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Abstract

Background: DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study,
we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to
identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection
algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary
dramatically from the population mean.

Methods: We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used
publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and
GSE74214) for discovery and validation.

Results: We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in
cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427)
were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly
more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%).
Additionally, we found significant differences between the predicted ages based on DNA methylation and the
chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older
predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from
individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the
outliers in the pre-malignant tissue was as severely altered as in cancer.

Conclusions: A subset of patients with breast cancer has severely altered epigenomes which are characterized by
accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied
further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant
transformation and preventive intervention in breast cancer.
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Background
Methylation of human DNA comprises the biochemical
addition of a methyl (CH3) group, primarily on a cyto-
sine when followed by a guanosine (CpG). DNA methy-
lation, once established, is a stable signal which serves as
a regulatory mechanism for gene expression as well as a
memory signal [1–3]. However, it is now well established
that DNA methylation alters with age in normal healthy
individuals and in disease states. In early studies that
focused on a handful of genes, it was reported that DNA
methylation increased linearly with age [4, 5]. Later, the
advances in whole-genome quantitative analysis of DNA
methylation enabled the identification of specific loci
with gains and losses of methylation. In fact, we reported
that this epigenetic drift is correlated with lifespan and is
conserved across species [6, 7]. It was also reported that
DNA methylation across different tissues could be used
as a biomarker to predict the biological (epigenetic) age
[8–10]. Of interest are individuals with accelerated epi-
genetic aging, who have acquired altered methylation
faster than expected based on their chronological age.
Exploring these extreme outlying variations in DNA
methylation in normal tissues could help explain bio-
logical variations in disease states. However, these ex-
treme DNA methylation alterations in normal tissues
are infrequent events, making these stochastic outlier
events that are difficult to identify. Several recent studies
reported on different algorithms used to identify these
rare events [11–13].
On the other hand, alteration in DNA methylation,

such as global hypomethylation and localized hyperme-
thylation at gene promoters, is a hallmark of cancer [14].
In breast cancer, aberrant DNA methylation signatures
are closely associated with the different molecular sub-
types [15, 16]. Additionally, tumor suppressor genes that
gain DNA methylation at their promoters may be
inactivated in breast cancer, with reports on over 100
candidate genes with promoter hypermethylation that
potentially play significant roles in driving the disease
[17–19]. Interestingly, many of the DNA methylation
changes reported in cancer are also observed in normal
aging tissues, such as the breast tissue, and age-dependent
hypermethylated genes are frequently hypermethylated in
cancer [11, 20–22]. The comparison of the alterations of
DNA methylation between normal and cancer tissue is
important in defining a potential field defect.
However, despite the efforts to identify individuals

with extreme epigenetic age variations (outliers), it is still
unclear what roles age-dependent DNA methylation out-
liers play in normal breast and in breast cancer. There-
fore, the goal of this study was to detect tissue-specific
age-dependent DNA methylation changes in normal
breast tissue and identify individuals with methylation
outliers and accelerated epigenetic age. Following from

that, this study concludes by exploring what role age-
related DNA methylation outliers play in epigenetic field
defects and in carcinogenesis.

Methods
Purification of normal breast epithelia
Twenty-nine human mammary epithelial cell (HMEC)
lines were utilized as starting material for the identifica-
tion of age-dependent DNA methylation sites. Under an
approved protocol by the Institutional Review Board
(IRB) at Fox Chase Cancer Center, the primary human
mammary epithelial cells were routinely derived from
adjacent or contralateral normal mammary tissue of
breast cancer patients using an established commercial
protocol of EpiCult®-B human mammary epithelial cell
culture (Stemcell Technologies, BC, Canada) as previ-
ously described [23]. Established primary HMEC lines
were maintained in culture for 4 passages in medium
containing 1:1 DMEM/F12 (Life Technologies, Carlsbad,
CA), 2.438 g/L sodium bicarbonate, 5% chelated horse
serum, 20 ng/mL EGF (BD Biosciences, San Jose, CA),
100 ng/mL cholera toxin (Sigma-Aldrich, St. Louis, MO),
10 mg/L insulin (SigmaAldrich, St. Louis, MO), 0.5 mg/L
hydrocortisone (Sigma-Aldrich, St. Louis, MO), antibiotic-
antimycotic (Life Technologies, Carlsbad, CA), and 0.04
mM calcium chloride (Sigma-Aldrich, St. Louis, MO).
Genomic DNA was isolated from HMEC lines by phenol-
chloroform extraction as previously described [24]. The
normal adjacent tissue samples were collected > 2 cm
from the tumor margin, and the H&E slides were reviewed
and scored by independent pathologists [15, 25].

