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Background: Currently, disease control in patients with severe eosinophilic asthma is not
optimistic. Competing endogenous RNA (ceRNA) networks have been found to play a key
role in asthma in recent years. However, it is unclear whether ceRNA networks play an
important part in severe eosinophilic asthma.

Methods: Firstly, gene expression profiles related to severe eosinophilic asthma were
downloaded from the Gene Expression Omnibus (GEO) database. Secondly, the key
modules were identified by the weighted gene co-expression network analysis (WGCNA).
Thirdly, genes in modules highly associated with severe eosinophilic asthma were selected
for further construction of the ceRNA network. Fourthly, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on
hub genes. Finally, the results of this study were validated on the GSE143303,
GSE137268, and GSE147878 datasets.

Results: 22 severe eosinophilic asthmatics and 13 healthy controls were extracted for
WGCNA. We found that the genes in the black module (r = −0.75, p < 0.05) and yellow
module (r = 0.65, p < 0.05) were highly associated with severe eosinophilic asthma. EP300
was discovered to serve the key connecting function in the ceRNA network. Surprisingly,
lncRNAs seem to eliminate the role of EP300 in the black module and we discovered that
CCT8 and miRNA-mRNA formed a circRNA-miRNA-mRNA network in the yellow module.
We found that EP300 and FOXO3 in the blackmodule were regulated by steroid hormones
in the enrichment analysis, which were related to the medication used by the patient.
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Through validation of other datasets, we found that the hub genes in the yellow module
were the key genes in the treatment of severe eosinophilic asthma. In particular, RPL17
and HNRNPK might specifically regulate severe eosinophilic asthma.

Conclusion: RPL17 and HNRNPKmight particularly regulate severe eosinophilic asthma.
Our results could be useful to provide potential immunotherapy targets and prognostic
markers for severe eosinophilic asthma.

Keywords: severe eosinophilic asthma, competing endogenous RNA, co-expression network analysis, WGCNA
(weighted gene co-expression network analyses), circRNA

INTRODUCTION

Asthma is an intractable chronic inflammatory illness of the airway
caused by complicated genetic and environmental factors, with a
wide range of types and intensities of airway inflammation and
remodeling (Papi et al., 2018). The majority of patients get
standardized medication and care, and their symptoms are
successfully managed; nevertheless, 5–10% of asthma patients
require high-dose inhaled therapy, yet they have trouble
controlling their condition, which is referred to as severe asthma
(Lemière et al., 2006; Haselkorn et al., 2009). Severe asthma, which
encompasses a wide range of symptoms, is becoming recognized as a
highly heterogeneous illness with a wide range of molecular,
biochemical, and cellular inflammatory characteristics.
Eosinophilic asthma is the most prevalent subtype of severe
asthma (Jatakanon et al., 2000; Lemière et al., 2006). The
molecular processes underlying the incidence and progression of
severe eosinophilic asthma remain unknown. As a result, we need to
learn more about them to properly treat severe eosinophilic asthma.

The influence of competitive endogenous RNA (ceRNA) on
asthma has recently attracted the interest of researchers as a
potential new mechanism for improved asthma therapy. Salmena
et al. introduced the ceRNA hypothesis as a unique regulatory
mechanism between non-coding RNA (ncRNA) and coding
messenger RNA (mRNA) (Thomson and Dinger, 2016).
MicroRNA (miRNA)-response elements (MREs), which operate
as ceRNAs and play a critical role in different clinical processes,
are found in long non-coding RNA (lncRNAs), pseudogene
transcripts, circular RNAs (circRNA), viral RNAs, and protein-
coding transcripts (Thomson and Dinger, 2016; Fan et al., 2018).
With the further development of molecular detection technology,
more and more researchers have found that most lncRNAs and
circRNAs are involved in the pathogenesis of asthma through the
lncRNA-miRNA-mRNA axis and circRNA-miRNA-mRNA axis to
regulate the Th1/Th2 balance, M2 macrophage activation, and
cytokine (IL-6, IL-13, and IL-17) secretion, respectively (Lee et al.,
2009; Han et al., 2019; Huang et al., 2019; Qiu et al., 2019; Shang et al.,
2020). The weakness of the previous study is that it focuses mainly on
the molecular mechanisms of ceRNA in asthma and not on whether
ceRNA plays a role in severe eosinophilic asthma.

