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Abstract: Most neurodegenerative diseases are multifactorial, and the discovery of several molecular
mechanisms related to their pathogenesis is constantly advancing. Dopamine and dopaminergic
receptor subtypes are involved in the pathophysiology of several neurological disorders, such
as schizophrenia, depression and drug addiction. For this reason, the dopaminergic system and
dopamine receptor ligands play a key role in the treatment of such disorders. In this context, a novel
series of conformationally restricted N-arylpiperazine derivatives (5a–f) with a good affinity for
D2/D3 dopamine receptors is reported herein. Compounds were designed as interphenylene analogs
of the drugs aripiprazole (2) and cariprazine (3), presenting a 1,3-benzodioxolyl subunit as a ligand
of the secondary binding site of these receptors. The six new N-arylpiperazine compounds were
synthesized in good yields by using classical methodologies, and binding and guanosine triphosphate
(GTP)-shift studies were performed. Affinity values below 1 µM for both target receptors and distinct
profiles of intrinsic efficacy were found. Docking studies revealed that Compounds 5a–f present
a different binding mode with dopamine D2 and D3 receptors, mainly as a consequence of the
conformational restriction imposed on the flexible spacer groups of 2 and 3.

Keywords: dopamine receptors; N-arylpiperazine; neurodegenerative diseases; binding; 1,3-benzodioxole;
sulfonamide

1. Introduction

Dopamine is a key neurotransmitter involved in several physiological processes for
the full functioning of the body, such as voluntary movements, affection, sleep, attention,
memory, learning, hormonal regulation and cardiovascular and immune functions [1–3].
The degeneration of dopaminergic neurons in the substantia nigra causes an inhibition
of dopaminergic signaling, which can generate rigor, tremor, bradykinesia and postural
instability, the main symptoms of Parkinson’s disease (PD) [4–6]. However, the mesolimbic
pathway is directly involved with the mechanisms of emotion control and reward. Thus,

Biomolecules 2022, 12, 1112. https://doi.org/10.3390/biom12081112 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12081112
https://doi.org/10.3390/biom12081112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-5545-3483
https://orcid.org/0000-0001-7898-7093
https://orcid.org/0000-0003-4148-4243
https://orcid.org/0000-0001-6933-7590
https://orcid.org/0000-0001-6813-1347
https://orcid.org/0000-0001-6733-7079
https://doi.org/10.3390/biom12081112
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12081112?type=check_update&version=1


Biomolecules 2022, 12, 1112 2 of 18

the alteration of dopaminergic neurotransmission in this area is related to the pathophysi-
ology of several diseases, such as schizophrenia and drug addiction [7–12]. In addition,
other pathophysiological processes are also involved in the alteration of dopaminergic
neurotransmission, such as the establishment of arterial hypertension, bipolar disorder and
major depression [13–16].

The dopaminergic system comprises five receptor subtypes divided into two families:
D1-like (D1; D5) and D2-like (D2; D3; D4). Such subdivision is based on structural differ-
ences, such as the homology between their amino acid sequences, as well as their molecular
actions, resulting from their different cell signaling processes [1,17,18].

The importance of dopaminergic pathways and receptor modulators in the control of
neurodegenerative diseases led to the development of drugs such as the classical typical
antipsychotic haloperidol (1), a D2 receptor antagonist (Ki = 0.89 nM) [19,20], and the
atypical antipsychotics aripiprazole (2) (Ki D2 = 0.34 nM; Ki D3 = 0.8 nM) and cariprazine
(3) (Ki D3 = 0.085 nM; Ki D2 = 0.49 nM), as partial agonists of D2 and D3 receptors [21–26],
approved for the treatment of schizophrenia and bipolar disorder (Figure 1).
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(3) and indole derivative (4). Design concept of a new series of conformationally restricted
N-phenylpiperazines (5a–f).

Other analog N-phenylpiperazine compounds, now showing intrinsic efficacy as an-
tagonists, have also been developed to act in the treatment of dependence and drug addic-
tion [27–29]. Among these compounds, compound (4) (Ki D3 = 0.118 nM; Ki D2 = 12.9 nM),
a D2/D3 receptor antagonist developed by Boateng et al. (2015), guards, in its chemical
structure, important similarities with cariprazine (3), in the presence of an arylpiperazine
subunit (also present in aripiprazole) and an amide group. However, compound (4) also
presents differences such as the introduction of an alkyl spacer that gives greater conforma-
tional freedom to the compound in relation to cariprazine (3). Furthermore, the presence
of an indole subunit appears to be responsible for the change in intrinsic efficacy from a
partial agonist in cariprazine (3) to an antagonist in derivative (4) (Figure 1) [30].

In this context, considering the multifactorial behavior of these neurodegenerative
diseases and the importance of finding novel compounds that combine the structural
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requirements of just one molecule to act on dopamine D2/D3 receptors with a fine-tuning
adjustment of intrinsic efficacies, we reported herein a new series of conformationally
restricted N-arylpiperazine derivatives (5a–f) presenting moderate affinity for D2/D3
dopamine receptors. The compounds were designed as interphenylene analogs of the drugs
aripiprazole (2) and cariprazine (3), having a 1,3-benzodioxole subunit (A) as a ligand for
the secondary binding site of these receptors. The pharmacophoric arylpiperazine subunit
was preserved in the design concept of the new series of derivatives (5a–f) (Figure 1).
Replacement of the alkyl spacer with an interphenylene spacer was proposed, bringing a
conformational restriction [31]. In addition, the amide group present in the amide derivative
(4) was replaced by a sulfonamide, which has additional points capable of interacting
with the bioreceptor [32]. Aromatic substituents such as phenyl, 2-methoxyphenyl and
2,3-dichlorophenyl at position 4 of the piperazine ring were used to evaluate the ortho
effect on the coplanarity between the piperazine ring and the aromatic ring [33]. The
1,3-benzodioxole subunit A (Figure 1) attached to a sulfonamide group was chosen due to
isosteric relationships with the indoleamide subunit present in compound (4), as previously
described by our laboratory [34].

Classic synthetic methodologies, molecular modeling studies, and binding and GTP-
shift experiments were performed. Six new N-phenylpiperazine derivatives (5a–e) were
obtained, with affinity values below 1 µM and distinct profiles of intrinsic efficacy (Figure 1).

