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Abstract

Background: Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the 
antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the 
involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine’s action, we investigated the effects 
of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK 
on monoaminergic neurotransmission in the prefrontal cortex of mice.
Methods: The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.
Results: (R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of 
(R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release 
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compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. 
(2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased 
dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were 
also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic 
acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated 
(S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced 
by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal 
serotonin release than that of (S)-ketamine.
Conclusions: (R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent 
mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a 
neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.

Keywords:   (R)-ketamine, (S)-ketamine, monoamine, prefrontal cortex, AMPA receptors

Introduction
Accumulating evidence has indicated that the N-methyl-D-
aspartate (NMDA) receptor antagonist ketamine (racemic keta-
mine; (R,S)-ketamine) has rapid and potent antidepressant effects 
in major depressive disorder including treatment-resistant de-
pression (Berman et  al., 2000; Zarate et  al., 2006a; Murrough 
et al., 2013; Newport et al., 2015; Su et al., 2017). (R,S)-Ketamine 
also produces antisuicidal effects in treatment-resistant de-
pression (Price et  al., 2009; Murrough et  al., 2015; Grunebaum 
et  al., 2018; Wilkinson et  al., 2018). Some clinical trials have 
demonstrated that intranasal administration of esketamine [(S)-
ketamine] showed rapid and sustained (>2 months) antidepres-
sant effects in treatment-resistant depression (Daly et al., 2018) 
and resulted in rapid improvement in depressive symptoms 
and suicidality in patients at imminent risk for suicide (Canuso 
et al., 2018). On March 5, 2019, an (S)-ketamine nasal spray was 
approved as a new antidepressant for treatment-resistant de-
pression by the US Food and Drug Administration (FDA News 
Release, 2019). Several molecular mechanisms underlying the 
antidepressant-like effects of ketamine have been proposed, 
especially focusing on the glutamatergic system such as syn-
aptic or GluN2B-selective extra-synaptic NMDA receptor in-
hibition, inhibition of NMDA receptors localized on GABAergic 
interneurons, and the role of α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid (AMPA) receptor activation (Maeng 
et  al., 2008; Chaki, 2017; Pałucha-Poniewiera, 2018; Zanos and 
Gould, 2018; Duman et al., 2019). However, other NMDA antag-
onists, including memantine and lanicemine, which bind to the 
receptor at the same site as ketamine, do not exhibit consistent 
evidence for clinical antidepressant efficacy (Zarate et al., 2006b, 
2013; Smith et  al., 2013; Newport et  al., 2015; Sanacora et  al., 
2017). Moreover, several animal studies have demonstrated that 

(R)-ketamine has greater potency and longer lasting antidepres-
sant effects than (S)-ketamine (Zhang et al., 2014a; Yang et al., 
2015, 2017a, 2017b, 2018b; Zanos et  al., 2016; Fukumoto et  al., 
2017), while (S)-ketamine (Ki = 0.30 µM) has a higher affinity for 
the NMDA receptor than (R)-ketamine (Ki = 1.4 µM) (Ebert et al., 
1997). Therefore, mechanisms other than the NMDA receptor 
also play an important role in mediating the antidepressant ef-
fects of ketamine.