Weighted Gene Co-expression analysis (WGCNA) is a
systems biology approach that aims to find clusters of genes
that are highly correlated with external clinical features to identify
potential biomarkers and provide molecular targets for the
treatment of disease (Langfelder and Horvath, 2008). Previous

researchers have also used the WGCNA approach to explore
differential genes in asthma, but previous studies have focused on
populations with mild, moderate, and severe asthma and have not
explored differential genes between severe eosinophilic asthma
and healthy populations (He et al., 2020; Liao et al., 2020).
Second, previous studies relied just on WGCNA to identify
important genes and did not go on to build ceRNA networks
(Kelly et al., 2018; Zhang et al., 2021). Based on this, we used the
WGCNA approach to further construct the ceRNA networks to
reveal the hidden intrinsic molecular mechanism of severe
eosinophilic asthma and provide evidence to support the
biologically targeted therapy for severe eosinophilic asthma.

MATERIALS AND METHODS

Data Acquisition and Processing
The GSE143303 (GEO Accession viewer, 2021) was a dataset
linked to severe eosinophilic asthma that was retrieved from the
Gene Expression Omnibus (GEO) Datasets (https://www.ncbi.
nlm.nih.-gov/gds/). GPL10558 was the platform number.
Endobronchial biopsies were used to compare 47 samples of
distinct inflammatory phenotypes (neutrophilic, eosinophilic,
and paucigranulocytic) of severe asthma to 13 healthy
controls. For our study, we used endobronchial biopsies from
22 severe eosinophilic asthmatics and 13 healthy controls. 13
healthy controls had a predicted FEV1 of more than 80% and no
underlying heart or lung illness. Current smokers were not
allowed to participate. The global initiative for asthma (GINA)
2019 (Sánchez-Ovando et al., 2021) defined severe asthma.
Patients with severe asthma had no recent history of a clinical
chest or upper respiratory tract infection. They also had inhaled
corticosteroid (ICS) (>500 μg fluticasone or equivalent per day)
or oral corticosteroid (OCS) and were at GINA stages 4–5. The
inflammatory phenotypes were defined using the 95th percentile
of the differential count and total cell count, and we called it
eosinophilic asthma when there were ≥3.50% eosinophils
and<71.75% neutrophils (Sánchez-Ovando et al., 2020).

The R Bioconductor package affy was used to normalize raw
microarray gene expression data, which was then submitted to
multiple quality control techniques. Using annotation information,
gene IDs were then mapped to microarray probes. The mean
expression value of genes assessed by several probes was
determined after probes matching more than one gene were
removed from the dataset. Subsequently, the top 5000 genes from
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the GSE143303 dataset were then screened using the median absolute
deviation (MAD) value (Zhao et al., 2021). Following that, we load
clinical characteristics data such as inflammatory phenotypes, age,
gender, and smoking history (Miller et al., 2010). The p value was
adjusted by the false discovery rate (FDR) approach. The characteristics
of the participants were listed in Supplementary Table S1.

Network Construction and Consensus
Module Detection
WGCNA was able to distinguish genes into multiple clusters, and
further investigate the relationship between co-expression modules
and clinical phenotypes. The WGCNA package from Bioconductor
was used to build co-expression networks for all genes (Langfelder
and Horvath, 2008). 1) The hclust function was used to cluster
samples and check for outliers; 2) The soft-thresholding power was
calculated in the construction of each module using the
pickSoftThreshold function of WGCNA, which calculates the
scale-free topology fit index for a set of candidate powers ranging
from 1 to 20 and provides a suitable power value for network
construction. The suitable power was determined if the index value
for the reference dataset exceeded 0.85; 3) one-step network building
was performed to find co-expression modules, and the limited
minimum gene number was set at 50. We assessed the
relationship between modules and clinical features. Sample-
specific characteristics (e.g., age and smoking) might potentially
influence the relationship between gene expression and severe
eosinophilic asthma, so logistic regression was used to control for
confounding variables in the IBM SPSS Statistics 24.0 software.

Relating Modules to External Clinical Traits
We were able to find genes with high group significance as well as
high module membership in intriguing modules using the gene
significance (GS) and module membership (MM) measures. The
clinically significant module for severe eosinophilic asthmatics was
identified if: |GS|≥ 0.5 and |MM|≥ 0.6, the correlation betweenMM
and GS in the module was statistically significant (p < 0.05).