2. Materials and Methods
2.1. Chemistry

All commercially available reagents and solvents were used without further purifica-
tion. Reactions were routinely monitored by thin-layer chromatography (TLC) on silica
gel (F245 Merck plates), and the products were visualized with an ultraviolet (UV) lamp
(254 and 365 nm). 1H and 13C nuclear magnetic resonance (NMR) spectra were determined
in dimethyl sulfoxide (DMSO)-d6 solutions using a VARIAN 500-MR spectrometer (Varian,
Palo Alto, CA, USA) operating at 500 and 125 MHz, respectively. The chemical shifts are
given in parts per million (δ) from solvent residual peaks, and the coupling constant values
(J) are given in Hz. Signal multiplicities are represented by s (singlet), d (doublet), dd
(double doublet), t (triplet), m (multiplet) and br (broad signal).

Infrared spectra were obtained using a Thermo Nicolet Avatar 330 FTIR (Thermo
Fisher Scientific, Waltham, MA, USA) spectrometer equipped with a smart endurance
diamond ATR unit for direct measurements. The melting points (MPs) were determined on
a Quimis Model Q340.23 apparatus in triplicate.

Microanalyses were carried out using a Thermo Scientific Flash EA 1112 series CHN-
Analyzer, using a Mettler MX5 electronic balance.

The purity of the synthesized compounds was determined by high-performance liquid
chromatography (HPLC), which was performed in a Shimadzu LC20AD apparatus (Shi-
madzu, Tokyo, Japan) using a Kromasil 100–5C18 column (4.6 mm × 250 mm) (Kromasil,
Bohus, Sweden) and an SPD-M20A detector (Diode Array) at wavelengths ranging from
238 to 287 nm for analyte quantification and a constant flow rate of 1 mL/min. The au-
tomatic injector was programmed so that the volume of sample injected per analysis
corresponded to 20 µL. The mobile phases used were 60% acetonitrile and 40% water, 60%
methanol and 40% water, and 80% ethanol and 20% water; the pH of the mobile phase was
adjusted to 3 and 6.5 according to the type of compound to be analyzed. The solvents used
for HPLC-PDA analysis were HPLC purity grade (Tedia®).

2.1.1. General Procedure for the Synthesis of 4-Nitrobenzyl-phenylpiperazine
Intermediates 8a–c

In a 125-mL flask, 0.151 g (1 mmol) of 4-nitrobenzaldehyde (10) was dissolved in
30 mL of absolute ethanol. Then, 1 equivalent of the respective phenylpiperazines (9a–c)
and 0.5 equivalents of zinc chloride (ZnCl2; 0.07 g; 0.5 mmol) were added to the solution.
The reaction mixture was kept under constant stirring at 60 ◦C.
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After 2 h, 3.2 equivalents of sodium cyanoborohydride (NaBH3CN; 0.2 g; 3.2 mmol)
was added in 2 portions every 1 h. The complete consumption of starting materials
was evidenced 24 h after the addition of the reducing agent by TLC using a mixture of
hexane:ethyl acetate (60:40) as the eluent.

The isolation of the product was carried out by extraction in a separatory funnel using
ethyl acetate and saturated sodium bicarbonate solution. The organic phase was separated,
dried with anhydrous sodium sulfate and concentrated at reduced pressure, furnishing the
desired 4-nitrobenzyl-phenylpiperazines (8a–c), as described next.

1-(4-Nitrobenzyl)-4-phenylpiperazine (8a)

Intermediate 8a was obtained with 73% yield as a yellow crystalline solid and had a
melting point of 123–126 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 8.21 (2H, d, J = 8.8 Hz,
H14, H16), 7.62 (2H, d, J = 8.8 Hz, H13, H17), 7.20 (2H, dd, J1 = 8.7 Hz, J2 = 7.3 Hz, H2, H6),
6.91 (2H, d, J = 7.9 Hz, H3, H5), 6.76 (1H, t, J = 7.3 Hz, H1); 3.66 (2H, s, H11), 3.14 (4H, m,
H7, H10), 2.53 (4H, m, H8, H9); IR (ATR, cm−1): 1511 and 1345 (v-NO2).

1-(4-Nitrobenzyl)-4-phenylpiperazine (8b)

Intermediate 8b was obtained with 70% yield as a yellow crystalline solid and had
a melting point of 106–109 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 8.20 (2H, d,
J = 8.7 Hz, H14, H16), 7.62 (2H, d, J = 8.7 Hz, H13, H17), 6.93 (2H, m, H2, H6), 6.86 (2H, m,
H5, H1), 3.75 (3H, s, H18), 3.66 (2H, s, H11), 2.97 (4H, br, H7, H10), 2.53 (4H, br, H8, H9); IR
(ATR, cm−1): 1497 and 1347 (v-NO2).

1-(4-Nitrobenzyl)-4-phenylpiperazine (8c)

Intermediate 8c was obtained with 63% yield as a yellow crystalline solid and had a
melting point of 131–133 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 8.20 (2H, m, H14,
H16), 7.62 (2H, d, J = 8.7 Hz, H13, H17), 7.28 (2H, dd, J1 = 7.5 Hz, J2 = 5.3 Hz, H2, H6),
7.14 (1H, dd, J1 = 6.8 Hz, J2 = 2.8 Hz, H1), 3.68 (2H, s, H11), 2.99 (4H, br, H7, H10), 2.56 (4H,
br, H8, H9); IR (ATR, cm−1): 1519 and 1341 (v-NO2).

2.1.2. General Procedure for the Synthesis of Key Intermediates
4-((4-Phenylpiperazin-1-yl)methyl)anilines (6a–c)

In a 50 mL flask containing a mixture of EtOH:H2O (10:10 mL), 0.15 g of the respective
1-(4-nitrobenzyl)-4-phenylpiperazines (8a–c) was added along with 3 equivalents of metallic
iron (Fe0) and 5 equivalents of ammonium chloride (NH4Cl). The obtained mixture was
refluxed at 80 ◦C with constant stirring.

The progress of the reaction was monitored by TLC using hexane:ethyl acetate (60:40)
as the eluent. The end of the reaction was observed after 1 h. Then, the reaction mix-
ture was filtered out hot through Celite, and isolation was carried out by extraction in
a separatory funnel using ethyl acetate and saturated sodium bicarbonate solution. The
organic phase was dried with anhydrous sodium sulfate and filtered and concentrated
under reduced pressure, furnishing the desired 4-((4-phenylpiperazin-1-yl)methyl)anilines
(6a–c), as described next.