In addition to the glutamatergic system, recent pre-
clinical studies indicate the potential involvement of the 
monoaminergic system in the antidepressant actions of keta-
mine (du Jardin et al., 2016b). Furthermore, the monoaminergic 
system has been implicated in the antidepressant effects of 
numerous currently used drugs. Regarding the antidepressant-
like effects of ketamine, a serotonin (5-HT) synthesis inhibitor, 
p-chlorophenylalanine (PCPA), attenuated the acute (Fukumoto 
et al., 2016) and sustained (Pham et al., 2017) antidepressant-
like effects of (R,S)-ketamine. The sustained antidepressant 
effects were also attenuated by intra-medial prefrontal cortex 
(PFC) injection of a 5-HT1A receptor antagonist, WAY100635 
(Fukumoto et  al., 2018). Additionally, a recent study shows 
that activation of Drd1 (the dopamine [DA]-D1 receptor)-
expressing pyramidal cells in the medial PFC produces rapid 
and long-lasting antidepressant responses, and the disrup-
tion of Drd1 activity blocked the rapid antidepressant effects 
of (R,S)-ketamine (Hare et  al., 2019). These findings suggest 
that the monoaminergic system is involved at least partly in 
the acute and sustained antidepressant-like effects of keta-
mine. Previous microdialysis studies have shown that acute 
administration of (R,S)-ketamine in the dose range showing 
antidepressant activity increased the extracellular levels 
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of 5-HT and DA in the PFC (Lorrain et  al., 2003; Pham et  al., 
2017; Kinoshita et al., 2018). Witkin et al. (2016) reported that 
(S)-ketamine (10 mg/kg, s.c.) increased the extracellular levels 
of 5-HT, DA, noradrenaline (NA), histamine, and acetylcholine 
but not glutamate or γ-aminobutyric acid in rat PFC. However, 
the neurochemical effects of (R)-ketamine are not fully under-
stood, and there is no comparative study to our knowledge of 
ketamine enantiomers. In this study, we aimed to clarify the 
effects of (R)-ketamine and (S)-ketamine on the in vivo release 
of monoamines in the PFC of both normal mice and a lipopoly-
saccharide (LPS)-induced mouse model of depression (Zhang 
et al., 2014b). Since the AMPA receptor is suggested to be in-
volved in the antidepressant-like effects of ketamine (Maeng 
et al., 2008; Chaki, 2017; Pałucha-Poniewiera, 2018; Zanos and 
Gould, 2018; Duman et  al., 2019), we subsequently examined 
the effects of 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]
quinoxaline-7-sulfonamide (NBQX), an AMPA receptor antag-
onist, on (R)-ketamine- and (S)-ketamine-induced changes 
in monoamine release. Some metabolites of ketamine, such 
as (S)-norketamine [(S)-NK] and (2R,6R)-hydroxynorketamine 
[(2R,6R)-HNK] have been shown to exert antidepressant-like 
effects (Zanos et al., 2016; Chou et al., 2018; Pham et al., 2018; 
Yang et al., 2018a; Fukumoto et al., 2019). Thus, this study also 
investigated the effects of metabolites of ketamine enantio-
mers such as (R)-NK, (S)-NK, (2R,6R)-HNK, and (2S,6S)-HNK on 
central monoaminergic transmission in mice.

Materials and Methods

Animals and Drugs

All animal studies were approved by the Animal Care and 
Use Committee of the Graduate School of Pharmaceutical 
Sciences, Osaka University. All experimental procedures were 
conducted in accordance with the guidelines of the Guide 
for the Care and Use of Laboratory Animals (National Research 
Council, 1996). Every effort was made to minimize animal 
suffering and to reduce the number of animals used. Eight-
week-old male C57BL/6J mice were obtained from SHIMIZU 
Laboratory Supplies Co., Ltd. (Kyoto, Japan) and housed 
in cages (28  cm × 17  cm × 12  cm) in groups of 5 or 6 animals 
under controlled environmental conditions (22 ± 1°C; 50 ± 10% 
relative humidity; a 12-hour light-dark cycle, lights on at 
8:00 am; food and water ad libitum) for at least 1 week be-
fore use in the experiments. (R)-Ketamine hydrochloride 
and (S)-ketamine hydrochloride were prepared by recrystal-
lization of (R,S)-ketamine (Ketalar, ketamine hydrochloride, 
Daiichi Sankyo Pharmaceutical Ltd., Tokyo, Japan) and D-(-)-
tartaric acid and L-(+)-tartaric acid, respectively (Zhang et al., 
2014a). (R)-NK, (S)-NK, (2R,6R)-HNK, and (2S,6S)-HNK were pur-
chased from Tocris Bioscience (Bristol, UK). NBQX disodium 
salt and LPS (serotype O111:B4) were purchased from Abcam 
(Cambridge, UK) and Sigma-Aldrich (St. Louis, MO), respect-
ively. All drugs were dissolved in saline (0.9% [w/v] solution 
of NaCl). All drugs except NBQX were administered i.p. at a 
volume of 10 mL/kg body weight. NBQX was s.c. injected at a 
volume of 10 mL/kg body weight. The doses of (R)-ketamine, 
(S)-ketamine, and their metabolites used here were selected 
according to previous studies (Zhang et al., 2014a; Yang et al., 
2015, 2018a; 2017a, 2017b, 2018b; Zanos et al., 2016; Fukumoto 
et  al., 2017, 2019; Pham et  al., 2017, 2018; Chou et  al., 2018). 
To induce depression-like models, mice were i.p. injected with 
LPS (0.5 mg/kg) 24 hours before the microdialysis experiment, 
as previously described (Zhang et al., 2014b).