The search tool for retrieval of interacting genes (STRING) online
database (https://string-db.org/)was an onlinewebsite that could build
a protein-protein interaction network (PPI) based on bioinformatics
predictions or biochemical experimental results (STRING, 2021). In
this study, the key modules were displayed using the STRINGwebsite
to create a PPI network detecting gene connections with a threshold of
interaction score >0.4. Genes with |GS| > 0.5 and |MM| > 0.6 in the
key module were imported to Cytoscape (version 3.8.2). The hub
genes were chosen from the top 12 genes.

Enrichment Analysis
To further visualize the activities of genes in the keymodule, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed on hub genes in
the Cytoscape plug-in ClueGo (Bindea et al., 2009). The cutoff
threshold was set at a P value of less than 0.05. ClueGo classified
the signal pathways discovered by enrichment analysis into
groups based on functional connection; the same group was
colored the same color, and the labels of each group of the
most essential terms were color-coded.

Construction of Competing
Endogenous RNA
The RNA Interactome Database (RNAInter) brought together
experimentally validated and computationally predicted RNA
interactome data from miRTarBase and starBase, including
RNA–RNA, and RNA–protein interactions (Kang et al., 2021).
The stronger the evidence for a link between the two genes, the
closer the confidence score was to 1. The top 12 genes in the black,
red, and yellow modules were entered into the RNAInter website
respectively to get ceRNA network relationships, and visualization of
interacting genes with a confidence score >0.55 in Cytoscape.

Validation
We validated key genes with three datasets from the GEO database.
We retrieved the GSE143303 dataset from patients with severe non-
eosinophilic asthma (severe neutrophilic asthma and severe
paucigranulocytic asthma) (n = 25) and healthy controls (n = 13).
The aim was to see if the findings were particular to severe asthma or
severe eosinophilic asthma. The characteristics of the participants
were listed in Supplementary Table S2. We used the GSE147878
dataset to see if the results of this study could be replicated in patients
with severe asthma. The GSE147878 dataset was a cross-sectional
study from endobronchial biopsies (n= 73) and induced sputum (n=
44). We extracted the transcriptomic data of bronchoscopic biopsy
tissue from severe asthma (n = 42) and healthy controls (n = 13). The
characteristics of the participants were listed in Supplementary Table
S3. Finally, the GSE137268 dataset was induced sputum samples
from asthmatics and healthy controls. To see if the findings of this
study were specific to eosinophilic asthma or severe eosinophilic
asthma, we took non-severe eosinophilic asthma patients (controlled
and uncontrolled eosinophilic asthma) (n = 13) and healthy controls
(n = 15) in GSE137268. The characteristics of the participants were
listed in Supplementary Table S4. The normalized expression values
of hub genes were imported into IBM SPSS Statistics 24.0 software,
and the differences between the two groups were analyzed using an
independent samples t-test.

RESULT

Co-Expression Network Construction
After clustering all samples, we discovered an outlier (sample GSE
4256708) in Supplementary Figure S1. The scale-free topology
index exceeded 0.9 when the soft-power β was set to 8
(Supplementary Figure S2). There were 11 modules with sizes
ranging from 55 to 1304 genes, labeled 0 through 10 in the order
of decreasing size. The number 0 was set aside for genes that did
not belong to any of the modules (Supplementary Figure S3).

Identification of the Clinically Significant
Module and Hub Genes
The correlation between module eigengene and clinical
features was used to identify module-trait associations in
Figure 1. The black and red modules were shown to be
adversely associated with severe eosinophilic asthma, with
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correlations of 0.75 and 0.52, respectively (p < 0.05). This
indicated that genes in the black and red modules were
predominantly downregulated in severe eosinophilic
asthmatics. The yellow module was recognized as the
positive module with a correlation of 0.65 (p < 0.05).

Figures 2A,B, and Supplementary Figure S4 showed that the
black, yellow, and redmodules had a strongGS-MMcorrelation (p<
0.05), which were identified as the clinically significant module and
visualized in STRING (Supplementary Figures S5A–C). In total, 94,
39, and 81 genes with |GS|> 0.5 and |MM| > 0.6 in the black, yellow,

FIGURE 1 |Module-trait associations. Each row corresponds to a module eigengene, column to a clinical trait. The corresponding correlations and P-values were
presented.