DNA methylation profiling
To analyze the genome-wide DNA methylation profile,
we used Digital Restriction Enzyme Analysis of Methyla-
tion (DREAM) as described previously [26]. Briefly,
DREAM is a quantitative mapping of DNA methylation
with high resolution on a genome-wide scale. The
method is based on sequential cuts of genomic DNA
with a pair of neoschizomer endonucleases (SmaI and
XmaI) recognizing the same restriction site (CCCGGG)
containing a CpG dinucleotide (CG). SmaI cuts first all
unmethylated sites at CCC^GGG while the methylation
tolerant XmaI follows by cutting the methylated sites at
C^CCGGG. The enzymes thus generate distinct
methylation-specific signatures at the ends of DNA frag-
ments which are deciphered by next-generation sequen-
cing. The methylation level at individual CpG sites is
calculated as the ratio of sequencing reads with the
methylated signature CCGGG to the total number of
reads mapping to the site. Using the DREAM method,
we analyzed the methylation profiles of the normal adja-
cent human mammary epithelial cells (n = 29). Pair-end
sequencing of 40 bases was performed on HiSeq 2500
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(Illumina, San Diego, CA, USA) instrument at the
Genomic Core Facility of Fox Chase Cancer Center
(Philadelphia, PA, USA). These sequence data have
been submitted to the GEO database under accession
number GSE160233. We mapped the sequences to
the human genome (hg19) and calculated the methy-
lation at target sites. Unsupervised hierarchical clus-
tering (clustering = ward.D2, distance = Euclidean)
and heatmap were generated in R using the pheatmap
library.

DNA methylation datasets
Publicly available DNA methylation datasets (Illumina
HumanMethylation 450K array) from normal breast
tissue (GSE88883, GSE74214, GSE101961) and from
normal adjacent to cancer breast tissue (TCGA, Firehose
Legacy) were re-normalized within themselves to match
the normalization of the GSE69914 dataset for which
raw array files were not available for normalization. The
ChAMP R package was used for normalization, first fil-
tering out low-quality probes, then imputing the missing
values with champ.filter(), followed by re-normalizing
with champ.norm() using the default method beta-mixture
quantile normalization (BMIQ) [27, 28]. All datasets were
used to identify outliers of DNA methylation.

Identification and validation of age-dependent sites
For our discovery dataset, to identify CpG sites with
methylation changes due to age, we generated DNA
methylation sequencing data for 29 of the purified nor-
mal adjacent human breast epithelia (age range 33–82
years old) using DREAM (GSE160233). To validate the
age-related sites identified based on permutation analysis
of the DREAM dataset, we used DNA methylation
(450K array) of 97 normal adjacent TCGA samples. The
details of the discovery and validation of the age-related
sites are further explained in the “Results” section.

