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Background: Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This
study focuses on platform comparison to assess performance variability, agreement in the
assignment of a miR signature classifier (MSC), and concordance for the identification of
cancer-associated miRs in plasma samples from non‐small cell lung cancer
(NSCLC) patients.

Methods: A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for
clinical features and MSC risk level was profiled for miR expression using two sequencing-
based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra-
and inter-platform variations were examined by correlation and concordance analysis. The
MSC risk levels were compared with those estimated using a reference method.
Differentially expressed ct-miRs were identified among NSCLC patients and donors,
and the diagnostic value of those dysregulated in patients was assessed by receiver
operating characteristic curve analysis. The downregulation of miR-150-5p was verified by
qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation
at the tissue level.

Results: The intra-platform reproducibility was consistent, whereas the highest values of
inter-platform correlations were among qPCR-based platforms. MSC classification
concordance was >80% for four platforms. The dysregulation and discriminatory power
of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated
also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with
normal samples.
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Conclusion: Overall, our studies provide a large performance analysis between five
different platforms for miR quantification, indicate the solidity of MSC classifier, and identify
two noninvasive biomarkers for NSCLC.
Keywords: liquid biopsy, circulating microRNAs, high-throughput platforms, lung cancer, microRNA signature
classifier, miR-150-5p, miR-210-3p, profiling
INTRODUCTION

MicroRNAs (miRs) are a class of small (18 to 22 nt) non-coding
RNAs with known roles in gene regulation (1–3). miRs can be
released from cells into the extracellular space and have been
detected in all tested biological fluids (1–5). Circulating miRs
(ct-miRs) are either stored in particles (exosomes, microvesicles,
and apoptotic bodies) or associated with RNA-binding proteins
or lipoproteins, which prevent their degradation (3–5). The
stability, abundance, and variety of ct-miRs made them
attractive candidates as non-invasive biomarkers for
diagnosing, predicting, and monitoring diseases like cancer
(6–8), and increasing attention is being paid to their role in
lung carcinogenesis (9–16).

In our institution, the use of ct-miRs for the early detection of
lung cancer has been assessed as a complementary diagnostic
tool in the context of low-dose computed tomography (LDCT)
screening in large retrospective cohorts (12, 13). These studies
led to the development of a plasma miR signature classifier
(MSC) based on reciprocal ratios of 24 plasma miRs able to
stratify individuals undergoing lung cancer screening into three
levels (high, intermediate, and low) according to the risk of
developing lethal lung cancer (13, 14). As assessed in samples
collected from smokers within the randomized Multicenter
Italian Lung Detection trial, a large retrospective validation
study, MSC resulted in a sensitivity, specificity, positive
predicted value, and negative predictive value of 87, 81, 27,
and 99% (13). The utility of the classifier was also recently
assessed, thanks to the prospective BioMILD screening trial on
4,119 high-risk volunteers, where MSC-positive participants had
a 2-fold higher risk to develop lung cancer within the fourth year
of screening than MSC-negative participants, independently of
the low-dose computed tomography (LDCT) result (14). The
risk level given by MSC reflects microenvironment-related
changes associated to lung cancer development and
aggressiveness. In detail, the miRs composing the classifier
were found to be associated to an immunosuppressive
phenotype of specific immune cell subsets, such as neutrophils,
macrophages, and lymphocytes (15).

Several high-throughput platforms, based on quantitative
reverse transcription PCR (qPCR) or on sequencing (miR-Seq),
have been routinely used to quantify miRs in human plasma.
However, there is poor consensus on the optimal methodology
for the successful clinical application of ct-miR biomarkers
(17–21). Pre-analytical and analytical conditions are a major
source of variation in results, but many challenges remain in
terms of the reliability of ct-miR quantification methods (17–21).
In 2014, the “microRNA quality control study” (miRQC)
2

systematically evaluated 12 available miR platforms across a
variety of samples including human universal reference RNA,
human brain RNA, and human serum samples (17). The
expression level of 196 common miRs was considered.
Although no platform was consistently superior to the others,
there was substantial variability in performance assessments.
Only two miRs (3%) were differentially expressed (DE) by all
platforms; about half of the miRs (48%) were concordant for half
of the platforms. Since the miRQC study, newer platforms have
emerged. Nonetheless, most recent studies report similar
findings when comparing the different platforms for profiling
low-copy number miRs in human biological fluids (plasma/
serum) or extracellular vesicles (18–21).

A few reports have compared ct-miR abundance using
multiple high-throughput technologies in defined clinical
subgroups. Only one study has reported the use of multiple
platforms (Toray 3D Gene System from Toray Systems,
nCounter from Nanostring Technologies, and QIAseq from
Qiagen) to profile cell-free and extracellular-derived miR
fractions from non‐small cell lung cancer (NSCLC) patients
and healthy donors (20). The patients’ cohort was however
heterogenous and not age-matched with the control group,
preventing the interpretation of differential expression
between NSCLC patients and healthy control samples for
different ct-miR fractions and platforms (20). In addition, to
the best of our knowledge, none of the previous studies has
challenged the ability of different platforms to correctly
classify individual samples according to a clinically relevant
ct-miR signature.

To address these issues, we determined the miR profile of
plasma samples from 10 stage IV NSCLC patients and 10 healthy
heavy smokers matched for age, sex, smoking status, and MSC
classification assessed with the gold-standard method (13, 14),
using five well-established high-throughput methods. Three of
them, Taqman OpenArray/Taqman OpenArray Advanced from
Thermo Fisher Scientific and miRCURY LNA from Qiagen, were
qPCR-based. The remaining two, EdgeSeq from HTG Molecular
and QiaSeq miRNA Library from Qiagen, were next generation
sequencing (NGS)-based. EdgeSeq allows the assessment of 2,083
human miR transcripts directly from plasma, without extraction,
through quantitative nuclease protection, whereas QiaSeq is a
true discovery platform enabling the capture of the whole
miRNome profile.

The aims of this cross-platform comparison were assessment
of intra- and inter-platform reproducibility, agreement in
correctly classifying samples according to the MSC classifier,
and identification and validation of putative cancer-associated
ct-miRs.
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MATERIALS AND METHODS

Characteristics of the Participants
Blood was collected from stage IV NSCLC patients and heavy
smoker healthy individuals, as controls, with no history of cancer
or other diseases. Patients and controls were classified, according
to their class of risk, based on the reference MSC test generated
from the ratios of 24 plasma miRs (12–14). The test was
performed, as previously described, using a Custom RT and
Pre‐amplification Pools with TaqMan MiR Assays (Thermo
Fisher Scientific, Waltham, MA, USA) (12–14). The clinical
characteristics and MSC scores of the participants to the study
are listed in Table 1. Only individuals belonging to high and low
risk were included in the study. There was no significant
difference in sex, age, smoking history, and nationality between
the participants (p > 0.05).

