persist long after the pres-

sures of the pandemic has passed.
SUMMARY AND CONCLUDING REMARKS

Despite the unimaginable toll the COVID-19 pan-

demic has extracted on the world, the investments in

science and medicine over the past 100 years have

made it possible to make and translate discoveries in

real time. The capacity to identify and sequence the

virus, develop vaccines and therapeutics, and adapt

systems of care were impossible in previous epidemics.

However, the remarkable variability in severity and

clinical manifestations of SARS-COV2 infection
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Fig 1. Cardiac Injury as a Result of Multiple Mechanisms, Triggered by SARS-COV2. SARS-COV2 incites a

host response which stimulates pro-inflammatory and pro-thrombotic pathways with potential adverse effects on

the cardiac microenvironment. SARS-CoV2 viral particles have also been identified in the heart of some with

severe COVID-19, raising the possibility that dissemination of the virus to the heart may mediate cardiac injury.

Given the cardio-protective role of ACE2 for homeostatic maintenance of the cardiac microenvironment, addi-

tional damage may occur through depletion of ACE2. In those with severe acute illness, hemodynamic and car-

diometabolic stressors also likely contribute to the adverse cardiovascular effects. Thus, cardiac injury may

represent a common final pathway, reflecting multiple pathways triggered by the SARS-COV2 and the host

response, leading to compromised cardiovascular performance.
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remains among the most puzzling aspects to the

COVID-19 pandemic. An example of this is cardiac

injury, which occurs commonly but is not uniformly

observed, even in those with fatal outcomes. Imaging

abnormalities have even been described among those

with minimal respiratory manifestations.

Studies to date suggest that the underlying patho-

physiology of COVID-19 associated cardiac injury

may be multi-factorial (Figure 1), derived from both

systemic pertubations (hyper-inflammation and throm-

bophilia) and possible direct effects of the virus. Unlike

influenza B, atherothrombosis occurs after SARS-

COV2 infection but is not the major mechanism

accounting for cardiovascular risk in this setting. Stud-

ies to date suggest that viral deposition or expression is

not uncommon, but classic features of lymphocytic

myocarditis are rarely observed. Instead, direct poten-

tial cardiotoxic effects of SARS-COV2 could stem

from disruption of the RAS system, a microangiopathy

via endothelial cell/pericyte involvement (akin to par-

vovirus), or cardiomyocyte damage (akin to coxsackie

B). Thus, a major current challenge is to determine (at
the individual and population levels) whether SARS-

COV2, when localized to the heart, contributes to car-

diac injury. Prospective interventional trials will likely

become critical to elucidating the specific contribution

of these possible mechanisms.

As the world passes 200 million cases of (docu-

mented) SARS-COV2, even the possibility of low fre-

quency persistent cardiovascular effects or risk

constitute a substantial threat to global public health

for years to come. Continued work is therefore needed

to refine cardiovascular risk stratification and the clini-

cal management of SARS-COV2 infection to minimize

not only survival, but long-term organ function, includ-

ing extra-pulmonary tissues such as the heart, kidneys,

and brain. The relationship between immune activation

and cardiovascular disease is not unique to SARS-

COV2, and common cardiovascular problems (athero-

sclerosis, arrhythmias, cardiomyopathies) are often

rooted in inflammation and/or repair, sometimes from

viral exposures. Thus, in this time of unprecedented

suffering and risk to global health, there exists the

opportunity that well conducted translational research
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of SARS-COV2 may also shed light on our understand-

ing of cardiovascular resilience in general and thus pay

health dividends that outlast the current pandemic.
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