In Vivo Microdialysis

Microdialysis experiments were performed as previously re-
ported (Ago et  al., 2013; Hara et  al., 2016; Tanaka et  al., 2017). 
Briefly, each mouse was anesthetized with a mixture of 
medetomidine (0.3 mg/kg, i.p.), midazolam (4 mg/kg, i.p.), and 
butorphanol (5  mg/kg, i.p.) and stereotaxically implanted uni-
laterally and counterbalanced left or right with a guide-cannula 
for a dialysis probe (Eicom Corp., Kyoto, Japan) positioned in the 
PFC (A +1.9 mm, L ±0.5 mm, V –0.8 mm, from the bregma and 
skull) (Franklin and Paxinos, 1997). The cannula was cemented 
in place with dental acrylic, and the animal was kept warm 
and allowed to recover from anesthesia. Postoperative anal-
gesia was performed with a single injection of buprenorphine 
(0.1 mg/kg, i.p.). The active probe membranes were 3 mm long. 
Two days after surgery, the probe was perfused with Ringer’s 
solution (147.2 mM NaCl, 4.0 mM KCl, and 2.2 mM CaCl2; Fuso 
Pharmaceutical Industries, Ltd., Osaka, Japan) at a constant flow 
rate of 1  µL/min. A  stabilization period of 3 hours was estab-
lished before the onset of the experiment. Microdialysis samples 
(20  µL) were collected every 20 minutes and injected immedi-
ately onto a high-performance liquid chromatography column 
for simultaneous assay of 5-HT, DA, and NA (Hara et al., 2016; 
Tanaka et al., 2017). The concentrations of 5-HT, DA, and NA in 
brain microdialysates were determined using high-performance 
liquid chromatography with an electrochemical detector (HTEC-
500; Eicom Corp.). After the experiments, Evans Blue dye was 
microinjected through the cannula to histologically verify the 
position of the probe, and only data from animals with correct 
probe placement were used in the analysis.

Statistics

All results are presented as the mean ± SEM. Data from 
microdialysis were calculated as the percentage of change from 
dialysate baseline concentrations, with 100% defined as the 
average of 3 fractions before the drug administration. Data were 
analyzed using 2- or 3-way ANOVA for treatment or dosage as 
the inter-subject factor and repeated measures with time as the 
intra-subject factor, followed by the Tukey-Kramer post hoc test 
when the interaction was significant. Statistical analyses were 
performed using the Statview 5.0J software package for Apple 
Macintosh (SAS Institute Inc., Cary, NC). A value of P < .05 was 
considered statistically significant.

Results

Effects of (R)-Ketamine, (S)-Ketamine, and Their 
Metabolites on Extracellular 5-HT, DA, and NA 
Levels in the PFC of Normal Mice

