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Abstract

The aim of this study was to identify the genetic basis of a chorioretinal dystrophy with high myopia of unknown origin in a
child of a consanguineous marriage. The proband and ten family members of Iranian ancestry participated in this study.
Linkage analysis was carried out with DNA samples of the proband and her parents by using the Human SNP Array 6.0.
Whole exome sequencing (WES) was performed with the patients’ DNA. Specific sequence alterations within the
homozygous regions identified by whole exome sequencing were verified by Sanger sequencing. Upon genetic analysis, a
novel homozygous frameshift mutation was found in exon 42 of the COL18A1 gene in the patient. Both parents were
heterozygous for this sequence variation. Mutations in COL18A1 are known to cause Knobloch syndrome (KS). Retrospective
analysis of clinical records of the patient revealed surgical removal of a meningocele present at birth. The clinical features
shown by our patient were typical of KS with the exception of chorioretinal degeneration which is a rare manifestation. This
is the first case of KS reported in a family of Iranian ancestry. We identified a novel disease-causing (deletion) mutation in the
COL18A1 gene leading to a frameshift and premature stop codon in the last exon. The mutation was not present in SNP
databases and was also not found in 192 control individuals. Its localization within the endostatin domain implicates a
functional relevance of endostatin in KS. A combined approach of linkage analysis and WES led to a rapid identification of
the disease-causing mutation even though the clinical description was not completely clear at the beginning.
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Introduction

Knobloch syndrome (MIM:267750) (KS) is a very rare

autosomal recessive developmental disorder. It is characterized

by vitreoretinal degeneration usually with recurrent retinal

detachment, retinitis pigmentosa-like features, lens subluxation,

congenital high myopia, macular abnormalities and occipital

encephalocele. The ocular features of the disease are similar to

Stickler syndrome with optically empty vitreous and severe

chorioretinal degeneration and high myopia, which is caused by

mutations in collagen genes [1,2].

Since its first introduction in 1971 by Knobloch and Layer,

more than 50 cases have been reported all over the world. A defect

in early cephalic neuroectodermal morphogenesis has also been

suggested [1]. From 1971 to 1994, three families were reported

from Hungary and the US, as well as a large Brazilian family with

a history of consanguinity [1,3,4], all supporting the autosomal

recessive inheritance of this condition. In 1996, homozygosity

mapping in the same Brazilian family with 11 affected individuals

assigned the KS gene to 21q22.3, close to the marker D21S17 [2].

Through a positional cloning approach, Sertie et al. showed that

mutations in COL18A1 are responsible for KS [5]. The gene is

transcribed by use of two promoters and alternative splicing of the

third exon [6]. The C-terminal part (183 amino acids), designated

endostatin, can be cleaved-off proteolytically [7]. Collagen XVIII,
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encoded by the COL18A1 gene, has an important role in

determining the retinal structure as well as closure of the neural

tube [5]. This protein is an essential component of the basement

membrane of the iris, vitreous and retina and its presence is critical

for normal eye development during embryogenesis. Collagen

XVIII also seems to play important functional roles in neuronal

cell migration and as a component of the basement membrane of

kidney as well as teeth development [8,9]. It has been shown in an

experimental model that collagen XVIII is also important for

maintaining capillary permeability in striated muscle [10].

Williams et al. reported a case of KS with bilateral renal

anomalies, which implies a role of collagen XVIII in kidney

physiology [11]. In 1998, Wilson et al. reported two siblings from

New Zealand and proposed a possible involvement of mesoderm

in morphogenesis as those patients had abnormal pulmonary

lymphatics [12]. Sniderman et al. reported a case with anterior

midline scalp defect reflecting further clinical variability in this

rare autosomal recessive syndrome [13].