FIGURE 2 | (A) A scatterplot of Gene Significance (GS) for eosinophilic vs. Module Membership (MM) in the black module; 2 (B) A scatterplot of Gene Significance
(GS) for eosinophilic vs. Module Membership (MM) in the yellow module.
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and redmodules were imported into Cytoscape, respectively, the top
12 genes were filtered as the hub genes in the black, yellow, and red
module respectively (Figures 3A,B, and Supplementary Figure S6).
Finally, we found that the most connected hub gene was E1A-
associated 300-kilodalton protein (EP300), tumor necrosis factor
(TNF), and serine arginine-rich splicing factor 1 (SRSF1) in the
black, red, and yellow modules.

The hub genes in the red module were strongly associated with
the age in Figure 1. After controlling for age, there was no
statistically significant difference in the gene for the red module
between the two groups of healthy controls and severe
eosinophilic asthma (Supplementary Table S5). This indicated

that hub genes in the red module might be closely related to the
age of the patient.

CeRNA Network
EP300 was discovered to serve a key connecting function in the
miRNA-mRNA network. Surprisingly, lncRNA would reduce the
expression of EP300, which in turn would diminish the role of
EP300 as a miRNA sponge and thus cause the down-regulation of
mRNA (Figure 4). The hub genes were examined in the same
way, and we discovered that CCT8 and miRNA-mRNA formed a
circRNA-miRNA-mRNA network. CCT8 acted as a miRNA
sponge and thus cause the up-regulation of mRNA (Figure 5).

FIGURE 3 | (A) The top 12 genes in the black module; (B) The top 12 genes in the yellow module. The darker the color, the higher the connectivity of the gene with
other genes. The lighter the color, the less connected the gene is to the other genes.

FIGURE 4 | The lncRNA-EP300-miRNA-mRNA ceRNA network of the top 12 genes in the black module. lncRNA would reduce the expression of EP300, which in
turn would diminish the role of EP300 as a miRNA sponge and thus cause the down-regulation of mRNA.
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We found that miRNAs such as has-let-7t-5p and has-miR-98-5p
bind to TNF, SPI1, and CCR7, limiting their expression in the red
module (Supplementary Figure S7).

Validation
Hub genes in the black module except FOXO3 were down-
regulated in the GSE143303 (Supplementary Table S6), which
showed hub genes other than FOXO3might be involved in severe
asthma but not particularly regulate severe eosinophilic asthma.
FOXO3 may be a key gene in the regulation of eosinophilic
asthma or severe eosinophilic asthma. The expression of hub
genes other than FOXO3 was decreased in the GSE147878
(Supplementary Table S7), suggesting that hub genes other
than FOXO3 might be key genes in the regulation of severe
asthma. In addition, the expression of FOXO3 was discovered to
be elevated in GSE137268 (Supplementary Table S8), which
indicated that FOXO3 was not only implicated in severe
eosinophilic asthma but also played a key role in eosinophilic
asthma.

We discovered that the expression of hub genes in the yellow
module was increased except for Ribosomal protein L17 (RPL17)
and Heterogeneous nuclear ribonucleoprotein K (HNRNPK) in
the GSE143303 (Supplementary Table S9), which indicated
those hub genes other than RPL17 and HNRNPK play a role
in severe asthma and do not particularly regulate severe
eosinophilic asthma. RPL17 and HNRNPK may be key genes
regulating eosinophilic asthma or severe eosinophilic asthma.
The GSE147878 dataset further validated that genes other than
RPL17 and HNRNPK were key genes regulating severe asthma
(Supplementary Table S10). We did not find statistically

significant differences in RPL17 and HNRNPK between the
healthy control and non-severe eosinophilic asthma groups in
the GSE137268 (Supplementary Table S11). Therefore, we
speculated that RPL17 and HNRNPK might specifically
regulate the specific phenotype of severe eosinophilic asthma.

The hub genes in the red module were all down-regulated in
the GSE143303 dataset, but the difference was not statistically
significant (Supplementary Table S12).

Functional Enrichment Analysis
The hub genes were mainly involved in the longevity regulating
pathway and wnt signaling pathway in the black module. Further
investigation revealed that FOXO3 was mainly enriched in pri-
miRNA transcription by RNA polymerase II. FOXO3 and EP300
were also involved in chromatin binding, chromatin DNA
binding, and beta-catenin binding. Interestingly, beta-catenin
binding included steroid hormone mediated signaling pathway
and cellular response to steroid hormone stimulus (Figure 6).
The hub genes in the yellow module were mainly enriched in the
spliceosome and ribosome. Further research demonstrated that
CCT8 was mainly involved in unfolded protein binding. SRSF1
and RPL17 were related to the ribonucleoprotein complex. SRSF1
and HNRNPK were involved in RNA splicing, via
transesterification reactions with bulged adenosine as a
nucleophile. KEGG pathway analysis showed that SRSF1 and
HNRNPKwere mainly enriched in the Spliceosome, while RPL17
was enriched in the Ribosome (Figure 7). The genes in the red
module were mainly enriched in viral protein interaction with
cytokine and cytokine receptor and B cell receptor signaling
pathway. The KEGG pathway of TNF was mainly enriched in