Identification of outlier samples and age prediction
To detect DNA methylation outlier samples, we first ran
principal component analysis (PCA) on the validated
146 age-related sites (described in “Results” section)
across 427 patient samples from the DNA methylation
datasets mentioned above. Next, we calculated an
unsupervised anomaly detection parameter, the local
outlier factor (LOF) on all the principal components of
PCA using the DMwR and Rlof packages in R [29, 30].
The LOF algorithm computes an outlier score based on
the local density deviation of a given data point with re-
spect to the neighboring points. LOF uses a parameter k
(the number of neighboring points) to calculate the local
reachability density (lrd) which is the optimal distance
from the neighbor to the individual data point. LOF
is then calculated based on the average ratio of local

reachability densities of the neighboring points to the
local reachability density of the data point according
to the following equation:
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In the above formula, o is the object, Nk(o) is the set of
the k nearest neighbors, o′ is the neighboring object
used in calculating the reachability distance of o from o′
but at least k-distance of o′. If the density of a point is
much smaller than the densities of its neighbors, then
the point is considered an outlier. To statistically deter-
mine the cutoff for the outlier scores calculated by the
LOF algorithm, we calculated the interquartile range
(IQR) for the outlier scores, and samples with an outlier
score of ≥ Q3 +1.5 × IQR were designated as outlier
samples. We used the least absolute shrinkage and
selection operator (Lasso) to regress the age of the sam-
ples based on the DNA methylation. The glmnet R [31]
package was used to implement the Lasso model with
the penalty parameter fitted by cross-validation. The
cv.glmnet function parameters were set as follows: family
= “gaussian,” type.measure = “mse,” alpha = 1, and the
remaining parameters were set by default. For the age
prediction, we used a model with the largest value of
lambda such that the error is within 1 standard error of
the minimum (lambda.1se) determined by cross-validation
model fitting.

Statistical analysis
Ten thousand or 1000 random permutations of the age
of the patients, and the DNA methylation samples were
used to statistically analyze age-related DNA methyla-
tion changes. The age-dependent methylation changes
were selected based on the cutoffs of permutation
empirical p value (p<0.05) and Spearman correlation of r
≥ 0.3 and r ≤ −0.3. Unsupervised hierarchical clustering
was performed in R using Ward’s method implemented
in the hclust function. Quantitative DNA methylation
differences were defined as a difference in the average
beta value across conditions greater than 0.2 and an
FDR < 0.001. A chi-square test was used to test the sig-
nificance for each odds ratio comparison and p values
indicated. All publicly available DNA methylation data-
sets were renormalized using the beta-mixture quantile
normalization through the ChAMP R package. Outlier
scores were calculated by LOF using DMwR and Rlof
packages in R. The Lasso regression model was built
using the glmnet R package for age prediction with
the penalty parameter fitted by cross-validation. The
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significance of the differences in the predicted and
chronological ages was tested by the Wilcoxon test
and in paired patient samples across different tissue
types by the Kruskal-Wallis test followed by a post
hoc Dunn test with multiple testing correction using
the Benjamini-Hochberg method. The significance of
the overlap of outlier patients was tested by the
hypergeometric test. The significance of the mutation
levels was calculated using the Fisher exact test. The
significance of the clinical characteristics for the three
different groups was calculated using ANOVA testing
followed by Tukey’s HSD post hoc test.

Results
Identification and characterization of age-dependent sites
with DNA methylation changes in normal breast
epithelium
Owing to the evidence that normal breast tissue is com-
prised largely of adipose cells [32], we sought to identify
and characterize age-dependent DNA methylation
changes in purified human breast epithelium from which
cancer arises. We generated DNA methylation sequen-
cing data for 29 of the purified normal adjacent human
breast epithelia (age range 33–82 years old) using DREA
M (GSE160233). We chose to use DREAM methodology
in our discovery analysis because it is robust, highly re-
producible, and has a background of less than 1%, mak-
ing it ideal for the accurate detection of low methylation
levels and small changes such as the ones observed in