4-((4-Phenylpiperazin-1-yl)methyl)aniline (6a)

Intermediate 6a was obtained in 96% yield as a yellowish oil. 1H NMR (500 MHz,
DMSO-d6) δ (ppm): 7.18 (2H, m, H13, H17), 6.95 (2H, d, J = 8.3 Hz, H2, H6), 6.90 (2H, d,
J = 7.9 Hz, H3, H5), 6.75 (1H, t, J = 7.3 Hz, H1), 6.52 (2H, d, J = 8.3 Hz, H14, H16), 4.94 (2H,
s, H18), 3.31 (2H, s, H11), 3.09 (4H, m, H7, H10), 2.45 (4H, m, H8, H9); IR (ATR, cm−1):
3448 and 3356 (v-NH2).

4-((4-Phenylpiperazin-1-yl)methyl)aniline (6b)

Intermediate 6b was obtained with 82% yield as a yellowish oil. 1H NMR (500 MHz,
DMSO-d6) δ (ppm): 6.98 (2H, d, J = 8.2 Hz, H13, H17), 6.92 (2H, m, H2, H6), 6.85 (2H, m,
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H1, H5), 6.53 (2H, m, H14, H16), 3.75 (3H, s, H18), 2.96 (4H, br, H7, H10), 2.55 (4H, br, H8,
H9); IR (ATR, cm−1): 3332 and 3213 (v-NH2).

4-((4-Phenylpiperazin-1-yl)methyl)aniline (6c)

Intermediate 6c was obtained with 60% yield as a yellowish oil. 1H NMR (500 MHz,
DMSO-d6) δ (ppm): 7.28 (2H, m, H13, H17), 7.12 (1H, dd, J1 = 6.8 Hz, J2 = 2.9 Hz, H1),
6.94 (2H, d, J = 8.3 Hz, H5, H6), 6.51 (2H, m, H14, H16), 4.95 (2H, br, H18), 3.35 (2H, br,
H11), 2.95 (4H, br, H7, H10); IR (ATR, cm−1): 3454 and 3361 (v-NH2).

2.1.3. General Procedure for the Synthesis of Potassium Methylenedioxybenzenesulfonates
(12a–b)

A solution of 0.1 g of the benzodioxoles (11a–b) and 3 equivalents of acetic anhydride
in 2.2 mL of ethyl acetate was cooled to 0 ◦C. Then, a solution containing 1.3 equivalents of
concentrated sulfuric acid (d = 1.84) in 0.3 mL of ice-cold ethyl acetate was added dropwise
over 5 min. The mixture was stirred for 2 h while warming to room temperature. After this
time, a solution containing 1.5 equivalents of potassium acetate in 0.56 mL of 95% ethanol
was added dropwise with stirring. After 30 min, the potassium salts (12a–b) were isolated
by filtration under reduced pressure.

Benzo [d] [1,3] Dioxole-5-potassium Sulfonate (12a)

Salt 12a was obtained in 89% yield as a white solid, with a melting point of 172–174 ◦C;
IR (ATR, cm−1): 1310 and 1163 (v S=O).

6-Methylbenzo [d] [1,3] Dioxole-5-potassium Sulfonate (12b)

Salt 12b was obtained in 93% yield as a white solid, with a melting point between
187–189 ◦C; IR (ATR, cm−1): 1345 and 1179 (v S=O), 651 (v S-O).

2.1.4. General Procedure for the Synthesis of Methylenedioxy-Benzenesulfonyl Chlorides
(7a–b)

To 0.15 g of the respective potassium salts (12a–b), a solution containing 5.4 equivalents
of thionyl chloride containing a catalytic amount of anhydrous N,N-dimethylformamide
(DMF) was quickly added. The resulting mixture was stirred at 60 ◦C for 4 h. At the end
of this time, a sufficient amount of crushed ice was added to the mixture, resulting in the
formation of a precipitate, the corresponding sulfonyl chlorides (7a–b), which were then
collected by filtration under reduced pressure.

Benzo[d] [1,3] Dioxole-5-sulfonyl Chloride (7a)

Sulfonyl chloride 7a was obtained in 76% yield as a yellowish solid, with a melting
point of 45–48 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 7.14 (1H, dd, J1 = 8 Hz,
J2 = 1.6 Hz, H2), 7.05 (1H, d, J = 1.6 Hz, H6), 6.84 (1H, dd, J1 = 7.6 Hz, J2 = 3.7 Hz, H5),
6.01 (2H, s, H7); IR (ATR, cm−1): 1373 and 1159 (v S=O).

6-Methylbenzo [d] [1,3] Dioxole-5-sulfonyl Chloride (7b)

Sulfonyl chloride 7b was obtained in 95% yield as a yellowish solid, with a melting
point between 75–78 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 7.21 (1H, s, H2), 6.71 (1H,
s, H5); 5.95 (2H, s, H7), 2.42 (3H, s, H8); IR (ATR, cm−1): 1375 and 1181 (v S=O).

2.1.5. General Procedure for the Synthesis of 1,3-Benzodioxolyl-Sulfonamide
N-arylpiperazine Derivatives 5a–f

In a G30-type microwave tube containing a solution with 0.08 g of the respective
4-((4-phenylpiperazin-1-yl)methyl)anilines (6a–c) and 10 mL of ethanol, 1 equivalent of the
desired sulfonyl chloride (7a or 7b) was added. The reaction mixture was irradiated in a
microwave oven for 30 min at 100 ◦C. For the isolation of the products, the reaction medium
was concentrated and extracted in a separatory funnel using ethyl acetate and water at
pH = 10 (adjusted with 10% NaOH solution). The organic phase was dried with anhydrous
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sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained
residue was submitted to a purification step by silica gel column chromatography using
hexane/ethyl acetate as the mobile phase in a gradient (90:10 to 70:30). Target compounds
5a–f were obtained in moderate to good yields, as described below.

