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Conformist and anticonformist transmission of dichotomous cultural traits (i.e., traits
with two variants) have been studied both experimentally, in many species, and theoret-
ically, with mathematical models. Signatures of types of conformity to polychotomous
traits (with more than two variants; e.g., baby names and syllables in bird song)
have been inferred from population-level data, but there are few models that include
individual-level biases among more than two discrete variants. We generalize the
standard dichotomous trait conformity model by Boyd and Richerson to incorporate
n ≥ 3 role models and m ≥ 2 variants. Our analysis shows that in the case of
n = 3 role models, under anticonformity, the central polymorphic equilibrium p∗ =
( 1
m
, . . . , 1

m
) is globally stable, whereas under conformity, if initially the frequencies of

� variants are all equal to the maximum variant frequency in the population, there is
global convergence to an equilibrium in which the frequencies of these variants are all
1
�

and all other variants are absent. With a general number n of role models, the same
result holds with conformity, whereas under anticonformity, global convergence is not
guaranteed, and there may be stable frequency cycles or chaos. If both conformity and
anticonformity occur for different configurations of variants among the n role models, a
variety of novel polymorphic equilibria may exist and be stable. Future empirical studies
may use this formulation to directly quantify an individual’s level of (anti)conformist
bias to a polychotomous trait.
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Cultural traits, such as tools, ideas, components of speech, or behaviors (1), can have
different types, known as variants. Dichotomous cultural traits have two variants, such as
pro vs. con opinions or the presence vs. absence of behaviors. Polychotomous cultural traits
have three or more variants; examples include baby names, fashions, and components of
birdsong. The transmission of dichotomous and polychotomous traits may be nonrandom,
or biased, and two biases that have been widely studied are conformity and anticonformity.
Conformity entails that a more common cultural variant is adopted at a rate greater than
its population frequency, while under anticonformity, the adoption rate is less than its
frequency (2).

Many empirical studies of conformity and anticonformity have explored dichotomous
cultural traits. For example, in ref. 3, children were presented with two arrays with
dots and asked which had more dots, and in ref. 4, individuals were shown two shapes
rotated at different angles and asked whether they were the same or different shapes.
Participants conformed to the answers of others in the mental rotation task (4), and
in ref. 3, young children anticonformed to others’ choices, whereas older children
conformed. In nonhuman animals, conformity to a dichotomous trait was exhibited by
sticklebacks choosing between feeders (5), great tits deciding whether to push a puzzle
box slider to the left or right (6, 7), and female fruit flies copulating with pink or green
males (8).

In ref. 9, people were shown two lines (a dichotomous trait) or more than two lines, with
a maximum of six (a polychotomous trait), and were asked which line was longest. The
authors found that the strength of conformity increased as the number of lines increased.
They explained (ref. 9, p. 11):

“. . .consider a world with only 2 [variants]—black and white shirts. The
presence of black shirts at anything above 50% suggests that people are selecting
black shirts above chance. However, in a world with four [variants]—black,
white, green, and red shirts—black shirts need only be present above 25% to
suggest selection above chance. . .all current models and experiments may have
been underestimating the strength of the conformist bias, because there are often
more than 2 [variants] in the real world.”

Thus, modeling (anti)conformity to a polychotomous trait may help empiricists
adequately assess levels of conformity rather than relying on dichotomous trait models.
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The authors also found that the strength of conformity and the
reliance on social learning increased with group size for the di-
chotomous but not for the polychotomous trait, perhaps because
as the number of variants increases, “larger groups are required for
group size to have a discernible effect” (ref. 9, p. 19).

There is some evidence for (anti)conformity to real-world
polychotomous traits that have hundreds to thousands of variants.
As directly measuring individual biases among a large number
of variants can be difficult, many studies have inferred cultural
transmission biases from signatures in population-level data. For
example, in ref. 10, the turnover in baby names—i.e., the number
of new names that enter the list of top names—was plotted as a
function of top list size (top 5 names, top 10 names, etc.). A con-
cave plot suggested anticonformity, while a convex plot suggested
conformity or content-biased transmission (where the latter is a
bias for a particular variant over another). Recent distributions of
common baby names appeared to be under anticonformist bias,
whereas in earlier decades, common male baby names appeared
to be under conformist or content-biased transmission, although
these could not be distinguished (10).

Another population-level signature of conformity is the sig-
moidal curve that can appear when the probability of adopting
a variant is plotted against that variant’s population frequency (2).
Acerbi et al. (11) contended that a sigmoidal curve could also
be observed under content bias and demonstrator bias (the latter
occurs if variants are copied randomly from a particular subset
of individuals in the population) and questioned whether there
was “strong support for the existence of conformist transmission
at all” (ref. 11, p. 6). However, Smaldino et al. (12) reran the
simulations in ref. 11 with different and possibly more realistic
assumptions (table 1 in ref. 12) and found that the sigmoidal curve
no longer appeared under content bias, while with demonstrator
bias only a slightly sigmoidal curve appeared under some condi-
tions. They concluded that sigmoidal curves are much more likely
to result from conformist transmission than content-biased or
demonstrator-biased transmission. When models of conformity,
content bias, and demonstrator bias were each fitted to empirical
data on the distributions of syllables in swamp sparrow song
(13), the distributions were most consistent with conformist
bias.