Mutations in COL18A1 gene can lead to occipital encephalo-

cele and severe ocular alterations [14]. It was also shown that a

lack of either the short (NC1-303) or long isoform (NC1-728) of

collagen XVIII causes similar phenotypes, but patients lacking all

isoforms exhibit increasingly severe ocular alterations. This

suggests that both isoforms play critical roles in the maintenance

and organization of the human eye [14]. In 2003, Kliemann et al.

reported neuronal migration disorders in two Brazilian patients for

the first time [15]. This was followed by the report of a case with

persistent fetal vasculature and initiated the discussion of a possible

role of endostatin in vascular remodeling of the fetal eye [16]. In

two siblings with KS from France, one presented with mental

retardation and severe supratentorial CNS anomalies, and a

second fetus with severe brain malformations, complete vermian

agenesis, and mesencephalic hamartoma, suggested that either

endostatin or full-length collagen XVIII play a role in neuronal

migration, revealing that CNS anomalies in KS were more severe

than initially thought [17]. In addition, Knobloch syndrome was

found to be associated with acute lymphoblastic leukemia in an El

Salvadorian patient. The authors proposed that an increased risk

of cancer may be an endostatin associated effect and suggested

monitoring of KS cases with respect to leukemia or other cancers

[18].

Here, we report an Iranian family in which the proband was

initially diagnosed with congenital chorioretinal degeneration and

myopia. A combination of homozygosity mapping and whole

exome sequencing (WES) identified a novel mutation in COL18A1
and led to the diagnosis of Knobloch syndrome. This is the first

case of KS identified using such an approach. It is also the first KS

case found in a family of Iranian descent.

Materials and Methods

Enrollment of participants and clinical examinations
Recruitment of the family was based on interviews, question-

naires, and clinical examination of affected and unaffected

individuals by ophthalmologists and geneticists. An informed

written consent for clinical and molecular investigation was

obtained from all family members. The study was conducted in

accordance with the Helsinki Declaration. The approval for

genetic testing was awarded to The Institute of Medical Molecular

Genetics by the Federal Office of Public Health (FOPH) in

Switzerland. Complete ophthalmic examination was performed.

Visual acuity was measured using the Snellen chart. Ophthalmo-

logical exam was performed using the slit lamp biomicroscope,

indirect biomicroscopy and indirect ophthalmoscopy. Intraocular

pressure was measured by the Goldman tonometer. Flash ERG

was performed to evaluate the overall photoreceptor function.

DNA extraction
Peripheral blood samples were collected from all family

members. DNA was extracted using QIAamp DNA blood Midi

kits (Qiagen, Hilden, Germany).

Genotyping and linkage analysis
Whole genome genotyping for the proband and her parents was

carried out using the Genome-Wide Human SNP Array 6.0

(Affymetrix, Santa Clara, CA). Data were analyzed using the

program Graphical Representation of Relationships (GRR) [19].

Linkage analysis was performed assuming autosomal recessive

inheritance, full penetrance, consanguinity and a mutation carrier

frequency of 0.0001. Multipoint LOD scores were calculated using

the program ALLEGRO [20]. All data handling was done using

the graphical user interface ALOHOMORA [21]. Homozygous

genomic regions restricted to the patient and absent in her parents

were identified and a tab-delimited ‘‘regions of interest’’ file was

generated.

Whole exome sequencing analysis
Whole exome sequencing was performed using NimbleGen

SeqCap EZ Human Exome Library (Roche NimbleGen Inc.,

Madison, WI) for library preparation and paired-end 100 nt

sequencing on Illumina HiSeq Alignment of sequence reads,

indexing of the reference genome, variant calling and annotation

was done with a pipeline based on BWA [22], Samtools [23],

Picard and Annovar [24]. Variants were annotated using Alamut-

HT (Interactive Biosoftware, Rouen, France) and filtered against

the above described regions of interest file in order to obtain

variants within homozygous regions specific to the patient.

Variants were visualized on Alamut Viewer 2.2 (Interactive

Biosoftware, Rouen, France). A filtering pipeline was established

to remove known SNPs or benign polymorphisms. The following

variants passed the filter: (a) non-annotated novel SNPs (b) variants

with minor allele frequency#0.02 (c) variants with a SIFT score of

#0.05 (deleterious) as well as (d) variants with a MAPP

(Multivariate Analysis of Protein Polymorphism) -score ( = bad or

unknown).