6-Methyl-N-(4-((4-phenylpiperazin-1-yl)methyl)phenyl) Benzo [d] [1,3]
Dioxole-5-sulfonamide (5a)

N-Phenylpiperazine derivative 5a was obtained in 36% yield as a white solid, with a
melting point of 154–156 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 10.26 (1H, s, H18),
7.33 (1H, s, H20), 7.17 (4H, dd, J1 = 12.6 Hz, J2 = 5.7 Hz, H2, H6, H14, H16), 7.02 (2H,
d, J = 8.4 Hz, H13, H17), 6.92 (1H, s, H24), 6.88 (2H, d, J = 7.2 Hz, H3, H5), 6.75 (1H, t,
J = 7.2 Hz, H1), 6.07 (2H, s, H22), 3.38 (2H, s, H11), 3.07 (4H, m, H8, H9), 2.47 (3H, s, H26),
2.42 (4H, m, H7, H10); 13C NMR (500 MHz, DMSO-d6) δ (ppm): 151.05 (C4), 150.69 (C23),
145.31 (C21), 136.48 (C15), 132.78 (C19), 130.42 (C12), 129.82 (C25), 128.95–109.27 (C1, C2, C3,
C5, C6, C13, C14, C16, C17, C20, C24), 102.34 (C22), 61.43 (C11), 52.52 (C8, C9), 48.19 (C7,
C10), 19.67 (C26); IR (ATR, cm−1): 1308 and 1147 (v S=O), 3256 and 1577 (v N-H). Purity
(HPLC): 99.0%; Anal. calcd. for C25H27N3O4S: C, 64.50; H, 5.85; N, 9.03; Found: C, 64.61;
H, 5.83; N, 8.99.

N-(4-((4-(2-Methoxyphenyl)piperazin-1-yl)methyl)phenyl)-6-methylbenzo [d] [1,3]
Dioxole-5-sulfonamide (5b)

N-Phenylpiperazine derivative 5b was obtained in 85% yield as a yellowish solid,
with a melting point of 183–185 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 10.26 (1H,
s, H18), 7.33 (1H, s, H20), 7.16 (2H, d, J = 8.4 Hz, H14, H16), 7.02 (2H, d, J= 8.4 Hz, H13,
H17); 6.91 (3H, dd, J1 = 13.4 Hz, J2 = 6.3 Hz, H2, H6, H24), 6.84 (2H, d, J = 3.7 Hz, H1, H3),
6.08 (2H, s, H22), 3.74 (3H, s, H27), 3.38 (2H, s, H11), 2.91 (4H, br, H8, H9), 2.47 (3H, s, H26),
2.43 (4H, br, H7, H10); 13C NMR (500 MHz, DMSO-d6) δ (ppm): 151.96 (C5), 150.58 (C23),
145.23 (C21), 141.23 (C4), 136.37 (C15), 132.68 (C19), 130.44 (C12), 129.72 (C25), 122.29–109.13
(C1, C2, C3, C6, C13, C14, C16, C17, C20, C24), 102.2 (C22), 61.47 (C11), 55.27 (C8), C9),
49.98 (C7, C10), 19.57 (C26); IR (ATR, cm−1): 1323 and 1150 (v S=O), 3259 and 1593 (v N-H).
Purity (HPLC): 97.0%; Anal. calcd. for C26H29N3O5S: C, 63.01; H, 5.90; N, 8.48; Found: C,
63.16; H, 5.89; N, 8.46.

N-(4-((4-(2,3-Dichlorophenyl)piperazin-1-yl)methyl)phenyl)-6-methylbenzo [d] [1,3]
Dioxole-5-sulfonamide (5c)

N-Phenylpiperazine derivative 5c was obtained in 21% yield as a white solid, with a
melting point of 192–194 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 10.25 (1H, s, H18),
7.33 (1H, s, H20), 7.27 (2H, m, H14, H16), 7.17 (2H, d, J = 8.5 Hz, H13, H17), 7.10 (1H, dd, J1
= 6.6 Hz, J2 = 3.0 Hz, H24), 7.02 (2H, d, J = 8.5 Hz, H2, H3), 6.92 (1H, s, H1), 6.07 (2H, s,
H22); 3.40 (2H, s, H11), 2.94 (4H, br, H8, H9), 2.47 (4H, br, H7, H10); 13C NMR (500 MHz,
DMSO-d6) δ (ppm): 151.24 (C4), 150.73 (C23), 145.35 (C21), 136.53 (C15), 133.23 (C19),
132.85 (C6), 132.69 (C12), 130.45 (C25), 129.94 (C5), 128.54–109.30 (C1, C2, C3, C13, C14,
C16, C17, C20, C24), 102.37 (C22), 61.42 (C11), 52.61 (C8, C9), 50.96 (C7, C10), 19.71 (C26);
IR (ATR, cm−1): 1328 and 1151 (v S=O), 3286 and 1573 (v N-H). Purity (HPLC): 96.0%; Anal.
calcd. for C25H25Cl2N3O4S: C, 56.18; H, 4.71; N, 7.86; Found: C, 56.34; H, 4.69; N, 7.83.

N-(4-((4-Phenylpiperazin-1-yl) Methyl) Phenyl) Benzo [d] [1,3] Dioxole-5-Sulfonamide (5d)

N-Phenylpiperazine derivative 5d was obtained in 56% yield as a yellowish solid,
with a melting point of 178–180 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 10.12 (1H,
br, H18), 7.29 (1H, dd, J1 = 8.2 Hz, J2 = 1.9 Hz, H20), 7.19 (2H, d, J = 1.9 Hz, H14, H16),
7.17 (3H, d, J = 11.1 Hz, H2, H6, H25), 7.05 (2H, m H13, H17), 7.00 (1H, d, J = 8.2 Hz, H24),
6.88 (2H, dd, J1 = 8.7 Hz, J2 = 0.8 Hz, H3, H5), 6.75 (1H, t, J = 7.3 Hz, H1), 6.11 (2H, s,
H22), 3.41 (2H, s, H11), 3.08 (4H, m, H7, H10), 2.44 (4H, m, H8, H9); 13C NMR (500 MHz,
DMSO-d6) δ (ppm): 151.07 (C4), 147.86 (C23), 136.65 (C21), 132.89 (C15), 129.90 (C12),
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129.01 (C19), 122.59–106.50 (C1, C2, C3, C5, C6, C13, C14, C16, C17, C20, C24), 102.62 (C22),
61.43 (C11), 52.53 (C8, C9), 48.20 (C7, C10); IR (ATR, cm−1): 1326 and 1142 (v S=O), 3273
and 1577 (v N-H). Purity (HPLC): 95.0%; Anal. calcd. for C24H25N3O4S: C, 63.84; H, 5.58;
N, 9.31; Found: C, 64.01; H, 5.57; N, 9.33.