Despite the prevalence of polychotomous traits, the majority of
the many theoretical studies of conformity involve dichotomous
traits. In refs. 1 and 2, two models of frequency-dependent trans-
mission of a dichotomous cultural trait (with variants A and B,
say) were proposed, both of which could incorporate conformity
or anticonformity. In ref. 2, individuals randomly sample n role
models from the previous generation, and there are different
conformity coefficients for different samples of role models (e.g.,
individuals might conform more strongly if 60% of role models
share a variant than if 90% do, or vice versa). Many subsequent
theoretical studies involving conformity to dichotomous traits
have taken n to be three (14–21), in which case there is a single
conformity coefficient, or have adopted another formulation that
also includes a single conformity coefficient (18, 22, 23). Some
models have added parameters for content bias (15, 24), payoff-
dependent bias (16), individual learning (14, 17–19, 21), or
various forms of group selection (20, 22). In ref. 25, Boyd and
Richerson’s (2) conformity models for a dichotomous trait with
n > 3 role models and more than one conformity coefficient were
reexamined and shown to exhibit dynamics that were not observed
with n = 3 role models, including stable asymmetric polymorphic
equilibria, exact cycles in variant frequencies (if n ≥ 5), and chaos
(if n ≥ 10). In ref. 26, further generalizations allowed conformity
coefficients to vary stochastically over time.

Fewer models of conformity have incorporated a polychoto-
mous trait. Henrich (15) argues that a polychotomous trait can be
approximated by a dichotomous trait in some contexts (ref. 15, p.
994): “In the typical diffusion of an innovation, tracking only two
traits is sufficient to capture the essential process: Trait 1 represents
the presence of the novel trait (the “innovation”), and Trait 2
indicates the absence of the trait. If we are, for example, studying
the spread of a new nitrogen fertilizer, an individual possesses Trait
1 if he or she uses the fertilizer and possesses Trait 2 if he or she
does not use the fertilizer.”

However, consider the following example. Prior to the occur-
rence of the novel type, suppose there are two types of fertilizer,
denoted by A and B, each frequency at 1

2 . A new type, C, appears
in the population at a small frequency, denoted by ε. Considering
only two variants, namely, “C /not C” as in ref. 15, would lead
one to conclude that under weak anticonformity, the frequency
of C would be 1

2 at equilibrium (2, 25). However, this is incorrect
because with three variants, a frequency 1

2 of one variant would
render it common and thus disfavored under anticonformity;
instead, a frequency 1

3 of all variants would be the intuitive
equilibrium in this case. If instead there were conformist trans-
mission when C was introduced at a low frequency ε, then in the
dichotomous C /not C framework, the type that is not C would
be expected to reach fixation (2, 25). However, a polychotomous
conformity model is more informative because it can tell us which
of A or B (or neither) will fix in the population. When C first
appears, let the frequency of A become 1

2 − η and the frequency
of B become 1

2 − δ, where η and δ are small. If η < δ, then A will
fix; if η > δ, then B will fix; and if η = δ, both A and B will be
favored over C, but neither A nor B will be favored over the other,
so the frequencies of A and B will be 0.5 at equilibrium (shown in
Result 5). Thus, a polychotomous trait model is more appropriate
than a dichotomous trait model in such situations.

Among the few theoretical studies of conformity with poly-
chotomous traits, refs. 18, 23, 27 allowed social and individual
learners in variable environments to acquire one of many variants,
with either one (18, 23) or more (27) variants having a fitness
advantage in a given environmental state. In these studies, social
learners could be conformist, with a single conformity coefficient.
A continuous trait was explored in refs. 28–30, where cultural
transmission was a function of a group’s mean trait value (among
other variables). In refs. 29 and 30, “conformists” preferentially
adopted trait values equal to or near this mean trait value. This
definition of conformity differs from the definition for a discrete
cultural trait: in the latter case, conformists preferentially adopt
the most common variant (i.e., the modal variant).

The present study explores conformist and anticonformist
transmission of a discrete and selectively neutral polychotomous
cultural trait (e.g., pottery motifs, dog breeds, or baby names)
in a stable environment. Rather than incorporating a single
conformity coefficient, we allow (anti)conformity to vary flexibly
for different samples of role models provided n ≥ 4 role models
are observed. For example, if the name “Mary” is slightly more
popular than other names, an individual might conform and
name a child Mary, but it would be unrealistic to expect the same
level of conformity if, say, 80% of all people that the individual
observed were named Mary. Our previous studies (25, 26) focused
on dynamical properties of the commonly studied model (2) of
a dichotomous trait, which could include multiple conformity
coefficients if n ≥ 5 role models were sampled. Here we generalize
ref. 25 to incorporate an arbitrary number m of cultural variants
with n role models. If n is taken to be 3, as is often the case in
models of conformity with dichotomous traits, then there is a
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single conformity coefficient, and there is global convergence of
the population to one of two equilibria: equal frequencies of all
variants initially present in the population, under anticonformity,
or equal frequencies of the variant(s) that were initially present at
the maximum frequency in the population, and zero frequency
for all other variants, under conformity. With a general number n
of role models and multiple conformity coefficients, conformity
entails global convergence to the same equilibrium as with n = 3.
However, with anticonformity and n role models, it is possible
that no equilibrium is reached, and stable frequency cycles, or
chaos, may arise. If individuals can conform or anticonform
depending on the configuration of sampled role models, the
dynamics can be much more complex. For example, a variety of
novel asymmetric polymorphic equilibria may exist and be stable.

Model

Suppose there are m variants A1,A2, . . . ,Am in the population.
Each offspring samples n adults, known as role models, and
observes their state x = (x1, x2, . . . , xm), where xi is the number
of sampled role models with variant Ai for i = 1, 2, . . . ,m .
For example, if n = 10 role models were observed and 3 had
variant A1, 5 had variant A2, and 2 had variant A4, then x =
(3, 5, 0, 2, 0, . . . , 0). Therefore, 0≤ xi ≤ n and

∑m
i=1 xi = n .

The number of different configurations for the possible role model
states is

(
m−1+n

n

)
.