aging [26]. To identify the sites with methylation
changes due to age, we first examined the clustering of
the samples based on all sites (45,135) with more than
100 reads in 75% of the samples. The unsupervised hier-
archical clustering (Fig. 1a) of these sites divided the
samples into two groups: first, a cluster of 6 patients
with an average age of 42 and, second, a cluster of 23
patients with an average age of 55. The difference in the
average ages of the two clusters was significant by the
unpaired t test (p value = 0.01). To identify the sites with
methylation changes due to age, we calculated the
Spearman correlation between the methylation of CpG
sites with more than 1% average methylation (32,059
sites) in these 29 breast epithelia and the age of the
patients. To statistically analyze age-related DNA methy-
lation changes, 10,000 random permutations were
performed on the ages of the patient samples with the
methylation data, and empirical p values were computed.
We selected 2759 age-related sites based on a cutoff of r
≥ 0.3 (for gain of methylation) and r ≤ −0.3 (for loss of
methylation) with empirical p value < 0.05 (Fig. 1b).
Next, we characterized the 2759 aging sites which repre-
sented 8.6% of the dataset (32,059 sites). Forty-one
percent (1127/2759) of the aging sites gained DNA
methylation with age while 59% (1632/2759) of the aging
sites lost methylation with age. Furthermore, we showed
that 304 of the 1127 age-related sites that gained DNA
methylation were enriched at CpG islands (CGI), par-
ticularly at the promoter regions (pCGI, OR 3.06, 95%

Fig. 1 DNA methylation changes in normal breast epithelium. a Unsupervised hierarchical clustering of 29 purified human mammary epithelial
(HMEC) samples based on 45,135 CpG sites with more than 100 sequencing reads in at least 75% of the samples. DNA methylation levels are shown
as the blue-red gradient. b Flowchart of steps taken to find CpG sites associated with age. Starting with all CpG sites detected, sites with greater than
1% methylation were used for a permutation test using the Spearman correlation between DNA methylation and age. Ten thousand random
permutations of the age of the patient samples were used to statistically analyze age-related DNA methylation sites. The age-dependent methylation
changes were selected based on a cutoff of permutation empirical p value of (p < 0.05) and based on a Spearman correlation of r ≥ 0.3 (gain of
methylation with age) and r ≤ −0.3 (loss of methylation with age). The numbers in each box indicate the number of DNA methylation sites. c
Summary of odds ratios of the genomic region specificity of age-related hypermethylated (red) and hypomethylated (blue) sites compared to non-
age-related sites. Red and blue dots represent the point estimates of the odds ratio for hypermethylation and hypomethylation, respectively, with lines
representing the 95% confidence intervals around the estimates. A chi-square test was used to test for statistical significance for each comparison; p
values for all comparisons were lower than 0.0001. Genomic regions are defined as follows: CGI (CpG island), nCGI (non-CpG island), pCGI (promoter
CpG island), npCGI (non-promoter CpG island), pnCGI (promoter non-CpG island), and npnCGI (non-promoter non-CpG island)
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CI 2.52–3.72), compared to sites that did not show age-
related changes (3777 CGI sites out of 29,299 sites)
(Fig. 1c in red). On the other hand, non-CGI regions,
particularly non-promoter non-CGI regions (npnCGI,
OR 2.43, 95% CI 2.52–2.9), were more likely to lose
methylation with age compared to non-age-related sites
(24,137 out of 29,299 sites) (Fig. 1c in blue).