N-(4-((4-(2-Methoxyphenyl)piperazin-1-yl)methyl)phenyl) Benzo [d] [1,3]
Dioxole-5-sulfonamide (5e)

N-Phenylpiperazine derivative 5e was obtained in 21% yield as a yellowish solid,
with a melting point of 149–151 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 10.11 (1H, br,
H18), 7.28 (1H, dd, J1 = 8.2 Hz, J2 = 1.9 Hz, H20), 7.18 (3H, m, H14, H16, H25), 7.04 (2H, d,
J = 8.5 Hz, H2, H6), 7.05 (1H, d, J = 8.2 Hz, H24), 6.92 (3H, m, H13, H17, H1), 6.84 (2H, d,
J = 3.3 Hz, H3, H5), 6.12 (2H, s, H22), 3.74 (3H, s, H26), 2.91 (4H, br, H7, H10), 2.43 (4H, br,
H8, H9); 13C NMR (500 MHz, DMSO-d6) δ (ppm): 152.00 (C5), 150.98 (C23), 147.79 (C21),
141.26 (C4), 132.87 (C15), 129.82 (C12), 122.51 (C19), 122.41–106.44 (C1, C2, C3, C6, C13, C14,
C16, C17, C20, C24, C25), 102.56 (C22), 61.55 (C11), 55.33 (C26), 52.79 (C8, C9), 50.05 (C7,
C10); IR (ATR, cm−1): 1328 and 1150 (v S=O), 3247 and 1595 (v N-H). Purity (HPLC): 97.0%;
Anal. calcd. for C25H27N3O5S: C, 62.35; H, 5.65; N, 8.73; Found: C, 62.18; H, 5.67; N, 8.76.

N-(4-((4-(2,3-Dichlorophenyl)piperazin-1-yl)methyl)phenyl) Benzo [d] [1,3]
Dioxole-5-sulfonamide (5f)

N-Phenylpiperazine derivative 5f was obtained in 55% yield as a yellowish solid, with
a melting point of 163–166 ◦C. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 7.19 (1H, m, H20),
7.27 (2H, m, H14, H16), 7.18 (2H, d, J = 1.9 Hz, H13, H17), 7.17 (1H, s, H25), 7.10 (1H, dd,
J1 = 6.8, J2 = 2.8 Hz, H24), 7.04 (2H, d, J = 8.5 Hz, H1, H2), 7.00 (1H, d, J = 8.2 Hz, H3); 13C
NMR (500 MHz, DMSO-d6) δ (ppm): 151.29 (C4), 147.85 (C23), 136.64 (C21), 133.78 (C15),
132.90 (C6), 132.69 (C12), 129.91 (C19), 128.54 (C5), 126.08–106.5 (C1, C2, C3, C13, C14, C16,
C17, C20, C24, C25), 102.62 (C22), 61.43 (C11), 52.62 (C8, C9), 50.96 (C7, C10); IR (ATR,
cm−1): 1335 and 1146 (v S=O), 3108 and 1582 (v N-H). Purity (HPLC): 97.0%; Anal. calcd.
for C24H23Cl2N3O4S: C, 55.39; H, 4.45; N, 8.07; Found: C, 55.49; H, 4.44; N, 8.05.

2.2. Molecular Modeling

Molecular docking studies were performed using Genetic Optimization for Ligand
Docking (GOLD) v. 5.6 [35–40]. Crystallographic structures of the D3 and D2 receptors were
selected from the Protein Data Bank (PDB; http://www.rcsb.org, accessed on 22 June 2022)
protein database. The crystallographic structure with the 3PBL code (resolution 2.89 Å) in
PDB was selected for the D3 receptor [41], whereas the chosen crystallographic structure of
the D2 receptor was that with the 6CM4 code (2.86 Å) [42]. Such structures were the only
structures available in the PDB for these subtypes of dopamine receptors when this work
was done.

Based on the structure of the cocrystallized ligand with the D2 receptor (risperidone),
the validation of the methodology that would be used for molecular docking studies was
carried out. Risperidone was chosen because it is structurally similar to the compounds
designed for this work.

Hydrogen atoms were added to the protein, and the location of the binding site was
defined using the cocrystalized ligand (risperidone) and all amino acids 6 Å away from it
as a reference.

To carry out both the redocking and further studies, risperidone and other proposed
molecules were built in the ChemDraw program, and then the protonation state of the
molecules was analyzed using the Percepta program. Subsequently, the equilibrium ge-
ometry was calculated by the semiempirical method PM6 (Parametric Method 6) for the
lowest energy conformers, which were then used for docking [43].

Since the available crystallographic structure 6CM4 does not present water molecules,
redocking of risperidone in the D2 receptor was performed in the absence of them. Re-
docking results were evaluated by root-mean-square deviation (RMSD) calculation (more
details in the Supplementary Material).

http://www.rcsb.org
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For a punctual evaluation of the interaction profile presented by the compounds, we
performed a protein–ligand interaction profile analysis (PLIP—https://plip-tool.biotec.tu-
dresden.de/plip-web/plip/index, accessed on 4 August 2022) [44].

2.3. Binding and GTP-Shift

Membrane preparations of recombinant Chem-1 cells (ChemiscreenTM, Millipore,
Burlington, MA, USA), transfected by a process using human cDNAs encoding the D3
isoform of the dopaminergic receptor, were used.

Test substances were solubilized in 100% DMSO (stock solution) and then serially
diluted in water. Nonspecific binding was measured in the presence of 30 µM sulpiride (a
selective antagonist of the central dopamine receptors: D2, D3, and D4). To evaluate the
intrinsic efficacy, 50 mM Tris-HCl and 5 mM KCl buffer were used [45]. In this protocol,
we used a medium containing a high concentration of divalent cations (MgCl2 5 mM and
CaCl2 1.5 mM), which favors the binding of agonists to the receptor, or a medium with
high concentrations of sodium and guanosine triphosphate (GTP) (154 mM NaCl and GTP
1 mM), which hinders the binding of agonists.