FIGURE 5 | The CCT-8-miRNA-mRNA ceRNA network of the top 12 genes in the yellow module. CCT8 acted as a miRNA sponge and thus cause the up-
regulation of mRNA.
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FIGURE 6 | Functional enrichment of top 12 genes in the black module. The signal pathways were discovered by enrichment analysis into groups based on
functional connection, the same group was colored the same color, and the labels of each group of the most essential terms were color-coded.

FIGURE 7 | Functional enrichment of top 12 genes in the yellow module. The signal pathways were discovered by enrichment analysis into groups based on
functional connection, the same group was colored the same color, and the labels of each group of the most essential terms were color-coded.
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Natural killer cell mediated cytotoxicity. GO enrichment analysis
showed that TNF, SPI1, and CCR7 were mainly enriched in
mononuclear cell migration, lymphocyte activation, regulation of
leukocyte activation mononuclear cell migration, and positive
regulation of leukocyte migration, negative regulation of immune
effector process, and regulation of leukocyte migration
(Supplementary Figure S8).

DISCUSSION

Severe asthma is known to have a variety of phenotypes and
endotypes, all of which have a significant impact on patients’
quality of life. The most prevalent phenotype of severe asthma is
severe eosinophilic asthma. This is the first research to use
WGCNA to create a ceRNA co-expression network in severe
eosinophilic asthma. LncRNA-EP300 and CCT8 acting as
miRNA sponges played a vital role in severe eosinophilic
asthma. In addition, we found that EP300 and FOXO3 in the
black module were regulated by steroid hormones, which were
related to the medication used by the patient. The genes in the
yellow module were the key genes in the treatment of severe
eosinophilic asthma, in particular, RPL17 and HNRNPK might
specifically regulate severe eosinophilic asthma. This suggests that
genes regulating severe eosinophilic asthma and genes regulating
severe asthma in the yellow module act in concert in the ceRNA
network. We hope that our discoveries will help us better
understand and treat severe eosinophilic asthma in the future.

In this study, the median dose of ICS in patients with severe
eosinophilic asthma was 1600ug/day, and 5/23 patients received
OCS. We found that FOXO3 was involved in cellular response to
steroid hormone stimulus. However, the result of validation in
GSE137268 showed that FOXO3 was up-regulated and
statistically significant in non-severe eosinophilic asthma.
FOXO3 is located on chromosome 6q21 and is protein-
encoding gene-regulating aging, apoptosis, and tumor. Lützner
et al. (2012) found that FOXO3 is a glucocorticoid receptor target
that has two functional glucocorticoid responsive regions in its
promoter. In the presence of glucocorticoids, FOXO3 stimulates
its expression via a positive autoregulatory feedback loop. Yuan
et al. (2020) showed that FOXO3 increased in mild asthma
patients and decreased in severe patients. This indicated that
FOXO3 might be a predictor of sensitivity to glucocorticoids in
asthmatics. Non-severe eosinophilic asthma was still sensitive to
glucocorticoid medication and had a good treatment outcome. In
contrast, patients who were not sensitive to glucocorticoids and
had poor treatment outcomes developed severe eosinophilic
asthma. Therefore, FOXO3 may be a very significant
biomarker for the progression of common eosinophilic asthma
to severe eosinophilic asthma.

As we all know, histone modification is a crucial mechanism of
epigenetic transcriptional control, histone acetylation (HAT) and
histone deacetylases (HDACs) are enzymes that control the
acetylation and deacetylation of histones (Cheng et al., 2019).
EP300 is a well-known example of endogenous HAT. The levels
of EP300 were substantially higher while the levels of histone
deacetylases (HDACs) were much lower in asthma. In our study,

we found that EP300 was involved in steroid hormone mediated
signaling pathways and cellular response to steroid hormone
stimulus. Ito et al. (2002) have previously shown that the
increased expression of several inflammatory genes in asthma
may be due to an increase in HAT activity. In addition, when
asthmatic patients were given inhaled steroids, HAT activity was
lowered to control levels.