Validation of age-related sites
To validate the age-related sites identified based on the
permutation analysis of the DREAM dataset (n=29), we
used DNA methylation (450K array) of 97 normal
adjacent TCGA samples (Additional file 1: Figure S1b).
Considering the high background in this platform, we
excluded sites with less than 10% methylation. To
analyze the correlation between age and methylation, we
performed 1000 random permutations of the Spearman
correlation between DNA methylation and age and com-
puted the empirical p values to measure the significance.
The distribution of the Spearman correlation r values in
the actual dataset (Additional file 1: Figure S1a, pink)
showed a marked excess of positive correlation values
(gain of methylation) and some negative correlation
values (loss of methylation) compared to the distribution
of the correlation values obtained by random permuta-
tion analysis of the same data (Additional file 1: Figure
S1a, green). We used the same cutoff as in our discovery
set (0.3 ≤ r ≤ −0.3) and identified 25,991 age-related sites
(9% of the dataset). Ninety-seven percent of the age-
related sites gained DNA methylation with age, while 3%
of the age-related sites lost methylation with age. We
aligned the 2759 aging sites of the DREAM discovery
dataset with the 450K probes of the 25,991 aging sites in
the TCGA dataset, and 146 unique sites overlapped at
250 bp distance between SmaI sites and 450K probes.
We restricted the distance between the CpG sites to 250
bp as it has been previously shown that co-methylation
over short distances (≤ 1000 bp) is significantly corre-
lated, and this correlation is lost for distances > 2000 bp
[33, 34]. We think this stringent cutoff (250bp) helps in
decreasing the background noise and increasing the spe-
cificity of identifying age-related sites across two differ-
ent platforms. Therefore, 146 of the age-related sites in
the discovery dataset validated in the TCGA dataset.
These 146 aging sites were distributed in the following
genomic loci: 8.9% in pCGI, 13.7% in pnCGI, 25.3% in
npCGI, and 52.1% in npnCGI regions (Additional file 2:
Figure S2 a, b). In comparing these loci to the genomic
distribution of all the sites (45,135) in the discovery
dataset (Additional file 2: Figure S2 c), aging sites were
more likely to be in pnCGI and npCGI (OR 2.4, 95% CI
1.48–3.82 p value = 0.0003 and OR 2.52, 95% CI 1.74–
3.67 p value < 0.0001, respectively). Furthermore, these
validated aging sites significantly correlated in their

direction of change with age in all the genomic contexts
(Additional file 2: Figure S2 d) across the two assay
platforms.

Age-related methylation changes in cancer
We next compared the methylation changes in purified
breast epithelia to the methylation levels in TCGA nor-
mal adjacent tissue (n = 97) and to the TCGA breast
cancer tissue (n = 784). To be able to compare DREAM
data to the 450K array data, we first aligned DREAM
(SmaI) sites to TCGA normal adjacent 450K probes at
an absolute distance of no more than 250 bp. As in pre-
vious reports [20], the age-related sites we identified in
the purified breast epithelium showed a gain of DNA
methylation in TCGA breast tumors (Fig. 2a). The sites
that did not show changes in DNA methylation with age
(empirical p value ≥ 0.05, Spearman rho < 0.3 or > −0.3)
were referred to as not age-dependent sites (Fig. 2c).
The unmethylated sites in the breast epithelium (less
than 1% methylation by DREAM) (Fig. 2d) also gained
methylation in TCGA cancer. However, as shown in the
upper panel of Fig. 2e, compared to all the other data,
age-related sites were the best predictors of hypermethy-
lation in cancer, with an odds ratio of 3.06 and p value <
0.0001. On the other hand, there were fewer age-related
hypomethylated sites in TCGA cancer (Fig. 2b, blue),
and unlike in the case of hypermethylation, age-related
hypomethylated sites were not the best predictors of
hypomethylation in cancer (Fig. 2e, blue). This could be
explained by the 450K array’s bias towards promoter
regions and making it less likely to pick up hypomethy-
lation of non-promoter regions.