Let p1, p2, . . . , pm be the initial population frequencies of
variants A1,A2, . . . ,Am , respectively, and as in ref. 2, assume
that the n role models are randomly chosen from the population.
Then the probability of the state x = (x1, x2, . . . , xm) is

P(x ) =
n!

x1!x2! · · · xm !
px1
1 px2

2 · · · pxm
m . [1]

Given x , and following ref. 2, the probability that an offspring
adopts type Ai can be written

P(Ai | x ) =
xi
n

+
Di(x )

n
[2]

for i = 1, 2, . . . ,m , where xi
n is the frequency of type Ai in the

sample of n role models and Di(x ) is the conformity coefficient
for type Ai , which depends on the role model state x . (Thus,
if individuals were neither conformist nor anticonformist biased,
i.e., Di(x ) = 0, the probability of adopting type Ai would equal
its observed frequency.) We assume that

−xi <Di(x )< n − xi for i = 1, 2, . . . ,m and [3a]
m∑
i=1

Di(x ) = 0. [3b]

The frequencies p′
1, p

′
2, . . . , p

′
m of them typesA1,A2, . . . ,Am ,

respectively, in the offspring population are then p′
i =∑

x

[
xi
n + Di (x)

n

]
P(x ), which can be written as

p′
i = pi +

1

n

∑
x

Di(x )
n!

x1!x2! · · · xm !
px1
1 px2

2 · · · pxm
m [4]

for i = 1, 2, . . . ,m . Here 1
n

∑
x xiP(x ) = npi

n = pi by taking
the expectation of the multinomial distribution. For each state
x = (x1, x2, . . . , xm), the vector D(x ) = (D1(x ),D2(x ), . . . ,
Dm(x )) of conformity coefficients for variants A1,A2, . . . ,Am

satisfies [3a] and [3b]. It is also assumed that D(x ) has the
following properties:

P(i) If type Ai is absent in the sample of role models, then
offspring do not acquire Ai . In other words, if xi = 0, then
Di(x ) = 0 for i = 1, 2, . . . ,m .

P(ii) D(x ) is symmetric with respect to the m types A1,
A2, . . . ,Am .

Property P(ii) entails that if for the state x = (x1, x2, . . . , xm)
we have xi = xj , then Di(x ) =Dj (x ). Also, if the two states
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) have identical
components but in a different order, then the corresponding
vectors D(x ) and D(y) have the same components in the
different order. That is, if yj = xi , thenDj (y) =Di(x ) for i , j =
1, 2, . . . ,m . Thus, for example, the extent to which an individual
(anti)conforms to variant A1 given the sample x = (5, 3, 2) is
the same as the extent to which an individual (anti)conforms
to variant A2 given the sample x = (2, 5, 3). In both cases, the
variant of interest is present in 5 of 10 role models, and two other
variants are present in 3 and 2 role models. Applying properties
P(i) and P(ii), we have, for example, that

D(n, 0, . . . , 0) =D(0,n, 0, . . . , 0) = · · ·
=D(0, . . . , 0,n) = 0. [5]

The symmetry property P(ii) entails that all the D(x ) in
Eq. 5 are equal, and by property P(i), Di(n, 0, . . . , 0) = 0
for i = 2, . . . ,m . However, as

∑m
i=1 Di(x ) = 0 for any state

x , we also have D1(n, 0, . . . , 0) = 0 and so D(n, 0, . . . , 0) =
(0, 0, . . . , 0) = 0.

Similarly, if n
m is an integer, then D( n

m , n
m , . . . , n

m ) =
(0, 0, . . . , 0) = 0. This follows from the symmetry property
P(ii), which entails that Di(

n
m , . . . , n

m ) =Dj (
n
m , . . . , n

m ) for
all i , j = 1, 2, . . . ,m and the fact that

∑m
i=1 Di(

n
m , . . . , n

m ) =
0. It also follows in general that D(k , k , 0, 0, . . . , 0) = 0,
D(�, �, �, 0, . . . , 0) = 0, and so on if k = n

2 , �= n
3 , etc., are

integers.
We now turn to some examples of the evolutionary dynamics

for the recursion system in Eq. 4.

n = 3 Role Models and m ≥ 3 Variants

In the simplest polychotomous trait conformity model, there are
n = 3 role models and m = 3 variants. Any role model state x =
(x1, x2, x3) has x1 + x2 + x3 = 3. There are 10 possible states:

(3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1),

(1, 2, 0), (1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1).
[6]

By properties P(i) and P(ii) above, the associated conformity
vectors D(x1, x2, x3) =D(x ) = (D1(x ),D2(x ),D3(x )) (see
below Eq. 4) are
D(3, 0, 0)=D(0, 3, 0)=D(0, 0, 3) =D(1, 1, 1) = (0, 0, 0),

[7]

and if D(2, 1, 0) = (D ,−D , 0), then by symmetry,
D(2, 1, 0) = (D ,−D , 0), D(2, 0, 1) = (D , 0,−D)

D(1, 2, 0) = (−D ,D , 0), D(1, 0, 2) = (−D , 0,D)

D(0, 2, 1) = (0,D ,−D), D(0, 1, 2) = (0,−D ,D).

[8]

From Eq. 2 we have

If xi = 0 or 3 then P(Ai | x ) =
xi
3

If xi = 2 then P(Ai | x ) =
2

3
+

D

3

If xi = 1 then P(Ai | x ) =
1

3
− D

3
.

[9]
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Table 1. n = 3 role models and m = 3 variants

Offspring probabilities P(Ai | x)
Role model state, x A1 A2 A3 P(x)
(3, 0, 0) 1 0 0 p3

1
(0, 3, 0) 0 1 0 p3

2
(0, 0, 3) 0 0 1 p3

3
(2, 1, 0) 2

3 + D
3

1
3 − D

3 0 3p2
1p2

(2, 0, 1) 2
3 + D

3 0 1
3 − D

3 3p2
1p3

(1, 2, 0) 1
3 − D

3
2
3 + D

3 0 3p1p2
2

(1, 0, 2) 1
3 − D

3 0 2
3 + D

3 3p1p2
3

(0, 2, 1) 0 2
3 + D

3
1
3 − D

3 3p2
2p3

(0, 1, 2) 0 1
3 − D

3
2
3 + D

3 3p2p2
3

(1, 1, 1) 1
3

1
3

1
3 6p1p2p3

In this case, the 10 conformity vectors D(x1, x2, x3) are deter-
mined by one parameter D and by Eq. 9, −2<D < 1. We then
have the offspring probabilities in Table 1.