Primer design, PCR amplification and Sanger sequencing
Primers were designed using Primer3 software [25] and

purchased at Microsynth AG (Balgach, Switzerland). Exon 42 of

COL18A1 was amplified in duplicate from genomic DNA of the

patient and available family members using Hot FirePol DNA

Polymerase (Solis BioDyne, Tartu, Estonia) and the following

primers: forward 59-GTGTCTGGCAGAAGCAGCAT-39 and

reverse 59-TCACAGGTCAGGGGAGAGTT-39. Sanger se-

quencing was performed using the Big Dye Terminator Cycle

v1.1 Sequencing Kit (Applied Biosystems, Carlsbad, California,

USA) and ABI Prism 3730 Genetic Analyzer (Applied Biosystems,

Carlsbad, California, USA). 192 randomly collected DNAs from

the general population were used to assess the frequency of the

mutation. Sanger sequencing data was analyzed using SeqScape

v2.6 (Applied Biosystems, Carlsbad, California, USA).

Results

Clinical Description
The female proband (IV-1, Figure 1a) was examined at 10 years

of age. She initially presented at eight months of age with deviation

and involuntary eye movements. On physical examination, at the
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first visit, she had nystagmus and esotropia, and normal anterior

segment oculus uterque (both eyes, OU) [specifically speaking iris

was normal OU and after pupillary dilation there was no

abnormality in lens periphery OU]. Cycloplegic refraction

revealed highly myopic refractive error OU (216.00 D). Dilated

fundus examination showed waxy optic discs (Figure 1c-white

arrow) with a cup-to-disc ratio of 0.1, arterial narrowing

(Figure 1b-white arrow) and a diffuse chorioretinal atrophy with

a well-defined central atrophic lesion in the center of the macula

OU (Figure 1c-arrowhead).

Her parents were first cousins and there was no history of any

similar condition in the family, apart from the high myopia in two

of the aunts (III-10: 28.00 D, OU with myopic chorioretinal

atrophy and III-11: 216.00 D: OD; 29.50–2.00685u:OS with

high myopic chorioretinal atrophy) (Figure 1a).

Flash electroretinography (ERG), demonstrated severely dimin-

ished amplitude of a and b waves OU which was in favor of both

cone and rod dysfunction (Figure 1d).

Based on clinical findings differential diagnosis included the

following:

1. Congenital-onset central chorioretinal dystrophy associated

with high myopia [26], this has been reported in a family in

middle east without genotyping; however ocular features are

very similar to our patient

2. Leber’s congenital amaurosis type with central macular

atrophy (NMNAT1 mutation) [27]. Ocular findings of this

type of leber’s is also very similar to what we saw in our patient

Eye glasses were prescribed for the patient and she was then

followed up somewhere else for seven years. At 8 years of age, her

physical and intellectual developments were normal. At school, she

maintained good academic standing, with the assistance of low-

vision aids such as magnifiers or magnified prints. On ophthalmic

examination, nystagmus was apparent. The best corrected visual

acuity (BCVA) was 20/400 OU and the refractive error was 2

12.50 D, OU. Dilated fundus examination was remarkable for

waxy optic nerve with a cup-to-disc ratio of 0.1, arterial narrowing

and diffuse chorioretinal atrophy (myopic changes) with a well-

defined central atrophic lesion with prominent underlying large

choroidal vessels. The clinical findings were the same as seven

years ago.

A few months later, she presented with a chief complaint of

visual field defect in the left eye for a few days. Fundus

examination revealed a superonasal retinal detachment. She

underwent 23-gauge pars plana vitrectomy (PPV) and silicone oil

injection. After 2 months, she developed cataract (as a conse-

quence of vitrectomy surgery); however, the retina was flat.

Cataract surgery and posterior chamber intraocular lens implan-

tation (PC IOL) were performed accompanied with removal of

silicone oil through a separate scleral incision. BCVA after the

surgery was 20/400. Two years later, she developed posterior

capsule opacity, which required YAG laser capsulotomy to restore

the vision.