Plasma Preparation and RNA Extraction
Blood samples, collected in P100 tubes (BD Bioscience, San Jose,
CA, USA), were separated within 2 h of collection into plasma
aliquots by two centrifugations of 1,600g for 10 min and stored
at -80° until assayed. Total RNA was extracted from 200 ml of
plasma using the automatic nucleic acid extractor Maxwell 48
(Promega, Madison, WI, USA), eluted in nuclease-free water,
and stored at –80°C. Exogenous synthetic miRs (ath-miR-159a,
cel-miR-39-3p, UniSp2, UniSp4, UniSp5, and UniSp6) (Thermo
Fisher Scientific and Qiagen, Hilden, Germany) were added as
spike-in controls during sample processing to minimize the loss
of the specific RNA template and to monitor the
extraction efficiency.

ct-miR Profiling and Quality Controls
The Taqman OpenArray Human microRNA panel (OAC as
Open Array “Classic” assay) (Thermo Fisher Scientific) is a fixed-
content panel containing validated human TaqMan miR assays
derived from Sanger miRBase release v.14. In total, 754 human
miRs are amplified in each sample together with 16 replicates
each of 4 internal controls (ath-miR159a, RNU48, RNU44, and
Frontiers in Oncology | www.frontiersin.org 3
U6 rRNA). In brief, according to the manufacturer’s instructions,
separate reverse transcription (RT) and pre-amplification
reactions were performed on all samples using MegaPlex Pools
A (v2.1) and B (v3.0) primer pools, which reverse-transcribe and
pre-amplify specific miRs. The pre-amplified products were
diluted before mixing with TaqMan OpenArray Real-Time
PCR Master Mix and loaded onto a 384-well TaqMan
OpenArray loading plate.

The Taqman OpenArray Human Advanced MicroRNA Panel
(OAA) (Thermo Fisher Scientific) is also a fixed-content panel
containing 754 well-characterized human miR sequences from
the Sanger miRBase release v.21. The internal controls are ath-
miR-159a and cel-miR-39-3p. Preparation of poly(A) tailing and
adapter ligation reactions were performed, according to the
manufacturer’s instructions, on all samples before RT and set-
up of qPCR in a 384-well TaqMan OpenArray loading plate. The
OAC and OAA products were automatically loaded from the
384-well plates onto the OpenArray plates using the AccuFill
System (Thermo Fisher Scientific), and the qPCR reactions were
carried out on a QuantStudio 12K Flex Real Time PCR system
(Thermo Fisher Scientific). Quality controls were performed on
raw data to control for batch effects and outliers. The distribution
of raw Ct/Crt, AmpScore, and CqConf values of the exogenous
spike-in ath-miR-159a was evaluated. Plate images were
manually inspected for every sample in every run to control
for evaporation, bubbles, or oil leakage. The fluorescence of
ROX, a passive dye in the qPCR reagent mix, was controlled to
confirm that each well was correctly loaded. Wells with a ROX
signal above 1,000 were included.

The miRCURY LNA miRNome PCR Panels (miRCURY)
(Qiagen) is a system based on universal RT, followed by qPCR
amplification with locked nucleic acid (LNA)-enhanced primers
designed for miR detection using SYBR tracking dye. In each
sample, a total of 752 unique human miRs based on Sanger
miRBase release 21 are profiled using miRNA ready-to-use PCR
human panels I and II following the manufacturer’s instruction.
The PCR panels also include three small RNA reference genes
(U6, SNORD38B, and SNORD49A) and three miR reference
TABLE 1 | Clinicopathological features of the analyzed cohort.

Characteristics Non‐small cell lung cancer (NSCLC) Patients (N = 10) Healthy Controls (N = 10)

NSCLC types
Adenocarcinoma 5 0
Sarcomatoid 2 0
Othersa 3 0

Stage
IV 10 0

Gender
Male 7 7
Female 3 3

Age
>50 10 10

Smoking status
Current smokers 10 10

MSC status
High 5 5
Low 5 5
July 2022 |
aOthers: adenosquamous (N = 1), poorly differentiated (N = 1), and squamous (N = 1).
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genes (miR-103-3p, miR-191-5p, and hsa-miR-423-5p), all
found on panel I. Panel I also contains qPCR assays for the 5
synthetic RNAs in the RNA Spike-in Kit (cel-miR-39-3p,
UniSp2, UniSp4, UniSp5, and UniSp6). After RT, qPCR
reactions were carried out on a QuantStudio 12K Flex Real
Time PCR system. To control for run-to-run variations,
interplate calibration was performed using the six interplate
calibrators, UniSp3 miR, as per the manufacturer’s instruction.
After the calibration of each plate, the data were merged to
obtain a unique data matrix.

The QiaSeq miRNA Library (QiaSeq) (Qiagen) is a discovery
platform which captures all small RNA sequences and uses
unique molecular indices (UMIs) to enable an unbiased and
accurate miRNome-wide quantification of mature miRs by NGS
technology. Briefly, the preparation of small RNA libraries was
performed according to the manufacturer’s procedures. The
quality and concentration of libraries were determined using
Qubit™ DNA HS Assay Kit on a Qubit fluorometer (Thermo
Fisher Scientific), while the library size was assessed using
Agilent High Sensitivity D1000 ScreenTape on a 4200
TapeStation, (Agilent Technologies, Santa Clara, CA, USA).
The libraries were sequenced on a NextSeq 500 System
(Illumina, San Diego, CA, USA). Raw sequences were analyzed
using the Qiagen Online Data Analysis Center with default
settings, and 1,823 unique miRs were selected for the
subsequent analysis.

In the EdgeSeq miR Whole Transcriptome Assay (EdgeSeq)
(HTG Molecular Diagnostics, Inc., Tucson, AZ, USA), frozen
plasma samples were shipped to HTG to carry out the
multiplexed nuclease protection assay, sequencing, quality
controls, and primary analysis of the data. The assay, which
allows the assessment of miRs directly, without extraction, is
based on probes containing sequences complementary to 2,083
specific miRs (miRBase v20) and flanking sequences for
downstream amplification. It includes five negative process
control probes to the plant gene: “ANT” (Aintegumenta,
NM_119937). Probes that successfully hybridize to their
cognate miR in the sample are protected from nuclease
digestion, amplified with the addition of barcodes, and then
sequenced on automated HTG EdgeSeq sequencer system. This
study was executed at HTGMolecular in the VERI/O Laboratory
following VERI/O processes and procedures. Data are provided
as a data table of raw counts, QC raw, and log2CPM (counts
per million).