By Eq. 8, for example, D1(2, 1, 0) =D and D2(2, 1, 0) =
−D . The recursion for A1 is

p′
1 = p3

1 +3p2
1p2

(
2
3 +

D
3

)
+3p2

1p3
(
2
3 +

D
3

)
+3p1p

2
2

(
1
3 − D

3

)
+3p1p

2
3

(
1
3 −

D
3

)
+6p1p2p3

(
1
3

)
, [10]

with similar recursions for p′
2 and p′

3. Since p1 + p2 + p3 = 1,
these recursions can be written as

p′
i = pi +Dpi [pi − (p2

1 + p2
2 + p2

3)] i = 1, 2, 3. [11]

We then have the following result concerning possible equilib-
ria and their local stability properties.

Result 1. For n = 3 role models, m = 3 variants, and D �= 0,

(i) The possible equilibria are 3 “corners” c1 = (1, 0, 0),
c2 = (0, 1, 0), and c3 = (0, 0, 1); 3 “boundary” equilibria
b1 = (0, 1

2 ,
1
2 ), b2 = ( 12 , 0,

1
2 ), and b3 = ( 12 ,

1
2 , 0); and 1

central polymorphic equilibrium p∗ = ( 13 ,
1
3 ,

1
3 ).

(ii) If D > 0, the only locally stable equilibria are the 3 “corners.”
If D < 0, the central polymorphism is the only locally stable
equilibrium.

The proof of Result 1 is in SI Appendix, section A.
When n = 3 and there are any number m of variants

with m ≥ 3, then since x = (x1, x2, . . . , xm) must sat-
isfy

∑m
i=1 xi = n = 3, there are only three types of role

model states x (up to symmetry), namely, (3, 0, . . . , 0),
(2, 1, 0, . . . , 0), and (1, 1, 1, 0, . . . , 0). Now D(3, 0, . . . , 0) =
D(1, 1, 1, 0, . . . , 0) = (0, 0, . . . , 0), and if D(2, 1, 0, . . . , 0) =
(D ,−D , 0, . . . , 0), then again all the conformity vectors
D(x1, x2, . . . , xm) are determined by one parameter D , Eq.
9 holds, and Eq. 4 reduces to

p′
i = pi +Dpi

[
pi −

m∑
j=1

p2
j

]
i = 1, 2, . . . ,m. [12]

As in the case of m = 3 variants, if D �= 0, then at equilib-
rium, either pi = 0, pi = 1, or if pi > 0 and pj > 0 with i �=
j , then pi = pj . Hence, there is a central polymorphic equi-
librium p∗ = ( 1

m , 1
m , . . . , 1

m ), m corners c1 = (1, 0, . . . , 0),
c2 = (0, 1, 0, . . . , 0), . . . , cm = (0, 0, . . . , 0, 1), and boundary

equilibria p̂ = (p̂1, p̂2, . . . , p̂m) where some of the p̂i values are
zero and all of the nonzero p̂i values are equal. Local stability of
the equilibria is described by the following result.

Result 2. With n = 3 role models, m ≥ 3 variants, and D �= 0:

(i) If D > 0, then all the m corners c1, c2, . . . , cm are locally
stable, and the other equilibria are not stable.

(ii) If D < 0, the central polymorphism is the only locally stable
equilibrium.

The proof of Result 2 is similar to that of Result 1 and is given
in SI Appendix, section A.

In the original model of ref. 2 with n = 3 role models and m =
2 variants, there was global convergence. This is also the case here
with m ≥ 3 and n = 3, which we state as follows.

Result 3. With n = 3 role models and m ≥ 3 variants, if D �= 0,
then starting with p(0) = (p

(0)
1 , . . . , p

(0)
m ) �= p∗, where p∗ is an

equilibrium, and p
(0)
i > 0 for all i = 1, 2, . . . ,m :

(i) If D > 0 and initially pj = max
1≤i≤m

pi is unique (i.e., pj > pi

for all i �= j ), then there is global convergence to the corner cj ,
where pj = 1.

(ii) If D > 0 and initially the frequencies of � variants are equal
to max

1≤i≤m
pi , then the final frequencies of these � variants are

1
� , while the final frequencies of the other variants are zero.

(iii) If D < 0, then p∗ = ( 1
m , 1

m , . . . , 1
m ) is globally stable.

The proof of Result 3 is given in SI Appendix, section A.
Table 2 summarizes these and other findings for the current
model with m ≥ 3 variants and shows how they can differ from
previous results of refs. 2 and 25 concerning (anti)conformist
transmission of a dichotomous trait.

n > 3 Role Models and m = 3 Variants

With n > 3 role models, there is more than one conformity
coefficient, and the dynamics become more complicated than for
n = 3. For example, with n = 4 role models and m = 3 variants,
there are two conformity coefficients that can be nonzero, one
corresponding to role model state x = (3, 1, 0) (or by symmetry,
x = (1, 3, 0), (0, 1, 3), etc.) and the other corresponding to the
states x = (2, 1, 1), (1, 2, 1), and (1, 1, 2). Denote the former by
D ′ and the latter by D, where −3<D ′ < 1 and −2<D < 2.
Then, from Eq. 4, with i �= j �= k and i , j , k ∈ {1, 2, 3},

p′
i = pi +D ′pi(1− pi)(2pi − 1)

+ 3pi(p
2
j pk + pjp

2
k )

(
D ′ − 1

2D
)
+ 3Dp2

i pjpk .
[13]

If D ′ �= 0 and/or D �= 0, equilibria include corners, (1, 0, 0),
(0, 1, 0), and (0, 0, 1); boundary equilibria, ( 12 ,

1
2 , 0), (

1
2 , 0,

1
2 ),

and (0, 1
2 ,

1
2 ); and the symmetric internal equilibrium ( 13 ,

1
3 ,

1
3 ).