After incubation with 2.25–5 µg of protein and the radioligand [3H]-spiperone (0.5 nM)
at 37 ◦C for 2 h, filtration was performed. Filters previously soaked in polyethyleneimine
solution (PEI 0.5%) were used, and they were quickly washed with 3 × 4 mL of ice-cold
5 mM Tris-HCl (pH 7.4).

Finally, to evaluate the selectivity of the substances, classic binding to D2-like receptors
was performed using rat striatal membranes. Adult male Wistar rats (2.5–3 months) were
killed by decapitation, their brains were immediately removed on ice and the striatum
was dissected and stored in liquid nitrogen until use. This procedure was approved
by the Institutional Ethical Committee for Animal Care from the Federal University of
Rio de Janeiro (CEUA no. 052/19; 30 April 2019). The striatum was homogenized in a
motorized Potter-type apparatus with a Teflon piston at 4 ◦C at 20 volumes per gram
of tissue in ice-cold 50 mM Tris-HCl buffer (pH 7.4) containing 8 mM MgCl2 and 5 mM
ethylenediaminetetraacetic acid (EDTA). The resulting suspension was ultracentrifuged
at 48,000× g at 4 ◦C for 20 min. The pellet was resuspended in 20 volumes of the same
buffer and incubated at 37 ◦C for 10 min to remove endogenous neurotransmitters. This
suspension was cooled and ultracentrifuged at 48,000× g for 20 min at 4 ◦C [46]. The final
pellet was resuspended and stored in liquid nitrogen until use.

In a medium containing the antagonist radioligand [3H]-YM-09151-2 0.1 nM, 120 mM
NaCl, 5 mM KCl, 5 mM MgCl2, 1.5 mM CaCl2, 1 mM EDTA and 50 mM Tris-HCl (pH 7.2 a
25 ◦C), 50 µg of mouse striatum membrane was incubated in the dark (sodium light) for
60 min at 37 ◦C. Nonspecific binding was estimated using sulpiride (30 µM).

The affinity of substances for D3R and D2-like receptors was evaluated through classi-
cal competition assays to determine the IC50 value. Data were analyzed by nonlinear
regression using the GraphPad Prism® program (version 5.00) and the “binding-one
site competition” model to adjust the curve and calculate the mean inhibitory concen-
tration (IC50). For D2R, the Ki value was calculated from the Cheng–Prusoff equation:
Ki = IC50/[1 + (radioligand)/Kd].

Analysis of intrinsic efficacy for D3R was performed through the displacement caused
by sodium with GTP and the ratio of the IC50 obtained (in this condition) by the IC50
obtained in the medium with MgCl2 and CaCl2. As a control, an experiment was carried
out with dopamine, the endogenous agonist of this receptor.

3. Results and Discussion
3.1. Chemistry

The target N-arylpiperazine derivatives (5a–f) were prepared in good yields through
the nucleophilic substitution reaction of sulfonyl chlorides (7a–b) by 4-((4-phenylpiperazin-
1-yl)methyl)anilines (6a–c) under microwave irradiation (Scheme 1) [47]. Key interme-
diates (6a–c) were obtained from the metal-catalyzed reduction of the corresponding

https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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1-(4-nitrobenzyl)-4-phenylpiperazine precursors (8a–c), as described in Scheme 1 [32,48].
However, 4-nitrobenzylpiperazines (8a–c) were obtained from reductive amination with
NaCNBH3 [49] of the imine intermediates formed in situ after the reaction of substituted
N-phenylpiperazines (9a–c) and 4-nitrobenzaldehyde (10) (Scheme 1). Finally, sulfonyl chlo-
rides (7a–b) were obtained from electrophilic aromatic substitution of
3,4-methylenedioxybenzene (7a) and 3,4-methylenedioxytoluene (7b) following the se-
quence of reactions previously described [48,50].
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Scheme 1. Reagents and conditions: (a) ZnCl2, NaCNBH3, EtOH, 60 ◦C, 24 h, 63–73%; (b) Fe0, NH4Cl,
EtOH H2O, 80 ◦C, 1 h, 60–96%; (c) (1) H2SO4, AcOEt, Ac2O, (2) KOAc, EtOH, 89–93%; (d) SOCl2,
DMFcat, 60 ◦C, 4 h, 76–95%; (e) EtOH, MW, 100 ◦C, 30′, 48–79%.

The obtained N-phenylpiperazine derivatives (5a–f) were fully spectroscopically char-
acterized, and their degree of purity was determined by reversed-phase HPLC analysis to
be greater than 95%, which was considered adequate for the next step of investigating their
binding affinities and efficacies for dopaminergic D2/D3 receptors.

3.2. Binding Affinity, Intrinsic Energy and Molecular Modeling Studies

The new N-arylpiperazine derivatives bind to both D2 and D3 receptors with similar
micromolar affinities (Table 1). The presence of aromatic ring systems and basic nitro-
gen appears to make the N-phenylpiperazine scaffold the main molecular recognition
element for the binding site of aminergic G-protein-coupled receptors (GPCRs) [51]. This
hypothesis is qualitatively supported by the interaction profile of the compounds. The
N-phenylpiperazine subunit occupies the region of the orthosteric site of the D2 and D3
receptors, both for aripiprazole and cariprazine (Figure 2A–D) and for the new derivatives,
represented here by Compound 5a (Figure 3A,B). According to docking studies, interac-
tions at the orthosteric site are hydrophobic and involve amino acid residues such as serine,
tryptophan and phenylalanine. However, by analysis of the specific molecular interactions,
we can observe some important differences between them for each of the compounds. For
example, in D3 receptors, both aripiprazole and cariprazine show interactions with three
identical amino acid residues of the OBS, Asp110, Phe245 and Phe246, but 5a interacts only
with Asp110, in addition to presenting a hydrophobic interaction with Ile183, similarly
to cariprazine (Figure 4A–C). In D2 receptors, both the prototypes and 5a present a salt
bridge interaction with the Asp114 residue. However, in relation to the other interactions,
in comparative terms, especially when we compare 5a and aripiprazole, we perceive a
profile that involves different residues. Aripiprazole interacts with residues such as Thr119,
Trp386 and Phe390, and 5a does not interact with any of them (Figure 5A–C).
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Table 1. Affinities and intrinsic efficacies of the new derivatives. The IC50 values were calculated
from the mean curves of two to six experiments [n] performed in triplicate and are expressed with
their 95% confidence intervals (in parentheses). For D2R, the Ki value was calculated from the Cheng–
Prusoff equation. For D3R, the Na+-shifts were calculated by dividing the IC50 value obtained in the
medium containing NaCl and GTP(II) by the IC50 value obtained in the medium containing MgCl2
and CaCl2(I). Na+-shifts lower than one indicate that the compounds are weak inverse agonists.
Na+-shifts similar to one indicate that the compounds act as antagonists, whereas agonists have
higher values.