Ophthalmic examination of the parents was unremarkable with

normal vision and extraocular movements, and normal anterior

and posterior segments. The proband’s two aunts (III-10 and III-

11, Figure 1a) had high myopia OU. Anterior segments were

normal OU. Fundus examination revealed chorioretinal atrophy

(myopic changes) without unusual findings.

Genetic Analysis
Genotyping and linkage analysis. Genome-wide genotyp-

ing of the patient-parent-trio with a high-density SNP array

identified19 homozygous regions that were unique to the proband

and not observed in her parents (table S1, figure S1). The LOD

(logarithm of odds) scores obtained for these homozygous regions

were not higher than 1.8 (figure S1) as expected for a trio with

consanguineous marriage.

Whole Exome Sequencing. In total, 8.87 Gb of data were

obtained upon sequencing that constituted about 9.5*107 reads.

While mean coverage was 98x, 97% of sequences had at least 10-

times coverage and 90% of the sequences were covered at least 30-

times. 38276 variants were obtained from the whole-exome

sequencing of the patient’s DNA and alignment to the reference

sequence. Using the ‘‘regions of interest’’ file (see Materials and

Methods), variants were annotated by using Alamut-HT. 2327

variants were obtained in the homozygosity regions of interest with

219 of them being novel (not annotated in dbSNP). Almost one-

fifth of the variants were missense mutations, 114 of them

predicted to be damaging. Table 1 lists the distribution of the

sequence variations. We subjected the 2327 variants to our

filtering pipeline (described in Materials and Methods) and found a

novel deletion in COL18A1: NM_130445.2:c.3825_3838del:p.-

Ser1276Alafs*9. This 14 bp deletion is predicted to cause a

frameshift at a highly conserved Serine residue at position 1276

(Figure 2) and results in a stop codon 9 triplets downstream.

Snapshots of Alamut Viewer 2.2 in figure 2 show the bidirectional

coverage of the sequencing reads where a deletion in exon 42 of

COL18A1 gene can be clearly seen (upper panel). The deletion is

also predicted to lead to strong loss of multiple exonic splicing

enhancers (Figure 2, lower panel).

Segregation Analysis. The family of the proband spanned

four generations and comprises 19 family members. The parents

of the index patient were first cousins. The proband and ten other

family members were involved in this study (Figure 1a). Subjects

were genotyped by direct Sanger sequencing of the mutation in

COL18A1 (NM_130445.2:c.3825_3838del:p.Ser1276Alafs*9).

Sanger sequencing confirmed the exome sequencing results that

the proband (IV-1, Figure 1a) was homozygous for this mutation

(Figure 2 and 3a). Parents of the proband (III-7 and III-8,

Figure 1a) were heterozygous for the same mutation (Figure 3a),

so were two uncles (III-3 and III-4) and two aunts (III-5 and III-11)

(data not shown). Three uncles (III-6, III-9 and III-12, Figure 1a)

and one aunt (III-10, Figure 1a) did not carry this mutation (data

not shown). This frameshift deletion cosegregated with the

phenotype in the family as an autosomal recessive trait as expected

for Knobloch syndrome. The mutation was absent in control

DNA samples of Caucasian origin from 192 unrelated individuals

tested for this mutation (data not shown). Controls from Iranian

descent were not available. Two of the aunts (III-10 and III-11,

Figure 1a) also showed high myopia but this condition did not

cosegregate with the identified COL18A1 frameshift deletion. III-

10 was homozygous for the reference allele and III-11 was

heterozygous for the mutation but both had high-grade myopia.

Discussion

The proband is the first case of Knobloch syndrome in a family

of Iranian descent. Twenty mutations leading to KS have been

described in the COL18A1 gene. This includes 5 missense

mutations [12,14,15,28–30], 3 mutations affecting correct splicing

[5,17,31], 5 small deletions [14,28,31,32], 4 small insertions

[14,28,31,33], 2 gross deletions [28,29,31] and 1 small indel [29]

(Source: HGMD Professional 2014.2).