There are no other boundary equilibria (25), but there can be three
other interior equilibria (SI Appendix, section A), namely

(p∗
1 , p

∗
2 , p

∗
3 ) =

(
−2D ′ − 3D

2D ′ − 3D
,

2D ′

2D ′ − 3D
,

2D ′

2D ′ − 3D

)
,(

2D ′

2D ′ − 3D
,
−2D ′ − 3D

2D ′ − 3D
,

2D ′

2D ′ − 3D

)
,(

2D ′

2D ′ − 3D
,

2D ′

2D ′ − 3D
,
−2D ′ − 3D

2D ′ − 3D

)
.

[14]
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Table 2. Population dynamics for dichotomous and polychotomous traits, assuming that initially, p1, . . . , pm > 0
and the population is not at equilibrium

Transmission Role models Dichotomous trait (m = 2 variants) Polychotomous trait (m > 2 variants)
Purely conformist n = 3 Global convergence to a corner. Global convergence to an equilibrium.

If initially, the frequencies of �≥ 1
variant(s) are equal to max

1≤i≤m
pi, the

final frequencies of these � variant(s)
are 1

�
, while other variant(s) are lost.

Purely conformist Any n Global convergence to a corner. Same as above.
Purely anticonformist n = 3 Global convergence to p∗ = ( 1

2 , 1
2 ). Global convergence to p∗ = ( 1

m , . . . , 1
m ).

Purely anticonformist n = 4 Global convergence to p∗ = ( 1
2 , 1

2 ). Numerical results suggest convergence
to p∗ = ( 1

m , . . . , 1
m ), but this has not

been proven analytically.
Purely anticonformist n = 5 Convergence is not guaranteed. Numerical results suggest convergence

to p∗ = ( 1
m , . . . , 1

m ), but this has not
been proven analytically.

Purely anticonformist Any n Convergence is not guaranteed. Convergence is not guaranteed.
Conformist and anticonformist n = 4 Not possible. A variety of population dynamics are

possible (e.g., Result 4 and Fig. 1).
Conformist and anticonformist n = 5 It is possible that corners and

p∗ = ( 1
2 , 1

2 ) are unstable, while
asymmetric polymorphic equilibria
are stable or vice versa.

A variety of population dynamics are
possible; e.g., asymmetric interior
equilibria may be stable (Fig. 2).

If D ′ > 0, the equilibria given by Eq. 14 are valid (i.e.,
0< p∗

i < 1 for i = 1, 2, 3) if 0<D ′ <− 3
2D , where D < 0. If

D ′ < 0, they are valid if − 3
2D <D ′ < 0, where D > 0. The

local stability properties of equilibria with n = 4 role models and
m = 3 variants are given as Result 4 :

Result 4. With n = 4 role models, m = 3 variants, and D ′,
D �= 0:

(i) The corners are locally stable if and only if (iff ) D ′ > 0.
(ii) Boundary equilibria such as (0, 1

2 ,
1
2 ) are locally stable in

their boundaries iff D ′ < 0 and locally stable in general iff
− 3

2D <D ′ < 0.
(iii) The central polymorphic equilibrium p∗ = ( 13 ,

1
3 ,

1
3 ) is locally

stable iff D ′ <− 3
4D .

(iv) The three interior equilibria given by Eq. 14 are always
unstable.

The proof of Result 4 is in SI Appendix, section A. Fig. 1
illustrates a set of trajectories for the three recursions exemplified
by Eq. 13. We see that when equilibria in Eq. 14 exist, they are on
curves that separate domains of attraction to the three boundary
equilibria.

With n = 5 role models and m = 3 variants, there are four
distinct, nonzero conformity coefficients (SI Appendices B and
E - Table S2). In this case we can find six interior equilibria at
which two variant frequencies are equal, and our numerical anal-
ysis indicates that unlike the case of n = 4 and n = 3 role models
with m = 3 variants, these equilibria may be stable (Fig. 2). We
cannot exclude the existence of other equilibria where all of p1, p2,
and p3 are nonzero and unequal.

Generalizations to n Role Models and
m Variants

Equilibria and Local Stability. In all the above examples, there are
corner equilibria such as (1, 0, . . . , 0), boundary equilibria such

as ( 12 ,
1
2 , 0, . . . , 0), etc., up to a central symmetric polymorphism

( 1
m , 1

m , . . . , 1
m ). This is the case in general with n role models

and m variants. The proof is in SI Appendix, section C.
In SI Appendix, section D, we show that the polymorphic equi-

librium p∗ = ( 1
m , 1

m , . . . , 1
m ) is locally stable iff

|1 + m
m−1α|< 1, [15]

Fig. 1. Dynamics with n = 4 role models and m = 3 variants, where D′ =
−0.3 and D = 0.9 in Eq. 13. The base of each arrow is located at a starting
position (p(0)

1 , p(0)
2 , p(0)

3 ), and the tip of the arrow is at the final position
after five generations. Filled circles mark stable equilibria, and open circles
mark unstable equilibria, although unstable equilibria may be stable along
an axis (for example, see pi = pj �= pk > 0, where i �= j �= k). Here 2D′ + 3D =
2.1 > 0, so there are unstable interior equilibria given by Eq. 14, and the
equilibria p∗ = ( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 ), and (0, 1

2 , 1
2 ) are stable. Corner equilibria

are unstable, and p∗ = ( 1
3 , 1

3 , 1
3 ) is unstable because 4D′ + 3D = 1.5 > 0.
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Fig. 2. Dynamics with n = 5 role models and m = 3 variants, where D′′′ =
−1.5, D′′ = 0.9, D′ = 1.9, and D = −0.5. The base of each arrow is at the
starting point (p(0)

1 , p(0)
2 , p(0)

3 ), and the top of the arrow is at the ending point
after 20 generations. Stable equilibria are shown as filled circles, and unstable
equilibria are shown as open circles.

where

α= 1
n·mn−1

∑
x

Di(x )
n!

x1!x2!···xm ! · xi i = 1, . . . ,m, [16]

and that all corners are locally stable iff D1(x )> 0 for x =
(n − 1, 1, 0, 0, . . . , 0).