Compounds Ki D2R Rat (µM)
IC50 (µM)

(MgCl2 + CaCl2),
D3R

IC50 (µM)
(NaCl + GTP),

D3R

Na+-Shift
(II/I)
D3R

Intrinsic Efficacy at
D3R

Dopamine - 0.17
(0.13–0.22)

1.5
(1–2.3) 8.8 agonist

5a 0.44 1.1
(0.79–1.6)

1.2
(0.9–1.6) 1.1 antagonist

5b 0.08 0.76
(0.5–1.2)

0.29
(0.2–0.4) 0.4 weak inverse agonist

5c 0.4 0.75
(0.4–1.3)

0.78
(0.6–1.3) 1 antagonist

5d 0.82 0.42
(0.29–0.6)

0.99
(0.7–1.4) 2.4 partial agonist

5e 0.1 0.23
(0.17–0.31)

0.2
(0.15–0.27) 0.9 antagonist

5f 0.2 0.11
(0.06–0.2)

0.2
(0.13–0.27) 1.8 partial agonist
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The presence of substituents on the phenyl, linked to the piperazine ring, did not
significantly modify the affinity for these receptors.

In addition to the orthosteric site, a secondary binding site (SBP) was identified in
dopaminergic receptors, which seems to be related not only to the affinity that ligands may
have for these receptors but also to the selectivity between the different subtypes [29,30].

According to the docking studies carried out here, both the prototype compounds
(2 and 3) and the new derivatives showed hydrophobic interactions in the SBP of the D2 and
D3 receptors. However, such interactions took place in different regions of the SBP, which
can be explained by two structural characteristics. The first one is related to the different
chemical subunits present in the analyzed compounds. In aripiprazole (2), we have a
dihydroquinoline, whereas in cariprazine (3), a butyramide, and in the new derivatives
(5a–f), a 1,3-benzodioxole subunit. Furthermore, the conformational differences caused by
the different spacer groups also contribute to the interactions in different regions of the
SBP. While in aripiprazole, the alkyl spacer has great conformational freedom, in the new
derivatives, the interphenylene spacer is conformationally restricted (Figure 2A–D and
Figure 3A,B). We can note that, in the SBP of D3, aripiprazole and cariprazine have two
interactions in common (Leu89, Phe106), as does 5a (Leu89, Glu90), but only the prototypes
interact with Phe106 (Figure 4A–C). In D2 receptors, 5a has no interaction in common with
2 and 3 in the SBP (Figure 5A–C).

For both receptors, the interaction pattern of 2 and 3 appears to be more “hydrophobic”,
while 5a performs a greater number of hydrogen bonds. Since hydrophobic interactions are
strongly related to the displacement of water molecules located around the hydrophobic
groups of the ligand and the binding site, when they interact with each other [52], these
differences could indicate a more entropic interaction profile for the prototypes, while
compound 5a would have a more enthalpic profile, as well as the other compounds
analyzed. This difference in interaction profile could explain the difference in affinity at
both receptors for the prototype compounds (2 and 3) versus the new derivatives.

As efficacy is as important as affinity for the therapeutic effect of a drug, we initially
decided to estimate the intrinsic efficacy of the new compounds for the D3 receptor using
a functional binding assay. The classic GTP-shift assay is based on the ternary complex
model for GPCRs and has been validated for the D3 receptor [42]. This assay is based
on the difference in affinity measured for agonists in the absence and presence of a high
concentration of GTP (or a lower concentration of a nonhydrolyzable GTP analog) that
is capable of destabilizing the ternary complex ARG (high affinity state of the receptor),
which is formed by the agonist (A), the receptor (R) and the G protein (G).



Biomolecules 2022, 12, 1112 12 of 18
Biomolecules 2022, 11, x 12 of 19 
 

 
Figure 4. PLIP analysis for the prototype compounds aripiprazole (A) and cariprazine (B), and for 
5a (C), at D3 receptors. 

Figure 4. PLIP analysis for the prototype compounds aripiprazole (A) and cariprazine (B), and for
5a (C), at D3 receptors.



Biomolecules 2022, 12, 1112 13 of 18Biomolecules 2022, 11, x 13 of 19 
 

 

Figure 5. PLIP analysis for the prototype compounds aripiprazole (A) and cariprazine (B), and for 

5a (C), at D2 receptors. 
Figure 5. PLIP analysis for the prototype compounds aripiprazole (A) and cariprazine (B), and for
5a (C), at D2 receptors.



Biomolecules 2022, 12, 1112 14 of 18

Figure 6A shows the profiles of competition curves for the binding of [3H]-spiperone
to D3 receptors using a full agonist (dopamine, Figure 6A) for validation purposes. In the
presence of 154 mM NaCl and 1 mM GTP, the dopamine competition curve was shifted
to the right, indicating a loss of affinity for D3 receptors. When an antagonist is used as
a competitor, the addition of GTP has no effect, as was observed for derivative 5a, since
the competition curves in the absence and presence of GTP were superimposed, indicating
that 5a is a D3 receptor antagonist (Figure 6B). Very similar behavior was found for the
other N-phenylpiperazine derivatives presenting R1 groups as methyl groups, such as
5c and 5b, which were classified as weak inverse agonists. However, in compounds 5d
and 5f, where the steric hindrance promoted by the presence of a methyl group in the
1,3-benzodioxole ring was abolished, we found an intrinsic efficacy as a partial agonist.
This kind of influence of a methyl group in the bioactive conformation of drugs and drug
candidates is well discussed in a previous paper by our group [53].
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These results are consistent with the structural requirements for D3 receptor antago-
nists, namely, an arylpiperazine subunit, a hydrogen-bonded donor/acceptor group, an
aryl subunit and a suitable spacer [29,30].

The competition curves for the other compounds are presented in the Supplementary
Material (Figure S28).