Data Import and Processing
All statistical and bioinformatic analyses were performed using
the R statistical program v. 3.6.1. For the three qPCR-based
panels, text files were downloaded from the QuantStudio 12K
Flex and were imported in R as data tables. The expression
matrices in qPCRset format were created for every dataset using
the HTqPCR R package (22). Filtering on detection was
performed according to the manufacturers’ suggested
thresholds: Crt ≦ 28, AmpScore > 1, and CqConf > 0.8 for
OAC and OAA panels; Ct ≦ 35 and AmpScore > 1 and CqConf >
0.8 for miRCURY panels I + II. If miRs did not reach the
thresholds, they were set to 40 and considered as “undetected”.
Frontiers in Oncology | www.frontiersin.org 4
Since different miRbase versions were used to design the
platforms, we downloaded the platform annotations from each
manufacturer’s website and, using the mature sequence
identifier, we converted miR names to miRbase version 21. For
qPCR-based platforms, data were normalized using the global
median normalization method with the median values of
detectable miRs. For QiaSeq, primary analysis was performed
with the GeneGlobe online software (https://geneglobe.qiagen.
com/sg/analyze/). Raw counts were normalized using the
trimmed mean of M-value (TMM) method (23) implemented
in the edgeR package (24) considering that only the UMI counts
had more than 10 counts mapping in at least 30% of samples. For
EdgeSeq, raw counts were corrected by background subtraction
of the maximum value of the five ANT probes. In addition,
control miRs were removed, and miRs with negative counts after
the background correction were set to 0 for the subsequent
normalization performed using the TMM method (23).

Guanine-Cytosine Content Evaluation
Guanine–cytosine (GC) content was calculated for detected and
undetected miRs common to all platforms (n = 488). The
percentage of GC was calculated as the sum of G and C
present in every miR sequence divided by the length of the
sequence and multiplied by 100. Differences between detected
and undetected miRs in each platform were assessed with
Wilcoxon rank-sum test.

Correlation and Concordance Analysis
Three samples deriving from a patient and two healthy subjects
were profiled twice each using, depending on the platform, ether
independent RNA extractions of the same plasma or duplicate
aliquots of crude plasma (Figure 1). The concordance and
correlation coefficient (CCC) was calculated using the DCt/Crt
and log2(CPM) values on pairs of technical replicates for each
platform with the epi.ccc function of epiR package (https://cran.
r-project.org/web/packages/epiR/epiR.pdf). Hierarchical
clustering was performed using Euclidean distance and
Ward method.

MSC Algorithm
The plasma-based MSC test analyzes the reciprocal levels of 24
ct-miRs (listed in Supplementary Table S1) by qPCR. The
expression values of these miRs were determined by gold-
standard methodology. Briefly, the Multiplex Pools Protocol on
custom-made microfluidic cards (Thermo Fisher Scientific)
containing the 24 miRs spotted on duplicates was used as
described (14, 15). To remove the batch effect, a ratio-based
approach, using the gold-standard methodology as reference
array, was first adopted (25). In detail, the normalized data of
the 24 miRs from each platform were scaled by the arithmetic
mean of the reference array. The fixed MSC algorithm (26) was
then applied to the 24 scaled miR profile obtained for each
sample in each platform, taking into account the single values.
The MSC risk scores were compared with those calculated in the
same samples by the gold-standard methodology (Table 1).
Cohen’s kappa was used to assess the agreement between
platforms for MSC classes.
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Differential Expression Analysis and
Concordance Rate Between Platforms
Differential expression analysis was carried out on normalized
data using the linear modeling approach implemented in the
limma package (27). Nominal p-values were corrected for
multiple testing using the Benjamini–Hochberg false discovery
rate (FDR). DE ct-miRs were selected according to an FDR <0.1
in all the platforms. We then assessed the pairwise concordance
of fold changes (FC) between platforms (platform X vs.
platform Y). Four qualitative evaluations were assigned to each
comparison: compressed, opposite, overestimate, or concordant
(28). When the compared FC were in the same direction but the
ratio of X/Y was greater than or equal to 2, a value of
“compressed” was assigned. Similarly, if the FC ratio of X/Y is
less than or equal to 0.5, the comparison was deemed
“overestimate”. FC ratios between these values were named
“concordant”. When two FC values were not in the same
direction and either of them was greater than 2 or less than
0.5, the comparison was determined to be “opposite”.
Concordance rates were calculated by number of miRs with
“concordant” and “overestimate” calls divided by the total
number of analyzed miRs which were in common and
expressed in all the platforms.

Individual qPCR Assays
Single qPCR reactions were performed using TaqMan
MicroRNA Assays (hsa-miR-150-5p and hsa-miR-93-5p,
Thermo Fisher Scientific) according to the manufacturer’s
instructions. Briefly, total RNA (3 µl) was reverse-transcribed,
and the resulting cDNA was used (2.5 µl) for the pre-
amplification reaction. The pre-amplified cDNA was diluted
1:12, and 0.10 µl of the product was used to perform the qPCR
amplification reaction using the corresponding miR assay
Frontiers in Oncology | www.frontiersin.org 5
primers and TaqMan Universal PCR Master Mix no
AmpErase UNG, according to the manufacturer’s instructions.
The PCR reaction conditions were as follows: enzyme activation
at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 s, and
annealing/extension at 60°C for 60 s. The amplification was
performed in 384-well plates with QuantStudio 12K Flex Real
Time PCR system (Thermo Fisher Scientific) assembled using
the Janus automated workstation (PerkinElmer, Waltham, MA)
from 96-well plates. Each qPCR analysis was done in triplicate,
and data were acquired through QuantStudio 12K Flex v.1.2.3;
the obtained mean Ct values were exported for statistical
analysis. miR-93-5p was identified as a reference housekeeper
by all the platforms using the selectHKgenes function with
Vandesompele method (29) of SLqPCR R package (https://
bioconductor.org/packages/release/bioc/html/SLqPCR.html)
calculated on filtered raw data of each platform. The expression
levels of miR-150-5p were then normalized according to the DCt
method (30) using the Ct mean values of the endogenous control.