Rationale for Multiple Conformity Coefficients: Classifying
D(x). With n role models and m variants, there may be many
different conformity coefficients D(x ). We propose the following
rationale to reduce this number by using a single coefficient for
each sample configuration, x . Let r be the number of variants
present in at least one role model in the sample x . Then the
average representation of a variant that is present in the sample is
n
r (which may or may not be an integer). For i = 1, 2, . . . ,m ,
we can then write

P(Ai | x ) =
xi
n

+
Di(x )

n
=

xi
n

+
gi(x )d(x )

n
, [17a]

where

gi(x )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if xi ∈ I I = {x : x = 0, n

r ,n}
xi∑

z∈II
z if xi ∈ II II = {x : n

r < x < n}

− x−1
i∑

z∈III
z−1 if xi ∈ III III = {x : 0<x < n

r }.
[17b]

Here d(x ) is the constant conformity coefficient that depends
on the sample configuration x (and d(x ) is equivalent to d(y) if
y has all the same values x1, x2, . . . , xm but in another order).

The intuition behind Eq. 17 can be illustrated with an
example. Suppose that a sample of n = 100 role models
contains 25 A1, 20 A2, 20 A3, 10 A4, 10 A5, 10 A6, and
5 A7 so that x = (25, 20, 20, 10, 10, 10, 5, 0, . . . , 0). Then
the probabilities of adoption, according to Eq. 17, are A1 :
25
100 +

(
25
65

) d(x)
100 , A2 :

20
100 +

(
20
65

) d(x)
100 , A3 :

20
100 +

(
20
65

) d(x)
100 ,

A4 :
10
100 − 0.2d(x)

100 , A5 :
10
100 − 0.2d(x)

100 , A6 :
10
100 − 0.2d(x)

100 ,
and A7 :

5
100 − 0.4d(x)

100 .
Here, the average representation of Ai in the role models is

(100 role models)/(7 variants) ≈ 14 individuals. The positive
conformity coefficient (+d(x)

100 ) is partitioned among the three
variants that are represented in more than 14 role models, al-
located according to their frequencies in this subsample of 65
(25 + 20 + 20). The negative conformity coefficient (−d(x)

100 ) is
partitioned among the four variants that occur in fewer than 14
individuals. The resulting conformity coefficients are negatively
correlated with occurrence in the sample, so since 5 is half of
10, variant A7 has double the negative conformity coefficient of
A4,A5, and A6.

A different sample ofn = 100 role models might include 99A1

and 1 A2. In this case, x differs from the previous example and
is given by (99, 1, 0, . . . , 0), so the probabilities of adoption are
A1 :

99
100 + d(x)

100 andA2 :
1

100 − d(x)
100 . It is important to note that

d(x ) in the current example need not equal d(x ) of the previous
example. We incorporate this flexibility for two reasons. First, it
seems unrealistic to assume that the extent to which an individual
conforms to variant A1 when it is present in 99 individuals would
be the same as when it is present in 25 individuals; e.g., A1 might
be perceived as less attractive as it becomes too frequent in the
population. Second, the upper bound of d(x ) in the example
with 99 A1 is 1, but this upper bound does not seem realistic
for d(x ) in the first example, with 25 A1. If d(x ) were at most
1, then variant A1 in the first example could be adopted with
a probability of at most ∼0.2538 (differing only slightly from
random copying, where A1 would be adopted with probability
0.25). In reality, a conformist might adopt A1 in the first example
with a much greater probability. The bounds on d(x ) are shown
below.

For a given sample x = (x1, x2, . . . , xm), the probability
P(Ai | x ) must be between 0 and 1. Therefore,

−
∑
z∈II

z < d(x )<
∑
z∈II

z

(
n

max
xi∈x

xi
− 1

)
, [18]

which is proved in SI Appendix, section F.
Ultimately, the recursion in pi with the system given by Eq. 17

is

p′
i = pi +

1

n

∑
x

d(x )gi(x )
n!

x1!x2! · · · xm !
px1
1 px2

2 · · · pxm
m . [19]

In SI Appendix, section E, Eq. 17 is applied to the cases of
m = 3 variants and n = 4 or 5 role models, and the previous
choices of D(x ) in these cases are shown to be consistent with
the formulation in Eq. 17. However, the system given by Eq. 17
is not the only parsimonious formulation of conformity coeffi-
cients, and another possible classification of D(x ) is offered in
SI Appendix, section G.

Global Stability of Equilibria. In SI Appendix, section H, we
prove the following result concerning global convergence of Eq.
19 to an equilibrium.