Baseline levels (mean ± SEM) of extracellular 5-HT, DA, and 
NA in the PFC (not corrected for in vitro probe recovery) were 
1.03 ± 0.07, 0.87 ± 0.06, and 1.02 ± 0.05 pg/fraction (20 µL), respect-
ively (n = 95, calculated from Figures 1, 3, and 4). For 5-HT re-
lease, a single administration of (R)-ketamine at doses of 10 mg/
kg (F8,64 = 3.722, P = .0013) and 20  mg/kg (F8,64 = 17.055, P < .0001) 
and (S)-ketamine at doses of 10  mg/kg (F8,64 = 2.100, P = .0485) 
and 20 mg/kg (F8,64 = 5.517, P < .0001) increased extracellular 5-HT 
levels in a dose-dependent manner (Figure 1A). The increase in 
5-HT release by (R)-ketamine was significantly greater than (S)-
ketamine (3-way ANOVA with repeated measures: F16,192 = 2.362, 
P = .0032). (2R,6R)-HNK (20  mg/kg) caused a slight but signifi-
cant increase in 5-HT release in the PFC (F8,64 = 2.676, P = .0133), 
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whereas (R)-NK (20 mg/kg, F8,64 = 1.582, P = .1480), (S)-NK (20 mg/
kg, F8,64 = 0.960, P = .4749), or (2S,6S)-HNK (20  mg/kg, F8,64 = 0.559, 
P = .8072) did not affect prefrontal 5-HT release.

For DA release, a single administration of (R)-ketamine 
at a dose of 20  mg/kg (F8,64 = 2.776, P = .0106), but not 10  mg/
kg (F8,64 = 1.067, P = .3974), and (S)-ketamine at doses of 10  mg/

Figure 2.  The effects of (R)-ketamine and (S)-ketamine on extracellular monoamine levels in the prefrontal cortex (PFC) of lipopolysaccharide (LPS)-treated mice. Mice 

were i.p. injected with LPS (0.5 mg/kg) 24 hours before the experiment. (R)-Ketamine (20 mg/kg), (S)-ketamine (20 mg/kg), or saline was i.p. injected at 0 minutes (arrow). 

Results are expressed as the mean ± SEM of 5 mice per group. *P < .05, **P < .01, compared with saline-treated mice at each time point. #P < .05, ##P < .01, compared with 

(S)-ketamine-treated mice at each time point.

Figure 1.  The effects of (R)-ketamine, (S)-ketamine, and their metabolites on extracellular serotonin (5-HT) (A), dopamine (DA) (B), and noradrenaline (NA) (C) levels 

in the prefrontal cortex (PFC) of mice. (R)-ketamine (10, 20  mg/kg), (S)-ketamine (10, 20  mg/kg), (R)-norketamine [(R)-NK] (20  mg/kg), (S)-NK (20  mg/kg), (2R,6R)-

hydroxynorketamine [(2R,6R)-HNK] (20 mg/kg), (2S,6S)-HNK (20 mg/kg), or saline was i.p. injected at 0 minutes (arrow). Results are expressed as the mean ± SEM of 5 

mice per group. *P < .05, **P < .01, compared with the saline-treated mice at each time point.
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kg (F8,64 = 2.412, P = .0242) and 20 mg/kg (F8,64 = 5.197, P < .0001) in-
creased extracellular DA levels in the PFC (Figure 1B). The in-
crease in DA release by (S)-ketamine was significantly greater 
than (R)-ketamine (3-way ANOVA with repeated measures: 
F16,192 = 2.366, P = .0031). (R)-NK (20 mg/kg, F8,64 = 7.253, P < .0001) and 
(S)-NK (20  mg/kg, F8,64 = 4.364, P = .0003) caused increases in DA 
release in the PFC, whereas (2R,6R)-HNK (20 mg/kg, F8,64 = 0.301, 

P = .9628) or (2S,6S)-HNK (20 mg/kg, F8,64 = 0.651, P = .7316) did not 
affect prefrontal DA release.

For NA release, a single administration of (R)-ketamine at 
doses of 10 mg/kg (F8,64 = 5.179, P < .0001) and 20 mg/kg (F8,64 = 7.632, 
P < .0001) and (S)-ketamine at doses of 10  mg/kg (F8,64 = 3.754, 
P = .0012) and 20 mg/kg (F8,64 = 5.019, P < .0001) increased extracel-
lular NA levels in a dose-dependent manner (Figure 1C). There 

Figure 3.  The effects of NBQX on (R)-ketamine- and (S)-ketamine-induced monoamine release in the prefrontal cortex (PFC) of mice. (R)-Ketamine (20 mg/kg) (A) or (S)-

ketamine (20 mg/kg) (B) was i.p. injected at 0 minutes (solid arrow). NBQX (10 mg/kg) or vehicle was s.c. injected 20 minutes before ketamine treatment (dotted arrow). 