SRSF1 is the archetype member of the SR protein family of
splicing regulators (Das and Krainer, 2014). Recent studies
demonstrated that SRSF1 is involved in inflammation. Fu
et al. (2021) showed that SRSF1 expression was elevated in
LPS-induced acute lung injury. However, it is unknown the
role of SRSF1 that played in the development and progression
of severe eosinophilic asthma. Only a few studies available so far
showed that SRSF1 might be a potential biomarker for asthma
(Maghsoudloo et al., 2020). The specific mechanism was to be
further discovered.

CCT8 is a circRNA and is a member of the TCP-1 chaperone
protein (CCT) family of genes. The chaperonin CCT8 controls
proteostasis essential for T cell maturation, selection, and
function (Oftedal et al., 2021). Current studies have found that
CCT8 was overexpressed in cancer, but no study so far has
reported any association of CCT8 with asthma. CircRNAs
have attracted extensive attention in the pathogenesis of
asthma in recent years (Huang et al., 2021). However, the
specific roles of these circRNAs in severe asthma were not
fully clear.

RPL17 is a member of the L22 family of ribosomal proteins
and is the only ribosomal protein that interacts with all six
structural domains of 23S rRNA and plays an important role
in guiding the proper folding and conformation of 23S rRNA
(Pool, 2009). RPL17 was mainly involved in viral gene expression,
viral transcription, and cotranslational protein targeting the
membrane. There is no evidence that RPL17 plays a role in
asthma. However, some studies have explored the relationship
between ribosomal proteins and asthma. Dong et al. (2017)
showed that ribosomal protein S3 (RPS3) siRNA lessened
HDM-induced airway mucus hypersecretion, cytokine
production, and serum IgE elevation. Future studies are yet to
be required to further explore the connection between RPL17 and
severe eosinophilic asthma.

HNRNPK is a DNA/RNA-binding protein and regulates a
wide range of biological processes and disease pathogenesis
(Wang et al., 2020). The mechanism of HNRNPK involvement
in severe eosinophilic asthma is currently unclear. Meng et al.
(2021) found that HNRNPK acted downstream of TNFα-TNFR2
signaling, and was involved in the inflammatory response.
Additional studies will be required to further explore the
relationship between HNRNPK and severe eosinophilic asthma.

After adjusting for age, the expression of genes in the red
module was not significantly different between the two groups.
The genes in the red module were found to be mainly involved in
inflammatory and immune response processes in the enrichment
analysis. Increased levels of circulating cytokines and
proinflammatory indicators including IL-6, IL-1, and TNF are
linked to aging (Michaud et al., 2013). Previous studies have
found that both TNF, SPI1, and CCR7 were up-regulated in
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severe asthma (Wittwer et al., 2006; Niessen et al., 2021; Wang
et al., 2021). In addition, Xing et al. (2002) found dexamethasone
resulted in significant inhibition of pro-inflammatory cytokines,
T-cell stimulation, chemokines, and chemokine receptors. We
speculated that the downregulation of hub genes in the red
module may be due to differences in the age of the
participants and the use of ICS and OCS.

Although the findings of our study have important clinical
implications, the limitations must also be noted. First, we did not
find a dataset that could validate the relationship between lncRNAs
like MALAT1 and NEAT1 and severe eosinophilic asthma. Future
studies are therefore expected to deeply explore the relationship
between lncRNAs and severe eosinophilic asthma. Second, we could
not obtain the dose of ICS andOCS taken by each patient with severe
eosinophilic asthma, so we could not control the effect of drug use on
the results. However, we also found the effect of drug use on the
results by other methods such as dataset validation and enrichment
analysis. At the same time, we also identified some genes in the black
and red modules that were regulated when conventional drugs were
used to treat severe eosinophilic asthma, and potential regulatory
genes in the yellow modules of severe eosinophilic asthma that
remain uncontrolled by drug therapy, which provided evidence for
subsequent targeted and precise treatment of severe eosinophilic
asthma.

CONCLUSION

In conclusion, our study reported that the ceRNA network played an
essential and significant role in severe eosinophilic asthma. The hub
genes in the yellow module were the key genes in the treatment of
severe eosinophilic asthma. In particular, RPL17 andHNRNPKmight
specifically regulate severe eosinophilic asthma. Our results could be
useful to provide potential immunotherapy targets and prognostic
markers for severe eosinophilic asthmatics patients. Further
mechanistic studies were required to validate and elucidate this result.
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