External Validation
External validation was performed in The Cancer Genome Atlas
(TCGA) dataset. Raw count values for the TCGA miR-seq data
of lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) were downloaded from the Genomic Data
Commons data portal (https://portal.gdc.cancer.gov/). The
LUAD project included 519 primary solid tumors, 2 recurrent
tumors, and 46 normal samples from adjacent tumor tissues; the
LUSC project included 478 primary solid tumors and 45 normal
samples (31, 32). TCGA raw count values, samples, and patients’
annotations were obtained using the TCGABiolinks package
(33). miRs with less than 10 counts expressed in more than
50% of samples were filtered out. Raw counts were then
normalized with the TMM method implemented in the edgeR
FIGURE 1 | Graphical representation of ct-miR profiling in non‐small cell lung cancer (NSCLC). The plasma samples of ten stage IV NSCLC cancer patients and ten
healthy heavy smoker donors were quantified for miR expression by five different high-throughput platforms—three qPCR-based (lower-left panels, boxed in red) and
two next-generation sequencing-based (lower-right panels, boxed in green). Three samples were tested in duplicate and are marked with an asterisk.
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package (23, 24). Differential expression between tumor and
normal tissue was performed using the limma/voom method
(27). Nominal p-values were corrected for multiple testing using
the Benjamini–Hochberg FDR.

ROC Curves
Receiver operating curves (ROC) with area under the curve
(AUC) calculation were used to determine the diagnostic value
of miRs in distinguishing between plasma from healthy controls
and NSCLC patients (34). ROC curves were obtained by plotting
sensitivity against specificity using the ROC function of pROC R
package (34). An area greater than 0.5 under the curve suggests
the diagnostic potential of each ct-miR candidate.
RESULTS

Study Design and ct-miR
Expression Profiling
A total of 20human specimenswere employed for this study,which
includedplasma fromNSCLCpatients (n=10)andhealthy subjects
(n = 10) matched for age, sex, smoking status, and MSC risk score
(Table 1). Three plasma, one derived from a patient and two from
healthy subjects, were in duplicate, bringing the total number of
analyzed samples to23 (Figure1). RNAderived fromthese samples
was profiled by the following four high-throughput technological
platforms: Taqman OpenArray Human miR and Taqman
OpenArray Human Advanced miR Panels (Thermo Fisher
Scientific), miRCURY LNAmiR miRNome PCR Panels (Qiagen),
andQiaSeqmiRNALibrary (Qiagen) (Figure1).Thefifthplatform,
EdgeSeq miR Whole Transcriptome Assay (HTG Molecular
Diagnostics), employed crude blood plasma instead (Figure 1).
The starting material for the duplicates was a second aliquot of
either crude plasma (for EdgeSeq platform) or RNA independently
extracted (for all remaining platforms). Their inclusion was
required to assess intra-platform repeatability as described below.
The presence and detection of miRs by platform and sample is
reported in Supplementary Table S2. The number of common
miRs detectable by all platforms was 488 (Supplementary Figure
S1A and Supplementary Table S2). For each platform, the average
number of ct-miRs detected after normalization and filtering in the
different samples ranged from 236 for EdgeSeq platform to 806 for
QiaSeq (Supplementary Figure S1B). By considering only the 488
commonlydetectedmiRs, averagedetection ranged from120 to323
(Figure 2A). As shown in Supplementary Figure S1C, the
influence of GC content had no or little impact on the detection
rate. The 488 common miRs included a list of 26 miRs (named
super_core in Supplementary Table S2) highly expressed in all
plasma samples as indicated by the empirical cumulative
distribution curves of their expression quantiles (Supplementary
Figure S1D).

Intra-platform Repeatability and Inter-
platform Comparison
To evaluate the intra-platform repeatability, we calculated for
each platform the Lin’s CCC between the ct-miR profiles of
Frontiers in Oncology | www.frontiersin.org 6
duplicate samples. CCC between duplicates was >0.8 for all
platforms considering either the 488 common miRs
(Figure 2B) or the total number of available miRs
(Supplementary Figure S2). Pairwise scatterplots for
duplicates are displayed in Supplementary Figure S2. These
results demonstrate intra-platform consistency and no
significant differences among the different technologies. We
then calculated Spearman’s correlation coefficients between
pairs of samples within and between platforms. Hierarchical
clustering of the correlation matrices showed that each platform
produced very homogenous and highly correlated data
(Figure 2C). Within each platform, we did not observe any
separate cluster of tumor and normal samples. This suggests that,
independently of the platform, most of the ct-miRs are
uninformative to distinguish the two groups. We did instead
observe clustering according to the profiling platform, indicating
that the variability explained by the technological approach is
higher than the biological variability. An unsupervised
hierarchical clustering algorithm was carried out on
Spearman’s correlation coefficients calculated between the pair
of platforms for each of the 488 common miRs. Four major
clusters were identified according to different levels of correlation
(Figure 3A). Cluster 1 comprised 17% of miRs displaying the
lowest inter-platform correlation for all pairs of platforms.
Cluster 3 included 32% of miRs that had low expression levels
in all platforms and that were highly correlated when comparing
qPCR-based platforms but were negatively correlated between
NGS- and qPCR-based platforms. Cluster 2 included 35% of
miRs and showed a heterogenous pattern of correlation. A first
subset of miRs showed a positive correlation in all comparisons,
whereas a second subset showed negative correlations when the
comparisons were against OAA, indicating that the expression of
these ct-miRs is inconsistent specifically for this platform. Finally,
cluster 4 included 15% of miRs that were highly expressed in all
platforms and showed a high inter-platform correlation. EdgeSeq
did not correlate with any other platforms since many of the 488
miRs showed an expression value of 0 in all samples. miRs
belonging to each cluster are reported in Supplementary Table
S3. The Spearman correlation coefficients among the six platforms
shown in the right boxplot of Figure 3A indicate that the highest
inter-platform reproducibility was observed between qPCR-based
platforms (miRCURY, OAC, and OAA). For each pair of
comparisons between platforms, we counted the number of ct-
miRs above increasing correlation cutoffs (Figure 3B). We
confirmed that, independently of the correlation cutoff, the
comparison between qPCR-based platforms returned the highest
number of correlated ct-miRs, especially for OAC vs. miRCURY.
Comparisons including EdgeSeq showed the lowest number of
correlated ct-miRs due to the lower detection rate of EdgeSeq
compared with the other platforms.