Results are expressed as the mean ± SEM of 5 mice per group. *P < .05, **P < .01, compared with vehicle-pretreated mice at each time point.

Figure 4.  The effects of local application of (R)-ketamine and (S)-ketamine on extracellular monoamine levels in the prefrontal cortex (PFC) of mice. (R)-Ketamine 

(50 µM), (S)-ketamine (50 µM), or vehicle was perfused into the PFC via the dialysis probe for the time indicated by the horizontal bar. Results are expressed as the 

mean ± SEM of 5 mice per group. *P < .05, **P < .01, compared with the vehicle-treated mice at each time point. #P < .05, ##P < .01, compared with the (S)-ketamine-treated 

mice at each time point.
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was no significant difference between the effects of (R)-ketamine 
and (S)-ketamine (3-way ANOVA with repeated measures: 
F16,192 = 1.470, P = .1142). (S)-NK (20  mg/kg, F8,64 = 2.506, P = .0196) 
and (2R,6R)-NK (20 mg/kg, F8,64 = 4.155, P = .0005) caused increases 
in NA release in the PFC, whereas (R)-NK (20 mg/kg, F8,64 = 0.640, 
P = .7411) or (2S,6S)-HNK (20 mg/kg, F8,64 = 0.413, P = .9090) did not 
affect prefrontal NA release.

Effects of (R)-Ketamine and (S)-Ketamine on 
Prefrontal Monoamine Release in an LPS-Induced 
Mouse Model of Depression

Baseline levels of extracellular 5-HT, DA, and NA in the PFC of 
LPS-treated mice were 0.73 ± 0.08, 0.67 ± 0.13, and 0.76 ± 0.09 pg/
fraction (20  µL), respectively (n = 15, calculated from Figure 2). 
(R)-Ketamine (20 mg/kg, F8,64 = 10.460, P < .0001) and (S)-ketamine 
(20 mg/kg, F8,64 = 7.205, P < .0001) increased prefrontal 5-HT release 
in LPS-treated mice, and the increase by (R)-ketamine in 5-HT 
release was significantly greater than (S)-ketamine (F8,64 = 2.400, 
P = .0249) (Figure 2). Conversely, (R)-ketamine (20 mg/kg, F8,64 = 3.672, 
P = .0014) and (S)-ketamine (20  mg/kg, F8,64 = 13.957, P < .0001) in-
creased prefrontal DA release in LPS-treated mice, and the in-
crease by (S)-ketamine in DA release was significantly greater 
than (R)-ketamine (F8,64 = 7.909, P < .0001). (R)-Ketamine (20  mg/
kg, F8,64 = 3.121, P = .0049) and (S)-ketamine (20 mg/kg, F8,64 = 4.696, 
P = .0001) increased prefrontal NA release in LPS-treated mice, 
and there was no significant difference between the effects of 
(R)-ketamine and (S)-ketamine (F8,64 = 0.581, P = .7898).

Involvement of the AMPA Receptor in the (R)-
Ketamine- and (S)-Ketamine-Induced Increases in 
Prefrontal Monoamine Release

Pretreatment with the AMPA receptor antagonist NBQX (10 mg/
kg) attenuated (S)-ketamine-induced prefrontal 5-HT release 
(F9,72 = 2.152, P = .0356), whereas it did not affect (R)-ketamine-
induced 5-HT release (F9,72 = 0.700, P = .7066) (Figure 3). NBQX 
blocked both (R)-ketamine-induced (F9,72 = 3.074, P = .0036) and 
(S)-ketamine-induced (F9,72 = 4.355, P < .001) DA release. NBQX did 
not affect either (R)-ketamine-induced (F9,72 = 0.451, P = .9019) or 
(S)-ketamine-induced (F9,72 = 0.552, P = .8310) NA release.