Result 5. With n role models and m variants, there is global
convergence to an equilibrium provided d(x )> 0 for all x (i.e.,
there is entirely conformist transmission). If there are initially �≥ 1
variants all at the maximum variant frequency, max

1≤i≤m
pi , then at

equilibrium, the frequencies of these � variants are 1
� , and all others

are zero.
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A B

Fig. 3. Variant frequencies over time for n = 15 role models and m = 3 variants. In both A and B, Eq. 19 is iterated from initial variant frequencies p(0)
1 =

0.48 (red), p(0)
2 = 0.501 (orange), and p(0)

3 = 0.019 (purple). (A) d(x) = −5.9 for all x and (B) d(x) = −
∑
z∈II

z + 0.1 (where II = {x : n
r < x < n}; Eq. 17b). Both

simulations ran for 10,000 generations, and the last 60 are plotted. In A, there is an exact two-generation cycle between p ≈ (0.259, 0.332, 0.409) and p ≈
(0.409, 0.332, 0.259). In B, there are chaotic fluctuations around an average frequency (calculated over the last 5,000 generations) of p ≈ (0.334, 0.332, 0.334).

On the other hand, if d(x )< 0 for some x (i.e., there is anti-
conformist transmission), there need not be global convergence to
an equilibrium. Instead, stable cycles or chaos can occur. Examples
of such cycles and chaos are shown in Fig. 3.

In ref. 25, with m = 2 variants and n = 5 role models, a
stable cycle could occur around an average frequency vector p∗ =
(0.5, 0.5) (figure 2c in ref. 25). In Fig. 3A, there are m = 3
variants and n = 15 role models, and the stable cycle is around an
average frequency vector p∗ ≈ (0.334, 0.332, 0.334). However,
if m = 3 and n is reduced to 5 role models, cycles do not seem to
occur (Table 2, row 5). Thus, while cycles are not unique to the
polychotomous model, they can take different forms and occur
under different conditions from the dichotomous model.

Discussion

Our model of conformity to a polychotomous trait generalizes
the dichotomous trait model of Boyd and Richerson (2), which
has been widely used in previous theoretical studies of confor-
mity (14–21, 24, 26). Dichotomous traits have two variants,
such as pro/con, skilled/unskilled, or cooperate/defect, whereas
polychotomous traits, such as baby names, art motifs, or birdsong
syllables, have three or more variants.

It has been suggested that dichotomous trait conformity mod-
els provide a reasonable approximation to polychotomous trait
models, particularly when a novel variant enters the population
(15). The variant of interest can be considered type A and all other
variants grouped into type B, and under conformity it seems intu-
itive that A will decrease in frequency, while under anticonformity,
A will increase. However, we find that the long-term behavior
predicted by dichotomous trait models and polychotomous trait
models can differ greatly, particularly under anticonformist trans-
mission (Table 2). For example, with strong anticonformity and
n = 5 role models sampled from the adult generation, stable cycles
can occur in the dichotomous trait model (25), while convergence
to an equilibrium appears to occur in the polychotomous trait
model (Table 2, row 5). Under sufficiently weak anticonformity,
the dichotomous trait model predicts convergence to an equilib-
rium of 1

2A and 1
2B (25), whereas the equilibrium frequency of

A in the polychotomous trait model can be much smaller—for
example, if the number of variants in the population is 1,000,
the frequency of A can be 0.001 at equilibrium (e.g., Result
3iii). Anticonformist transmission has been observed empirically
(3, 31), and some have suggested that humans are generally more

likely to exhibit anticonformist than conformist bias (31). Thus, it
is important to be able to accurately model population dynamics
under anticonformity with two or more variants.

Under conformity, we show here that the dichotomous trait
model may or may not provide a reasonable approximation to
the polychotomous trait model depending on the question that is
asked. If the question is “What happens to a new variant, A, over
time?” then both the dichotomous and polychotomous models
produce the same result: A will be lost. However, if the question
is “What are the frequencies of variants at equilibrium?” then for
the dichotomous trait model, the simple answer is “A will not be
present,” while the polychotomous trait model provides a more
informative answer: “If initially the frequencies of �≥ 1 variants
equal the maximum variant frequency in the population, then
these � variants reach frequencies of 1

� at equilibrium.”
A small number of studies have modeled conformity to a

polychotomous trait, e.g., refs. 18, 23, 27. In these, conformity
is incorporated using a single coefficient, and the formula for
conformist transmission does not include the number of sampled
role models, n . In our model with n = 3 role models, there
is also a single conformity coefficient, D , and the dynamics
are relatively straightforward. Under conformity, the variant(s)
with the highest frequency will increase until it (they) cannot
increase further (Result 5), while under anticonformity, there is
global convergence to an equilibrium in which all m variants in
the population are present at equal frequencies, namely, p∗ =
( 1
m , . . . , 1

m ). Anticonformity entails that more common variants
are adopted at a rate less than their frequency; thus, any population
state where not all variant frequencies equal 1

m will result in the
more common variant frequencies (above 1

m ) decreasing and the
less common frequencies (below 1

m ) increasing.
In our model with n > 3 role models, however, the dynamics

may not be the same as with n = 3. Previous empirical research
has shown that individuals’ levels of conformity to a dichotomous
trait can change as the number of observed individuals changes
(9), suggesting that having different formulas for different n
values might be useful. The same finding was not observed for
a polychotomous trait in ref. 9, although this might simply be
due to the small numbers of role models that were used. In
addition, the relationship between the numbers of role models
and Aschian conformity, defined as “the overriding of personal
knowledge or behavioral dispositions by countervailing options
observed in others” (ref. 32, p. 34), has been widely investigated.
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For example, Bond (33) conducted a metaanalysis of 125 experi-
ments of Aschian conformity to a polychotomous trait with m =
3 variants and found that the relationship between conformity and
the number of observed individuals was more complex than pre-
viously assumed. Overall, therefore, allowing levels of conformity
and anticonformity to vary with n for both a polychotomous and
a dichotomous trait may add realism to theoretical models.