Cross-Platform Concordance in the
Assignment of a Clinical Validated miR
Risk Score
Our cohort consisted of subjects equally distributed within high
and low risk (Table 1) in both classes (NSCLC and controls) as
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previously assessed by the gold-standard methodology. MSC
algorithm was adopted to classify each sample according to the
expression profiles of the 24 ct-miRs (Supplementary Table S1)
determined in each platform. The classification of each sample
(including duplicates from two subjects) for each platform is
displayed in Supplementary Table S4A. All qPCR-based
platforms and QiaSeq displayed a classification highly concordant
to the original assessment by the gold-standardmethod (Figure 3C
andSupplementaryTableS4A).The same resultswere obtainedby
computing Cohen’s kappa statistics as pairwise measure of
similarity when each platform was confronted to the reference
(Supplementary Table S4B). A lower fidelity was displayed by
EdgeSeq when compared with the reference (Supplementary
Tables S4A, B). Except for EdgeSeq, all other platforms correctly
classified all samples from MSC-low individuals, whereas the
situation was more heterogeneous for MSC-high individuals
(Supplementary Table S4A). Overall, OAA, miRCURY, and
QiaSeq were the three platforms with 91% of correctly classified
samples, followed by OAC (82%) and EdgeSeq (59%) (Figure 3C
andSupplementaryTableS4A).These resultsdemonstrate that the
classification obtained by the standard protocol could be replicated
with a good agreement using at least two qPCR-based technologies
and one sequencing technology.

Differential ct-miR Modulation in NSCLC
Patients Compared to the Healthy
Control Group
To evaluate the differential expression concordance among
platforms, we identified DE ct-miRs between NSCLC patients
Frontiers in Oncology | www.frontiersin.org 7
and healthy donors for each platform. The number of miRs that
passed the detection filter and were available for the contrast
differed among platforms: 689 for QiaSeq, 337 for miRCURY,
305 for OAC, 269 for OAA, and 246 for EdgeSeq. Among the 488
miRs measured by all platforms, those commonly detected were
over 80% for qPCR technologies, were 50% for EdgeSeq, and
dropped to 44% for QiaSeq. In total, 100 miRs were altogether
detected by all platforms, 164 by all but EdgeSeq, which
presented the lowest number of ct-miRs passing the detection
filters. The results of the DE analysis for all platforms are
presented in Supplementary Table S5. For each platform, we
evaluated the number of DE ct-miRs at varying FDR thresholds,
ranging from 0.25 to 0.01 (Supplementary Figure S3A). On
average, the miRCURY platform gave the highest number of DE
ct-miRs, followed by OAC, QiaSeq, and EdgeSeq. No DE ct-miRs
were identified for OAA at any FDR threshold. At the usual
FDR <0.05, the miRCURY platform gave 43 DE ct-miRs,
followed by QiaSeq (n = 5) and EdgeSeq (n = 1). No DE ct-
miRs were found for OAC and OAA at an FDR <0.05.
Considering a stringent FDR of 0.01, only QiaSeq identified
two DE ct-miRs. We next evaluated the intersection between the
lists of DE ct-miRs identified for each platform at different FDR
thresholds (Supplementary Figure S3B). At FDR <0.01, no DE
ct-miRs were shared between two or more platforms. At FDR
<0.05, one ct-miR was identified by three platforms and two by
two platforms. At increasing FDR, the number of shared DE
ct-miRs across platforms increased. Since the selection of DE
ct-miRs by different FDR cutoffs influences the comparison of
the platforms, we evaluated the correlation of the t-statistics to
A

B

C

FIGURE 2 | ct-miR detection and correlation and concordance analysis across duplicates and platforms. (A) Boxplots representing the number of detected ct-miRs
in each platform, calculated after normalization and filtering, with respect to the 488 common miRs. (B) Grouped bar plots showing the concordance and correlation
coefficient calculated among the three duplicates in each platform for the 488 common miRs. The vertical bars indicate the 95% confidence interval of the
correlation. The horizontal dotted line represents the threshold of the minimum correlation value, 0.8. The black, gray, and light gray bars refer to technical duplicates
from three plasma samples. (C) Correlation heat map showing the agreement between the five platforms. Spearman correlation was calculated on the samples’ z-
scores of each platform considering the 488 miRs common to all platforms. Hierarchical clustering was performed using Euclidean distance and Ward linkage.
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assess whether at least the direction of the modulation was
concordant across platforms (Supplementary Figure S3C). All
pairwise comparisons between platforms showed positive
correlation values, indicating that, on average, the trend of
modulation of ct-miRs between lung cancer patients and
healthy donors was similar between platforms. However, only
OAC vs. miRCURY and QiaSeq vs. miRCURY had correlation
values higher than 0.5.

To select ct-miRs DE in at least four platforms, we therefore
applied an FDR cutoff of 0.1. Volcano plots representing the
results of the DE analysis between lung cancer patients and
healthy controls at an FDR <0.1 are shown in Figure 4A. At a
threshold of FDR <0.1, we detected 27 DE ct-miRs on OAC, 6 on
QiaSeq, 97 on miRCURY, 1 on EdgeSeq, and none on OAA,
corresponding to 4.3, 0.5, 5.2, 0.8, 0.4, and 0% of miRs available
for the contrast. A Venn diagram displaying the intersection
between the lists of significantly up- or downregulated ct-miRs in
Frontiers in Oncology | www.frontiersin.org 8
each platform is shown in Figure 4B. Among upregulated ct-
miRs, at FDR <0.1, one was common to OAC, miRCURY, and
QiaSeq platforms, whereas 16 were commonly detected on two of
them. The downregulated ct-miRs included 1 miR shared by
miRCURY and QiaSeq and 1 common to the four platforms
(miR-150-5p, FDR <0.05 in miRCURY, QiaSeq, and EdgeSeq;
FDR <0.1 in OAC).

Fidelity of Fold Change Across Platforms
and Experimental Validation of miR-150-5p
We selected all ct-miRs identified as DE in at least one platform
and evaluated the fold change concordance between platforms as
defined in the “Materials and Methods” section. As shown in
Figure 4C, the highest rate of concordant miRs was found
between OAC and miRCURY, followed by either OAC or
miRCURY compared with QiaSeq. The percentage of miRs
displaying fold changes in the opposite direction increased
A