Effects of the Local PFC Application of (R)-Ketamine 
and (S)-Ketamine on the Extracellular Monoamine 
Levels in the PFC

Local application of (R)-ketamine and (S)-ketamine at a dose of 
10  μM had minimal effects on monoamine release in the PFC 
(data not shown). Local application of (R)-ketamine (F8,64 = 9.785, 
P < .0001) and (S)-ketamine (F8,64 = 2.979, P = .0067) at a dose of 
50  µM increased extracellular 5-HT levels in the PFC, and the 
increase by (R)-ketamine in 5-HT release was significantly 
greater than (S)-ketamine (F8,64 = 3.469, P = .0022) (Figure 4). Local 
application of (S)-ketamine (F8,64 = 2.512, P = .0193), but not of 
(R)-ketamine (F8,64 = 0.950, P = .4826), caused a slight increase in 
DA release. Conversely, the local application of (R)-ketamine 
(F8,64 = 4.647, P = .0002), but not (S)-ketamine (F8,64 = 0.742, P = .6539), 
increased NA release.

Discussion

In this study, we identified differences between (R)-ketamine and 
(S)-ketamine in their abilities to induce prefrontal 5-HT and DA 

but not NA release. Both (R)-ketamine and (S)-ketamine caused 
an increase in 5-HT release, and the effect of (R)-ketamine was 
significantly greater than that of (S)-ketamine. In contrast, (S)-
ketamine caused a robust increase in DA release compared with 
(R)-ketamine. Both (R)-ketamine and (S)-ketamine increased NA 
release, but these have similar effects. Although it is unclear 
exactly how these differences would contribute to the pharma-
cological differences between (R)-ketamine and (S)-ketamine, 
several reports show differences in the effects of ketamine en-
antiomers on antidepressant-like activity and psychosis- or 
addiction-related behaviors. (R)-Ketamine exhibits more potent 
and longer acting antidepressant-like effects than (S)-ketamine 
(Zhang et al., 2014a; Yang et al., 2015, 2017a). Pham et al. (2017) 
previously reported that (R,S)-ketamine-induced increases in 
5-HT release in the medial PFC were positively correlated with 
its antidepressant-like activity in BALB/cJ mice. Additionally, 
local injection of (R,S)-ketamine into the PFC induces sustained 
antidepressant-like effects (Pham et al., 2017; Fukumoto et al., 
2018), and this effect was mediated by the local activation of 
5-HT1A receptors in the PFC (Fukumoto et al., 2018). These find-
ings suggest that enhanced prefrontal serotonergic activity 
by (R)-ketamine could contribute to its potent and sustained 
antidepressant-like effect. The ketamine metabolites (R)-NK, 
(S)-NK, and (2S,6S)-HNK did not affect 5-HT release in the PFC, 
although (2R,6R)-HNK caused a slight increase in 5-HT release. 
Thus, the serotonergic system might not be involved mainly in 
the antidepressant-like effects of ketamine metabolites, except 
for (2R,6R)-HNK. Interestingly, like (R,S)-ketamine, both systemic 
and local injection of (2R,6R)-HNK caused an increase in base-
line 5-HT release in the PFC 24 hours after injection (Pham et al., 
2018), although (2R,6R)-HNK does not bind to NMDA receptors 
at antidepressant-relevant concentrations (Gould et al., 2017). In 
this study, (R)-ketamine, (S)-ketamine, (S)-NK, and (2R,6R)-HNK 
increased prefrontal NA release. (S)-Ketamine, (S)-NK, and (R)-
NK, but not (2R,6R)-HNK, increased prefrontal DA release. (R)-NK 
at 20  mg/kg, but not at lower doses (5 and 10  mg/kg), signifi-
cantly attenuates increased immobility time in the forced swim 
test in LPS-treated mice, although (S)-NK is more potent than 
(R)-NK (Yang et  al., 2018a). These findings raise the possibility 
that increases in NA and DA release in the PFC might contribute 
at least partly to the antidepressant-like effects of ketamine and 
its metabolites. Of note, (R,S)-ketamine-induced antidepressant-
like effects are blocked by the disruption of DA-D1 receptor ac-
tivity in the PFC (Hare et  al., 2019). The prefrontal DA system 
has been implicated in playing a pivotal role in depression and 
antidepressant actions (Ago et al., 2005, 2017; Furuyashiki, 2012; 
Rogóż, 2013; Watt et al., 2014). Therefore, the enhanced activity 
of the prefrontal dopaminergic system by (S)-ketamine would 
contribute to its antidepressant-like activity, whereas DA-D1 re-
ceptors might not play a major role in the antidepressant actions 
of (R)-ketamine (Chang et  al., 2019). Conversely, (S)-ketamine 
might have a higher potential for inducing psychotomimetic ef-
fects such as hyperactivity, pre-pulse inhibition deficits, and re-
warding effects compared with (R)-ketamine (Yang et al., 2015), 
probably due to the affinity for the NMDA receptor. In addition, 
a positron emission tomography study showed that a single in-
fusion of (S)-ketamine, but not (R)-ketamine, causes a reduction 
in the binding availability of DA-D2/3 receptors in the striatum 
of conscious monkeys, suggesting that (S)-ketamine induces DA 
release (Hashimoto et al., 2017). Similar to this observation, in 
this study, (S)-ketamine caused a robust increase in DA release 
in the PFC, while (R)-ketamine had a small effect. Thus, the exact 
role of DA release induced by ketamine enantiomers and their 
metabolites remains unclear. Further studies investigating the 
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effects of ketamine and its metabolites in other brain regions 
such as the striatum, nucleus accumbens, and hippocampus are 
required for full elucidation.