Since the patient was an offspring of a first cousin marriage, we

employed a combined approach of homozygosity mapping and

whole exome sequencing and identified the disease-causing

Whole Exome Sequencing and Knobloch Syndrome
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Figure 1. a. Pedigree of a consanguineous family initially diagnosed with chorioretinal degeneration and high myopia (in some family members). b.
Color fundus photo OD shows the diffuse chorioretinal atrophy (white arrow points to the arterial narrowing). c. Color fundus photo OS showing the
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mutation using only a fraction of the time and costs in comparison

to that required by conventional analysis. By filtering the exome

data with our filtering pipeline (described in Materials and

Methods), only a single sequence variant in the COL18A1 gene

remained as a mutation candidate associated with the disease.

The patient was initially clinically characterized with congen-

ital-onset central chorioretinal dystrophy and myopia. Since we

found a mutation in COL18A1, a gene that had been previously

associated with Knobloch syndrome, we reanalyzed the clinical

data in depth. Retrospective evaluation of additional clinical data

upon identification of the mutation in COL18A1 revealed that the

patient had a meningocele surgically removed at 6 weeks of age.

Thus the clinical picture of the patient is consistent with Knobloch

syndrome. Mutations in COL18A1 are specific to Knobloch

Syndrome and no additional gene has been identified so far [29].

The phenotype includes retinal detachment, nystagmus and

congenital meningocele. While vitreoretinal degeneration is the

more common phenotype seen in KS patients, our patient showed

chorioretinal degeneration, a rather uncommon phenotype, which

has been previously reported by Mahajan et al. 2010 [18]. Two of

the family members of the patient had extreme myopia, which is a

phenotype frequently observed in KS patients. However, this did

not segregate with the COL18A1 mutation in the family.

The spectrum of ophthalmologic findings in KS was docu-

mented in a recent report by Khan et al [34] in eight patients. Six

of their patients had ectopia lentis, which was not seen in our case;

however their retinal findings are very similar to our case. We

suggest that in patients with congenital high myopia, retinitis

pigmentosa like chorioretinal atrophy and a well-defined atrophic

macular lesion, Knobloch syndrome should be considered as the

most likely diagnosis. It seems that anterior segment findings are

less consistent. These cases are at a high risk of retinal detachment

at young age and should be carefully observed.

Collagen XVIII is encoded by three isoforms, each differing in

their N-terminal regions. The mutation described in this study,

c.3825_3838del, causes a frameshift deletion in the last exon of

COL18A1, thus leading to an incomplete mRNA. This region of

COL18A1 also encodes for a cleavable protein called endostatin

that has been shown to be anti-angiogenic and inhibit tumor

formation [7]. The identified mutation causes loss of the terminal

60 amino acids of endostatin (Figure 3c, truncated amino acids are

highlighted in yellow). This immediately points to a role of

endostatin in the disease physiology of KS. Endostatin is encoded

by all isoforms of COL18A1, therefore, a mutation in the domain

containing endostatin will affect all isoforms of COL18A1.
Previous studies have shown a severe loss of endostatin levels in

KS patients [14,31]. Due to poor health condition of the proband,

we could not obtain additional samples for verifying her endostatin

levels.

Fukai et al. showed that mice lacking collagen XVIII/

endostatin manifest developmental eye defects, e.g. lack or

abnormal outgrowth of retina, delayed regression of blood vessels

in the vitreous along the surface of retina after birth and reduced

expression of VEGF (Vascular Endothelial Growth Factor) [35].

Persistent fetal vasculature is the other endostatin-deficiency

related condition in KS patients. Loss of endostatin or its

deficiency might cause delayed or reduced fetal blood vessel

regression in the eye. This can cause failure of normal vascular

development in the retina [16]. Endostatin physically interacts

with extracellular matrix components such as laminin-1, fibulin-1,

fibulin-2, fibronectin, heparin sulfate, nidogen-2 and perlecan

[16,31,36,37]. Mutations in collagen XVIII/endostatin that lead

to loss of the protein/protein function might thus cause changes in

the overall structural organization and stability of the extracellular

matrix. Therefore, phenotypic variations of mutations in collagen

XVIII could be either due to reorganization of the ECM

(structural changes) or through defects in angiogenesis during

eye development.