B C

FIGURE 3 | Correlation analysis between each pair of platform and concordance assessment for the miR signature classifier (MSC). (A) The correlation heat map
shows how the different platforms correlate with respect to the expression values of the 488 common miRs. The median pairwise Spearman’s correlation values are
shown also as boxplots in a black box (right corner). The colored bars on the top and bottom of the heat map (violet- to yellow-colored gradient) define the median-
normalized expression values of each platform. Four functional groups are identified and defined according to different levels of correlation (1, scarce; 2, intermediate;
3, both positive (red) and negative correlation (blue); 4, high). The black vertical bars represent the miRs with an expression value of 0 in EdgeSeq platform that do
not correlate. (B) Curves showing the number of ct-miRs correlated above increasing correlation cutoffs for each pairwise comparison between platforms. (C) Bar
plots displaying the percentage of concordance in assigning the label miR risk classifier MSC—high or MSC—low compared with the reference platform (Custom-
made Microfluidic Cards, Thermo Fisher) used to calculate the clinical validated score.
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when the comparisons were done against EdgeSeq and OAA.
miR-142-3p was the concordant upregulated ct-miR across OAC
(FDR <0.1), miRCURY (FDR <0.05) and QiaSeq (FDR <0.1) in
the plasma of NSCLC patients compared with healthy subjects.
The ct-miRs concordantly and significantly upregulated in at
least two platforms were as follows: miR-590-3p, miR-766-3p,
miR-103a-3p, miR-98-5p miR-296-5p, miR-191-5p, and miR-
24-3p (OAC and miRCURY) and let-7f-5p (QiaSeq and
miRCURY). Except for miR-142- 3p and miR-98-5p, absent
from EdgeSeq, all others belonged to the 488 miRs present on all
platforms. The majority was included in cluster 2, whereas miR-
590-3p and miR-191-5p were in cluster 4 (Figure 3A and
Supplementary Table S3). The only ct-miR downregulated in
cancer patients compared with donors, miR-150-5p (cluster 4,
Figure 3A and Supplementary Table S3), was significantly DE
in four platforms (Figure 5A). A trend toward significance
(nominal p-value = 0.008) was also observed in the fifth
platform (OAA) (Figure 5A). To further investigate the
robustness of differences in the abundance of miR-150-5p,
individual qPCR assays were performed. By ranking the 26 ct-
miRs detected in all samples and platforms according to their
average rank across platforms (Supplementary Table S6), it was
shown that hsa-miR-93-5p is the most stable ct-miR in the
cohort and was selected as the normalizer for the single assay.
The results confirmed that the relative normalized expression of
miR-150-5p in the plasma of NSCLC patients was significantly
lower than in healthy donors (Figure 5A).
Frontiers in Oncology | www.frontiersin.org 9
Discrimination of NSCLC Patients and
Controls by Receiver Operating
Characteristic Curves
To assess the translation of differential expression into diagnostic
power, we evaluated the ability of ct-miRs to discriminate
NSCLC patients from controls using a ROC curve analysis.
Overall, OAA and OAC showed the highest number of
potentially diagnostic ct-miRs, followed by QiaSeq, miRCURY,
and EdgeSeq (Supplementary Figure S4A). The performance of
the platforms in identifying diagnostic ct-miRs varied according
to the AUC cutoff selected but, in general, decreased rapidly at
increasing values of AUC. At AUC >0.8, miRCURY was the best-
performing platform, followed by OAC, QiaSeq, OAA, and
EdgeSeq. At AUC >0.9, miRCURY was again the top-ranking
platform with 7 diagnostic ct-miRs, followed by QiaSeq, OAC,
EdgeSeq, and OAA. We next compared the lists of ct-miRs with
AUC above a certain threshold (Supplementary Figure S4B).
For AUC >0.8, only one ct-miR was shared by at least four
platforms. Upon increasing the AUC to 0.9, no shared ct-miRs
were found for four and five platforms and only one for at least
two or three platforms. The correlation of AUC values showed a
poor consistency between platforms, with correlation values
ranging from a minimum of -0.267 for OAA vs. QiaSeq to a
maximum of 0.407 for miRCURY vs. QiaSeq (Supplementary
Figure S4C). The intersections between miRs with an area under
ROC curve (AUC) value above or equal to 0.7 are shown with a
Venn diagram in Figure 5B. Two ct-miRs, miR-150-5p and
A

B C

FIGURE 4 | Significantly dysregulated ct-miRs in non‐small cell lung cancer (NSCLC) patients compared with healthy donors and fold change concordance
evaluation. (A) Volcano plots showing DE ct-miRs between lung cancer patients and healthy donors. The x-axis shows the log2 fold change. The y-axis shows the –

log10 of the false discovery rate. A false discovery rate of <0.1, represented by a horizontal dashed line, is used to select DE ct-miRs. The up- and downregulated
ct-miRs in lung cancer patients are highlighted in red and blue, respectively. (B) Venn diagram reporting the intersection of the ct-miRs significantly upregulated (red)
and downregulated (blue) in lung cancer patients across the platforms. (C) Stacked bar plots showing the concordance in fold changes between platform pairs
expressed in percentage of miRs. The four indices—”compressed”, “opposite”, “overestimated”, and “concordant”—are described in “Materials and Methods”.
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miR-210-3p, were in common to all the platforms. Although
miR-210-3p upregulation in NSCLC was statistically significant
only in QiaSeq (FDR <0.1), it displayed the same trend of
modulation in the other platforms (data not shown). As shown
in Figure 5C and Supplementary Table S7, the AUC value of
miR-150-5p, including the single-assay qPCR results, ranged
from 0.95 for QiaSeq [95% confidence interval (CI): 0.87–1] to
0.83 for miRCURY (95% CI: 0.64–1). The AUC for miR-210-3p
ranged from 0.87 for OAC (95% CI: 0.7–1) to 0.71 for miRCURY
(95% CI: 0.49–0.94). These results indicate that all platforms can
detect the discriminatory power between NSCLC patients and
healthy donors of these two ct-miRs, even if the accuracy is
platform dependent.

Validation of miR-150-5p and miR-210-3p
as Potential Biomarkers in Tissues
To further explore the role of miR-150-5p and miR-210-3p as
potential biomarkers even for NSCLC tissues, the TCGA miR
sequencing data for tumors and normal tissues of patients
affected by LUAD and LUSC were analyzed. The results shown
in Figures 6A, B indicated that the trend of dysregulation of
Frontiers in Oncology | www.frontiersin.org 10
these two miRs at the tissue level agreed to that observed in
plasma. In comparison with normal tissues, the downregulation
of miR-150-5p was however higher for LUSC than LUAD
(Figure 6A). In contrast, miR-210-3p was significantly
upregulated in both histologies (Figure 6B). ROC curve
analysis was performed to evaluate the diagnostic value of the
two miRs at the tissue level. As shown in Figures 6C, D, they
appeared to represent valuable diagnostic markers. The miR-
210-3p AUC values were high in both LUAD and LUSC cohorts
at 0.98 and 0.99, respectively (Figure 6D), whereas those for
miR-150-5p had higher AUC in LUSC (0.84) than in LUAD
(0.61) (Figure 6C). The related data corresponding to AUCs are
summarized in Supplementary Table S7.
DISCUSSION

We here analyzed the miR profiles of the plasma fluids of 10
NSCLC lung cancer patients and 10 healthy donors by using five
different high-throughput platforms that are among the most
commonly used commercially available technologies.
A