 Previous studies have suggested the involvement of AMPA 
receptor activation in the antidepressant-like action of (R)-
ketamine, (S)-ketamine, and (R,S)-ketamine (Maeng et al., 2008; 
Koike et  al., 2011; Walker et  al., 2013; Koike and Chaki, 2014; 
Zhou et al., 2014; Yang et al., 2015; Zhang et al., 2016; Fukumoto 
et  al., 2017; Kinoshita et  al., 2018). Microdialysis studies also 
showed that raphe AMPA receptors mediate at least in part (R,S)-
ketamine-induced 5-HT release in the rat PFC (Nishitani et al., 
2014; Pham et al., 2017). Moreover, AMPA itself induces 5-HT and 
DA release in the PFC (Araki et al., 2014). These observations sug-
gest that AMPA receptors might be involved in the behavioral 
and neurochemical effects of ketamine. In the present study, the 
AMPA receptor antagonist NBQX blocked (R)-ketamine- and (S)-
ketamine-induced DA, but not NA release in the PFC, suggesting 
the involvement of AMPA receptors in regulating the dopamin-
ergic system by both ketamine enantiomers. Interestingly, NBQX 
partially blocked (S)-ketamine-induced prefrontal 5-HT release, 
while it did not affect (R)-ketamine-induced prefrontal 5-HT 
release. This finding suggests that AMPA receptor activation 
is not involved in (R)-ketamine-induced 5-HT release. A  posi-
tron emission tomography study showed that subanesthetic 
doses of ketamine transiently decrease 5-HT transporter (SERT) 
binding in conscious monkeys, and ketamine infusion transi-
ently increased 5-HT but not DA levels in the extracellular fluid 
of the PFC of conscious monkeys (Yamamoto et al., 2013). These 
findings suggest that subanesthetic ketamine might enhance 
serotonergic transmission by the inhibition of SERT activity. 
In vitro studies have reported that ketamine at concentrations 
>10–6 M inhibited the uptake of [3H]5-HT by the SERT transfected 
into human embryonic kidney 293 cells in a dose-dependent 
manner (Nishimura et al., 1998; Zhao and Sun, 2008). We also 
observed that local application of (R)-ketamine and (S)-ketamine 
into the PFC induced increases in prefrontal 5-HT release, and 
the effect of (R)-ketamine was significantly greater than that of 
(S)-ketamine. These phenomena might be related to a greater 
increase in 5-HT release by systemic administration of (R)-
ketamine than (S)-ketamine, although (R)-ketamine (Ki = 148 µM) 
and (S)-ketamine (Ki = 156 µM) have similar affinities for the SERT 
(Nishimura and Sato, 1999). Therefore, the mechanism of (R)-
ketamine-induced prefrontal 5-HT release remains unknown.