This study describes a novel KS-causing mutation in COL18A1.
Our results also suggest a role of endostatin in the physiopathology

of KS. In the genetic analysis of this case, even though the LOD

scores obtained upon linkage analysis were not significant

(Significance $3, figure S1), using the relatively small homozygous

regions, we were able to detect the disease-causing mutation upon

whole exome analysis. Identification of the mutation using this

combined approach can facilitate the confirmation of the clinical

diagnosis when the initial clinical picture is not fully clear. In our

case, the initial clinical diagnosis was congenital-onset central

waxy optic disc (white arrow) and the well-circumscribed macular atrophic lesion (arrowhead). d. Flash ERG OU demonstrates severely diminished
amplitudes of the a and b waves.
doi:10.1371/journal.pone.0112747.g001

Table 1. Classification of the type of homozygous variants obtained by linkage analysis and whole exome sequencing.

Type of sequence alteration SIFT prediction Number Annotated SNPs Novel variants

Nonsense (stop) mutation - 2 2 0

Amino acid substitution damaging 114 82 28

Amino acid substitution tolerated 378 357 21

Silent mutation - 685 629 56

Intronic or UTR mutation - 1031 924 107

Frameshift deletion - 4 3 1

Frameshift insertion - 2 2 0

In-frame deletion - 5 5 0

In-frame duplication - 4 3 1

In-frame insertion - 1 1 0

Upstream and downstream mutations - 101 96 5

doi:10.1371/journal.pone.0112747.t001

Whole Exome Sequencing and Knobloch Syndrome
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chorioretinal dystrophy and myopia. Identification of a mutation

in COL18A1 led to a retrospective clinical analysis upon which the

clinical diagnosis was confirmed to be Knobloch syndrome. With

different medical systems across the world and increased mobility

of human beings to different countries and geographical areas, a

complete clinical record is not always available to clinicians.

Molecular analysis tools such as that described is this study can

provide the necessary support for a precise clinical characteriza-

Figure 2. Coverage of sequencing reads in COL18A1 including a 14 bp deletion (NM_130445.2:c.3825_3838del:p.Ser1276Alafs*9
(Exon 42) as seen on Alamut Viewer 2.2.0 (Upper panel). A loss of multiple strong ESEs is predicted due to the deletion (Lower panel).
doi:10.1371/journal.pone.0112747.g002
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PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e112747



tion and diagnosis of the disease. This may contribute to

application of correct treatment and or medical care regimen. In

addition, this approach led to identification of the underlying

causative mutation using a fraction of the costs and time in

comparison to the conventional candidate gene approaches. Thus,

it presents a strong case for using a combined approach of linkage

analysis (homozygosity mapping) with exome sequencing for rapid

and cost-effective diagnosis of Mendelian diseases.

Supporting Information

Figure S1 Genome-wide linkage analysis: Parametric
linkage analysis of the family was performed with

Figure 3. a. Sanger sequencing of COL18A1 mutation NM_130445.2:c.3825_3838del:p.Ser1276Alafs*9 (Exon 42) comparing a wild type sequence
(top), homozygous deletion in index patient IV-1 (middle) and heterozygous deletion in father of the index patient (bottom). b. Conservation of the
deleted nucleotides across various species. c. Alignment of three isoforms of COL18A1 and endostatin. The highlighted region is deleted in patient IV-
1.
doi:10.1371/journal.pone.0112747.g003
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20,044 selected SNP markers from the Affymetrix SNP
Array 6.0. LOD scores (y-axis) were calculated using ALLEGRO

and plotted against the genetic distance in cM (centi Morgan) on

the x-axis, which is used as a surrogate for the genomic position.

Chromosomes are concatenated from p-ter to q-ter from left to

right.

(TIF)

Table S1 Homozygous regions in patient IV-1 obtained
by linkage analysis and subtracting common homozy-
gous regions from parents.
(DOCX)
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