B C

FIGURE 5 | ct-miR differential expression and validation. (A) Boxplots reporting the differences in the expression values of miR-150-5p between non-small cell lung
cancer (NSCLC) patients and healthy donors in all platforms. Single-assay validation test of miR-150-5p after normalization to the reference miR-93-5p is reported.
All p-values were obtained using limma, except for the single assay where unpaired two-tailed t-test was applied. (B) Venn diagram showing the intersection of AUC
values above 0.7, calculated on normalized miR values of all the platforms. (C) Receiver operating characteristic (ROC) curves of miR-150-5p (orange) and miR-210-
3p (blue) obtained by comparing the two groups of lung cancer patients and healthy donors. The area under the ROC curve is above 0.7 for both miRs in all the
platforms and even for miR-150-5p in the validation single assay.
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Each platform was assessed for performance parameters
(intra-platform reproducibility, detection rate, and inter-
platform correlation), for MSC classification concordance, and
for the ability to detect differences between biological groups
(e.g., healthy individuals and patients). The ct-miR detection rate
was more similar across qPCR technologies. QiaSeq exhibited the
highest miR counts in all sample groups, indicating that it is a
Frontiers in Oncology | www.frontiersin.org 11
true discovery technology that greatly expands miR repertoire
detection and allows the identification of novel miRs. In contrast,
EdgeSeq, directly performed on crude human plasma specimens
without RNA extraction, displayed the lowest sensitivity. The
intra-platform reliability, assessed by calculating pairwise
concordance correlation coefficients between duplicates, was
very high for all platforms except for OAA which had slightly
lower CCC values. The results from the inter-platform
reproducibility are consistent with those of previous studies,
indicating that the overlap between different technologies is
small (17–21). Our clustering analysis demonstrated that the
correlation between ct-miRs depends on the platform and on the
expression level of the miRs. The highest inter-platform
reproducibility was observed between the qPCR-based
platforms miRCURY, OAC, and OAA. EdgeSeq, which
displayed a very high number of miRs with an expression
value of 0 after background correction, had the lowest number
of miRs, showing a low inter-platform correlation. It is the only
technology that performs direct miR-targeted sequencing
without RNA extraction procedures, and the results probably
reflect the lower sensitivity for the quantification of low-
abundance miRs as already reported (19). However, for specific
highly expressed ct-miRs such those in cluster 4, it showed an
inter-platform correlation comparable with the other platforms.
Our study pinpoints the challenges inherent to the choice of a
downstream detection technology for ct-miR profiling in a
clinical setting and advises the use of a dual-platform approach
to overcome the limitations of single platforms. If cost will
prevent this approach, the aim of the experiment should be
considered. At a discovery stage, unbiased high-throughput
screens of miRs like that offered by QiaSeq small-RNA
sequencing could be recommended. High-throughput qPCR
technique by miRCURY or OAC could be also a good option
for discovery as well as for more focused studies. Regardless of
the platform used, putative biologically relevant miR biomarkers
should be further validated by an independent technology.
Except for EdgeSeq, concordance of MSC classification to the
gold-standard assay was high for all other platforms, in
particular, for OAA, miRCURY, and QiaSeq, establishing that
the classifier could be reproducibly implemented in other
multiplexed platforms.

Despite the fact that many studies investigating plasma miRs
in patients with NSCLC provide evidence of the potential value
of ct-miRs as non-invasive biomarkers, uncertainties remain
regarding the clinical validity and utility of dysregulated
ct-miRs for lung cancer diagnosis, prognosis, and prediction of
response to treatment (35, 36). There are many reasons
underlying the variability among published studies, including
the use of different technologies and platforms, as also shown
here, and heterogeneity of clinical cohorts. Indeed a recent
multicentric study in the context of the EU network
CANCER-ID reported low concordance among the miR results
obtained by comparing two hybridizations (Toray 3D and
nCounter), one sequencing (QiaSeq), and two qPCR
(miRCURY and two-tailed qPCR) on biological samples
composed of cell-free and extracellular-derived miR fractions
A

B D
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FIGURE 6 | miR-150-5p and miR-210-3p expression and predictive value at
tissue level in The Cancer Genome Atlas (TCGA) dataset. (A) Downregulation
of miR-150-5p. (B) Upregulation of miR-210-3p. The upper and lower
boxplots in (A, B) refer, respectively, to lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC) compared with normal lung samples in
the TCGA cohort. The log2 (fold change) values for the magnitude of
difference are as follows: -0.56 (LUAD vs. normal) and -1.45 (LUSC vs.
normal) for miR-150-5p; 5.02 (LUSC vs. normal) and 4.46 (LUSC vs. normal)
for miR-210-3p. The P-value by unpaired two-tailed Student’s t-test are as
follows: **P ≤ 0.01; ***P ≤ 0.001. (C) Receiver operating characteristic (ROC)
curves for miR-150-5p. (D) ROC curves for miR-210-3p. LUADs are
displayed in the upper boxplots, and LUSC are in the lower boxplots of (C, D).
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from NSCLC patients (n = 27) and healthy control samples
(N = 20) (20). In addition, no common DE ct-miRs among
cancer patients and donors were detected by the different
quantification technologies. This result could be related to the
composition of the NSCLC cohort which included different
stages of the disease before and during systemic treatment or
radiotherapy as well as before and after surgery and to the
control cohort not age-matched with that of the patients (20).

Though smaller, our NSCLC cohort was properly matched
with healthy heavy smoker donors and allowed the detection of
differential ct-miR expression between cancer patients and
controls. The ability to detect statistically significant DE
ct-miRs was platform dependent. However, when we
disregarded the statistical significance and we focused on the
direction of the modulation, we observed that most of the ct-
miRs were concordant, except for EdgeSeq and OAA that
displayed a high number of discordant DE ct-miRs. Finally, all
platforms identified miR-150-5p and miR-210-3p as the best
circulating biomarkers able to discriminate NSLC patients from
healthy donors. Of note is the fact that since these two groups
were matched for MSC test results, we can speculate that miR-
150-5p and miR-210-3p are diagnostic markers independent of
the MSC test result.