Previous studies showed that the depletion of 5-HT by PCPA 
abolished the acute antidepressant effects of (R,S)-ketamine 
(30 mg/kg, 30 minutes prior to the forced swim test) in control 
C57BL/6J mice (Fukumoto et al., 2016), and the sustained anti-
depressant effects of (R,S)-ketamine (10  mg/kg, 24 hours prior 
to the forced swim test) in highly anxious BALB/cJ mice (Pham 
et al., 2017). Additionally, the acute (1 hour) and sustained (24 
hours) antidepressant effects of (S)-ketamine (15  mg/kg) in 
Flinders Sensitive Line rats (a genetic model of depression) 
were abolished by 5-HT depletion, suggesting that the acute 
and sustained antidepressant-like effects of (S)-ketamine in 
Flinders Sensitive Line rats depend on the endogenous 5-HT 
concentration (du Jardin et  al., 2016a). In contrast, depletion 
of 5-HT by PCPA did not abolish the acute antidepressant ef-
fects of (R,S)-ketamine (25  mg/kg, 1 hour prior to the forced 
swim test) in control Sprague–Dawley rats (Gigliucci et al., 2013). 
Furthermore, PCPA did not abolish the acute (4 hours prior to the 
tail-suspension test) and long-lasting (2 or 5 days after a single 
dose in the sucrose preference test) antidepressant effects of 
(R)-ketamine (10 mg/kg) in a chronic social defeat stress model 
in male C57BL/6 mice (Zhang et al., 2018). Although the reasons 

for these discrepancies are currently unknown, several factors 
such as different animal models used (normal vs stress-induced 
or genetic models of depression), behavioral tests, and dif-
ferent doses and isomers of ketamine could account for them. 
Thus, the role of 5-HT in the acute and sustained antidepres-
sant effects of (R,S)-ketamine and its enantiomers might differ 
depending on the experimental conditions. In this regard, it 
might be important to see whether the differential effects of (R)-
ketamine and (S)-ketamine on prefrontal monoaminergic trans-
mission in normal animals are also observed in depression-like 
models. LPS is known to cause depression-like behaviors in the 
forced swim and tail-suspension tests (Zhang et al., 2014b). Both 
(R)-ketamine and (S)-ketamine show antidepressant-like ef-
fects in an LPS-induced depression model, but the potency of 
(R)-ketamine is higher than that of (S)-ketamine (Yang et  al., 
2017a; Yamaguchi et al., 2018). In this study, we found that (R)-
ketamine and (S)-ketamine enhanced serotonergic and dopa-
minergic neurotransmission, respectively, in LPS-treated mice 
as seen in normal mice. This finding implies that (R)-ketamine 
would produce pronounced 5-HT release, leading to antidepres-
sant effects under some conditions of depression.

In conclusion, our study showed that (R)-ketamine and (S)-
ketamine differentially affect serotonergic and dopaminergic 
neurotransmission in the PFC in particular. (R)-Ketamine caused 
a greater increase in 5-HT release than (S)-ketamine, but this 
effect was AMPA receptor-independent. Ketamine-induced DA 
but not NA release was AMPA receptor-dependent. (2R,6R)-HNK 
acutely induced a slight increase in 5-HT release. (S)-NK, which 
potentially has antidepressant activity, enhances DA and NA, 
but not 5-HT release. These findings provide a neurochemical 
basis for understanding the pharmacological differences and 
the mechanisms of action of (R)-ketamine, (S)-ketamine, and 
their metabolites.
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