We find that if individuals are purely conformist, the long-
term population dynamics are the same for any number of role
models, n (i.e., there is global convergence to an equilibrium
in which the �≥ 1 variants that were all initially present at the
maximum frequency stabilize at a frequency of 1

� and all other
variants disappear). With anticonformity, however, the popula-
tion dynamics can change greatly as n changes. Anticonformity
amplifies the frequencies of rare variants, which, in the case of
n = 3 role models, for example, causes global convergence to the
central polymorphic equilibrium p∗ = ( 1

m , . . . , 1
m ). However, as

n increases, anticonformity can become stronger; for example,
if d(x ) =D for all x in Eq. 17, the lower bound of D is −2
with n = 3 but −6 with n = 15 (Fig. 3A). With strong enough
anticonformity, a rare variant may be favored so strongly that its
frequency overshoots the point ( 1

m , . . . , 1
m ), and subsequently,

this common variant can be so strongly disfavored that it returns
to its previous frequency. This process can continue indefinitely,
producing a stable cycle (Fig. 3A). In addition, Fig. 3B shows that
if n = 15 and d(x ) is near its lower bound for each x (thus,
not all d(x ) are equal), anticonformity can be so strong that the
dynamics exhibit chaos rather than stable cycling. Similarly, in the
dichotomous trait model we showed that with large enough n and
strong enough anticonformity, cycles or chaos could occur (25).
Thus, the number of role models sampled plays an important role
in the evolutionary dynamics.

Another difference between our model and previous models
of conformity to a polychotomous trait is that the conformity
coefficients are functions of x , the configuration of sampled
role models (i.e., how many role models have each variant). For
example, in Eq. 17a with m = 3 variants, the probability of
adopting a variant in, say, 99% of role models is at most 100% (an
increase of 1%), so if there were only one conformity coefficient
for all x , the probability of adopting a variant present in 70% of
role models would be at most 71% (an increase of 1%). Instead,
allowing a conformist to adopt a variant at 70% frequency with a
probability that is greater than 71% seems more realistic.

Moreover, there is some empirical evidence that individuals’
levels of conformity can change depending on the configuration of
sampled role models for a dichotomous trait, so the same may be
true for a polychotomous trait. In ref. 8, female fruit flies observed
different numbers of other females copulating with males painted
pink or green. When they observed 60% of role models copulating
with one type of male, they copulated with that type of male
at a frequency greater than 60% (conformity), but when they
observed 83% of role models copulating with one type of male,
they displayed anticonformity (by our definition, following ref. 2).
It seems reasonable to expect that a similar trend could occur for
a polychotomous trait; for example, an up-and-coming fashion
observed in a slight majority of individuals might be adopted with
high frequency, but once the same fashion is adopted by a large
majority of people it might become less appealing and be adopted
with a lower frequency.

Therefore, a key feature of the present model is that with
n ≥ 4 role models, conformity coefficients can vary in sign and
magnitude depending on the role model state, x . Even in the
simplest case of a polychotomous trait with n ≥ 4 role models,

namely, n = 4 and m = 3 variants, dynamics become much more
complex than in the case of n = 3 role models. For example,
the population may converge to a boundary equilibrium such as
p∗ = ( 12 ,

1
2 , 0) even if all variants’ initial frequencies are nonzero

and unequal (Fig. 1), which was not possible in the case with
n = 3 role models. Moreover, there can be three new, asymmetric
interior equilibria given by Eq. 14. A necessary but not sufficient
condition for existence of these equilibria is that anticonformity
occurs for some role model states and conformity occurs for
others. If transmission were entirely conformist or entirely anti-
conformist, there would be no opposing forces that would lead to
the existence of an asymmetric equilibrium (as this model does
not include selection). Similarly, in ref. 25, it was shown that
in Boyd and Richerson’s dichotomous trait conformity model,
asymmetric polymorphic equilibria could exist without selection
provided conformity and anticonformity occurred for different
role model states (shown in figure 1 in ref. 25).

The range of complex dynamics that characterize polychoto-
mous trait systems with n = 5, 6, . . . role models and confor-
mity coefficients that vary in sign remains to be explored. For
example, whereas three asymmetric interior equilibria could exist
with n = 4 role models and m = 3 variants, with n = 5 and
m = 3, there could be six (Fig. 2), although there may be more.
In addition, it would be interesting to investigate the effects of
selection on the dynamics of these models. Incorporating selection
into dichotomous trait models of conformity produced novel
asymmetric equilibria and eliminated the symmetric equilibrium
p∗ = ( 12 ,

1
2 ), so if selection were included in polychotomous trait

models, the symmetric equilibrium p∗ = ( 1
m , 1

m , . . . , 1
m ) may

no longer exist.
It is often claimed that conformity homogenizes groups (i.e.,

reduces within-group variation) and increases between-group dif-
ferences, which facilitates group selection (2, 14, 34–37). In our
model, if there is purely conformist transmission and initially
one variant is most common, then there is global convergence
to fixation of this variant, and the population becomes homoge-
neous. However, if more than one variant is initially present at
the highest frequency, then the population is not homogeneous
at equilibrium. Our model included only one population or
group, and the effect of conformity on between-group differences
requires further exploration. In the dichotomous trait conformity
model, in some cases, introducing or increasing conformity could
decrease between-group differences (25), and whether the same is
true in the polychotomous trait model remains to be investigated.

Furthermore, many studies of conformity, including the
present, have omitted individual-level variation in conformity,
and future research could explore the dynamics when some
members of the population have greater tendencies to conform or
anticonform than others. Moreover, incorporating nonrandom
choices of the n role models (e.g., family, close friends, or
prestigious individuals) would likely produce different population
dynamics that would be interesting to explore. Finally, temporal
variation in conformity coefficients has recently been incorporated
into the dichotomous trait model (26), and it would be
interesting to explore the consequences of such variation in the
polychotomous case.

Data, Materials, and Software Availability. The code for all simulations is
now publicly available at https://github.com/kaleda/polychotomous-conformity
(38, 39).
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