Although the new N-phenylpiperazine derivatives (5a–f) present similar binding
affinities for D2 and D3, the best Compounds 5e and 5f combined the presence of an ortho-
substituted phenyl group attached to the N-phenylpiperazine subunit with the absence
of a methyl group in the 1,3-benzodioxole ring, which could favor the interactions of the
vicinal sulfonamide group with both target receptors. Interestingly, Compounds 5e and 5f
were able to modulate D3 receptors with different intrinsic efficacies as antagonists and
partial agonists, respectively.

4. Conclusions

As concluding remarks, this work described a new series of substituted N-phenylpiperazines
(5a–f) designed as interphenylene analogs of the antipsychotic drugs aripiprazole (2) and
cariprazine (3), presenting a 1,3-benzodioxole group as a ligand of the secondary binding
pocket of dopamine D2 and D3 receptors. The target compounds were synthesized in good
yields by using classical methodologies, and their binding to both D2 and D3 receptor
subtypes, as well as GTP shift studies, were performed. The best, Compounds 5e and
5f, presented affinity values of 0.1 and 0.2 µM (Ki for D2) and 0.2 and 0.2 µM (IC50 for
D3), respectively, and distinct profiles of intrinsic efficacy. Docking studies revealed that
Compounds 5a–f present a different binding mode with dopamine D2 and D3 receptors,
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mainly as a consequence of the conformational restriction imposed on the flexible spacer
groups of 2 and 3. Although the prototypes (2 and 3) and the new compounds are predicted
to interact at the same binding sites, detailed analysis of the interaction profile indicate
that the difference in affinity at both receptors for the prototype compounds versus the
new derivatives could be related to differences in interactions with binding site residues.
Taken together, these results indicated that the N-phenylpiperazine derivatives 5e and 5f
are promising dual ligands of dopamine D2 and D3 receptor candidates for further studies
in animal models of schizophrenia and drug addiction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12081112/s1, Figure S1: 1H NMR (500 MHz, 25 ◦C, DMSO-d6) of 5a; Figure S2: 13C
NMR (500 MHz, 25 ◦C, DMSO-d6) of 5a; Figure S3: Infrared (ATR) of 5a; Figure S4: Reversed-phase
chromatogram in ACN:H2O (60:40) at 254 nm of 5a; Figure S5: 1H NMR (500 MHz, 25 ◦C, DMSO-d6)
of 5b; Figure S6: 13C NMR (500 MHz, 25 ◦C, DMSO-d6) of 5b; Figure S7: Infrared (ATR) of 5b;
Figure S8: Reversed-phase chromatogram in EtOH:H2O (80:20) at 254 nm of 5b; Figure S9: 1H NMR
(500 MHz, 25 ◦C, DMSO-d6) of 5c; Figure S10: 13C NMR (500 MHz, 25 ◦C, DMSO-d6) of 5c; Figure S11:
Infrared (ATR) of 5c; Figure S12: Reversed-phase chromatogram in EtOH:H2O (80:20) at 254 nm of
5c; Figure S13: 1H NMR (500 MHz, 25 ◦C, DMSO-d6) of 5d. Figure S14: 13C NMR (500 MHz, 25 ◦C,
DMSO-d6) of 5d; Figure S15: Infrared (ATR) of 5d. Figure S16: Reversed-phase chromatogram in
ACN:H2O (60:40) at 287 nm of 5d; Figure S17: 1H NMR (500 MHz, 25 ◦C, DMSO-d6) of 5e; Figure S18:
13C NMR (500 MHz, 25 ◦C, DMSO-d6) of 5e; Figure S19: Infrared (ATR) of 5e. Figure S20: Reversed-
phase chromatogram in ACN:H2O (60:40) at 284 nm for 5d. Figure S21: 1H NMR (500 MHz, 25 ◦C,
DMSO-d6) of 5f; Figure S22: 13C NMR (500 MHz, 25 ◦C, DMSO-d6) of 5f; Figure S23: Infrared (ATR)
of 5f; Figure S24: Reversed-phase chromatogram in MetOH:H2O (60:40) at 254 nm of 5d; Figure S25:
Overlap of risperidone structure of the crystallographic structure (PDB 6CM4) in orange, and the
result obtained after redocking by the ChemPLP function in purple; Figure S26: Interaction profile of
the proposed compounds on D3 (gray) and D2 (blue) receptors. A and B: 5a (light blue); C and D: 5b
(pink); E and F: 5c (yellow); Figure S27: Interaction profile of the proposed compounds on D3 (gray)
and D2 (blue) receptors. A and B: 5d (orange); C and D: 5e (pink); E and F: 5f (purple); Figure S28:
PLIP analysis for the compound 5b, at D2 receptors; Figure S29: PLIP analysis for the compound 5b,
at D3 receptors; Figure S30: PLIP analysis for the compound 5c, at D2 receptors; Figure S31: PLIP
analysis for the compound 5c, at D3 receptors; Figure S32: PLIP analysis for the compound 5d, at D2
receptors; Figure S33: PLIP analysis for the compound 5d, at D3 receptors; Figure S34: PLIP analysis
for the compound 5e, at D2 receptors; Figure S35: PLIP analysis for the compound 5e, at D3 receptors;
Figure S36: PLIP analysis for the compound 5f, at D2 receptors; Figure S37: PLIP analysis for the
compound 5f, at D3 receptors; Figure S38: Estimation of the affinity of of 5a (A), 5b (B), 5c (C), 5d
(D), 5e (E) and 5f (F) on [3H]-YM-09151-2 binding to rat striatal D2 receptor (D2R). Data are means
(±S.E.) from two or three independent experiments, each performed in triplicate. The data were
fitted assuming a single population of binding sites and curves were drawn using the parameters
fitted by nonlinear regression (see details in the Materials and Methods); Figure S39: Estimation
of the intrinsic efficacy of 5b (A), 5c (B), 5d (C), 5e (D), and 5f (E) at the human D3 in membrane
preparations of recombinant Chem-1 cells. Competition curves were performed using the antagonist
radioligand (0.5 nM [3H]-spiperone) in the presence of 5 mM MgCl2 and 1.5 mM CaCl2 (black) or 154
mM NaCl and 1 mM GTP (blue). Each curve represents the averaged curve (±S.E.) from two or three
independent paired experiments (in triplicate); Table S1: RMSD values for each of the GOLD program
function; Table S2: Values of the scores of the results obtained through the docking calculation from
the GOLD program, using the ChemPLP function.
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