They were also confirmed at the tissue level, where the same
trend of significant differences was observed in comparison with
healthy tissue. miR-150-5p was also validated in the same plasma
samples using single-assay qPCR, which is considered the gold-
standard method for expression quantification.

miR-150-5p plays a critical role in the development of lymphoid
and myeloid lineages in both mice and humans and has been
observed to be dysregulated in solid and hematological
malignancies where, depending on the context, it can exert
concogenic or oncosuppressor functions (37, 38). Several lines of
evidence point to its downregulation in different human cancers,
like head and neck squamous carcinoma, cholangiocarcinoma,
prostate, and hepatocellular carcinoma (39–42), supporting the
tumor suppressor role of miR-150-5p. In addition, it was found
downregulated in non-neoplastic diseases like advanced heart
failure, critical illness, and sepsis (43, 44). The results on the
expression and role of miR-150-5p in NSCLC are however
conflicting since both oncogenic and tumor suppressor functions
have been reported (37, 45–48). Its expression level, as detected in
tissues by in situ hybridization, negatively correlates with
metastasis, including lymph node and distant metastasis, at the
time of diagnosis (45). The follow-up data indicate that patients
with a low expression of miR-150-5p have a poor progression-free
survival rate and a poor overall survival rate compared with those
with high miR-150-5p expression (45). Conversely, as assessed by
qPCR, the expression of miR-150-5p was found at levels
significantly more elevated in NSCLC in comparison with that in
non-tumor tissues (46). At the circulating level, once again, either
up- and downregulation in plasma or serum of different cohorts of
NSCLC patients in comparison with healthy donors was reported
(49, 50). By profiling blood plasma miRs in NSCLC patients and
healthy individuals using the miRCURY platform with the LNA
qPCR Serum/Plasma Panel, the upregulation of miR-210 and the
Frontiers in Oncology | www.frontiersin.org 12
downregulation of miR-150-5p were observed for both pre-miR
and mature miR levels (49). Our results agree with the above-
described studies but contradict the finding indicating that the
plasma levels of miR-150 and miR-210, among a panel of 12
candidate miRs, were both significantly upregulated in the plasma
of NSCLC patients compared with healthy controls (50). As
previously mentioned, several parameters like differences in
research design, populations and specimens, and experimental
methods can be relevant for inconsistencies from study to study.
In addition, normalization of expression is a common challenge of
miR studies in biological fluids in the absence of stable normalizers.
Therefore, the function of miR-150-5p in NSCLC warrants further
investigations. Nonetheless, it is worth to point out that, in our
study, by applying distinct normalization strategies for data derived
from small RNA sequencing, high-throughput qPCRmethods, and
individual qPCR assay, miR-150-5p was found to be coherently
downregulated in plasma samples from NSCLC patients by five
different miR profiling platforms, starting from different materials
(RNA and crude plasma) and further validated by a single assay.

The role ofmiR-150-5p downregulation in the early diagnosis of
lung tumor development is further supported by recent findings in
chronic obstructive pulmonary disease, often associated with
comorbidities and an increased risk of cancer, in a large-scale
collection of samples from patients without cancer at baseline but
with follow-up data (51–54). An increasing number of new
strategies for therapeutic miR approaches are currently being
pursued to restore the level of downregulated miRs and regain
their tumor suppressor function (55).miR-150-5p activity as tumor
suppressor has been related to its ability to inhibit wingless (Wnt)-
b-catenin signaling pathway, closely associated with NSCLC
progression, by targeting known activators like glycogen synthase
kinase 3 beta interacting protein, b-catenin, and high mobility
group AT-hook 2 (45, 56) as well as to reduce the matrix
metalloproteinase 14 (MMP14) levels, whose overexpression
correlates with a poor prognosis in NSCLC patients (47–57). The
regulation of miR-150-5p is complex, and several long noncoding
RNAs or circular RNAs can promote NSCLC cell growth and
metastasis through sponging miR-150-5p (58–62).

At difference to miR-150-5p, miR-210-3p has been
unambiguously described as a promising biomarker for NSCLC
lung cancer due to its upregulation at the tissue, plasma, and serum
levels and to its discriminatory accuracy in patients versus healthy
controls (10, 12, 63–71). Investigations into the effects of miR-210
on lung cancer cell behavior as well as into the specificmechanisms
underlying the role ofmiR-210 in the pathogenesis of NSCLC have
been performed. It has been shown to regulate proliferation and
apoptosis by targeting the transcriptional regulator SIN3A (69), a
tumor suppressor gene for NSCLC cells (70). In addition, exosomal
miR-210-3p derived by cancer stem cells targets fibroblast growth
factor receptor-like 1 to elicit a pro-metastatic phenotype (71).

In conclusion, our study provides a comparison of ct-miRs,
relevant in NSCLC, using widely used high-throughput
platforms. We could show that the correlation between ct-
miRs depends on both the type of platform and the miRs
expression levels. Indeed a high inter-platform correlation was
observed for ct-miRs profiled in qPCR-based platforms and, for
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all platforms, within highly expressed ct-miRs. Concordance of
MSC classification among most miR detection technologies with
the “gold-standard” method established that the classifier could
be successfully implemented in other multiplex platforms.
Finally, we here demonstrate, for the first time, that the
decreased abundance of miR-150-5p and the increased
abundance of miR-210-3p in the plasma of lung cancer
patients is independent of the detection technology. Both miRs
display promising attributes and constitute attractive circulating
biomarkers for NSCLC cancer detection. Larger and prospective
studies composed of patients with different NSCLC histological
cancer subtypes and at different stages of the disease are needed
to confirm their significance.
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Supplementary Figure 1 | (A) Venn diagram reporting the intersection of the
miRs present on all platforms, highlighting the 488 in common. (B) Boxplots
representing the number of detected ct-miRs in each platform with respect to those
present in each platform. (C) Boxplots reporting the percentage of GC in detected
(pink) and undetected (blue) ct-miRs for each platform. P-value calculation by
Wilcoxon rank-sum test. (D) Comparison of the empirical cumulative density
function for each platform of the expression quantiles of the 26 ct-miRs detected in
all samples and in all five platforms.

Supplementary Figure 2 | Scatterplot of duplicate profiles derived from three
plasma samples (#1, NSCLC patient; #2 and #3, donors) calculated on normalized
and filtered data in each platform. The platforms from top to bottom are OAC, OAA,
miRCURY, EdgeSeq, and QiaSeq.

Supplementary Figure 3 | Comparison of differential expression results across
platforms. (A) Number of DE ct-miRs in each platform according to different false
discovery rate (FDR) thresholds. (B) Number of DE ct-miRs shared by at least 2, 3,
4, and 5 platforms according to different FDR thresholds. (C) Pairwise scatter plots
of the t-statistic values obtained from the differential expression analysis performed
for each platform. Pearson’s correlation coefficients and significance are reported.
***p-value is <0.001, **p-value is <0.01, and *p-value is <0.05.

Supplementary Figure 4 | Comparison of area under the curve (AUC) values of
ct-miRs across platforms. (A) Number of ct-miRs in each platform with AUC values
above increasing cutoffs. (B) Number of ct-miRs shared by at least 2, 3, 4, and 5
platforms according to increasing AUC thresholds. (C) Pairwise scatter plots of
AUC values for the classification of lung cancer patients and healthy donors.
Pearson’s correlation coefficients and significance are reported. ***p-value is
<0.001, **p-value is <0.01, and *p-value is <0.05.
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