DNA methylation datasets
While examining the age-dependent DNA methylation
changes in the TCGA normal adjacent dataset, we
noted a few samples that were outliers in terms of
DNA methylation levels. To systematically look for
these outlier samples, we used 450K methylation data
for 6 datasets (normal samples from GEO datasets
GSE88883, GSE101961, GSE74214, normal-adjacent
samples from TCGA, and both normal and normal
adjacent samples from GSE69914). The characteristics
of the samples are summarized in Table 1. Next, we
ran a principal component analysis on the validated
146 age-dependent DNA methylation values in 427
patients. The summary of PCA analysis and the
scatter plots for the first 3 components are shown in
Additional file 3: Figure S3. The highest proportion of
variance was explained by age (PC1), and the data
showed a uniform group of patients with no apparent
strong batch effect, but several outliers were immedi-
ately apparent in the plot.
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Fig. 2 Age-related DNA methylation sites in normal-adjacent breast tissue gain methylation in breast cancer. a–d Volcano plots of age-related
hypermethylated (a), age-related hypomethylated (b), not age-related (c), and unmethylated sites (d) in TCGA breast tumors compared to normal
samples. The x-axis is the methylation difference between the average methylation (β values) for 784 breast tumors and 97 normal-adjacent samples; the
sites with a methylation difference between tumor and normal of at least 20% are indicated in red (hypermethylation) or in blue (hypomethylation). The
y-axis is the –log10 of q value. Cutoff at the y-axis is at –log10 (q value) = 3. e Summary of odds ratios: the upper panel is for hypermethylation in
unmethylated, not-age, and age sites compared to hypermethylated sites in all the datasets, and the lower panel is for hypomethylation with
comparisons done in the same categories. The numbers on top of the dots represent the estimates of the odds ratio, and the error bars represent the
95% confidence intervals around the estimates. All comparisons were tested for significance by a chi-square test (p value < 0.0001)
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Outliers of DNA methylation are more prevalent in
normal-adjacent breast samples
To detect the outlier patients, we calculated a local outlier
factor score using parameter k = 20. We found that 39 out
of the 427 (9.1%) patient samples had outlier score values
of greater than Q3 + 1.5 × IQR (Fig. 3a). Several groups
have reported that age-related methylated sites can be
used to predict biological ages. Hence, we reasoned that
one plausible difference between these 39 outliers and the
remaining 388 not-outlier samples is a difference in their
biological ages relative to their chronological ages. There-
fore, to predict the biological ages, we built a Lasso model
on the methylation values of the 146 aging sites of the
not-outlier samples (Fig. 3b). We then applied the model
to the outlier samples to predict their biological ages and
to compare them to their chronological ages. As shown in
Fig. 3c, we noted that the difference in the predicted and
the chronological ages for outliers was much greater than
that of the not-outlier samples. To measure these differ-
ences statistically, we compared the absolute differences
between the predicted and the chronological ages (Fig. 3d).
Outliers had a median value of 17 while not-outliers a me-
dian value of 4. This difference was significant by the Wil-
coxon test (p value = 3.7 × 10−9). Interestingly, we also
found that there were significantly more outlier samples
in normal-adjacent to cancer (24/139, 17.3%) than in nor-
mal samples (15/288, 5.2%) (χ2 = 16.4, p = 0.0005) (Fig. 4a).
Additionally, the absolute differences between the pre-
dicted and the chronological ages among outlier and not-
outliers were significant both in normal (p value = 0.0011)
as well as in normal-adjacent samples (p value = 5.4 ×
10−6). Significance was measured by the Wilcoxon test
(Fig. 4b).

Outlier samples are enriched for the accelerated aging
phenotype in normal adjacent breast samples
We noted the differences in the aging phenotype of the
different outlier samples. There were three different

outlier types: accelerated aging outliers whose predicted
ages were older than their chronological ages by at least
10 years (Fig. 3c, right-hand side), decelerated aging out-
liers whose predicted ages were younger by at least 10
years (Fig. 3c, left-hand side) ,and then there were those
DNA methylation outliers with predicted versus chrono-
logical age differences of less than 10 years (Fig. 3c,
middle). We found that accelerated aging outliers were
enriched at a higher frequency in normal-adjacent to
cancer (14/17, 82%) compared to normal samples from
patients without cancer (3/17, 18%) (Fig. 4c) (p value =
0.024, Fisher’s exact test). To confirm that our selected
age-dependent sites are more reliable at detecting outlier
patients than random sites, we constructed a null distribu-
tion by randomly sampling 146 sites from the 450K data
1000 times, followed by applying the same approach of
PCA analysis then LOF to predict the outliers and Lasso
to regress their ages. Sixteen samples from the permuta-
tion analysis were considered as outliers because they
were identified in 95% of the permutations based on
standard statistical practices. Fifteen of the 39 outliers
detected by age-dependent DNA methylation sites over-
lapped with the 16 outliers detected by the random sites
(Fig. 4d). Though the overlap was significant by the hyper-
geometric test (p value = 2.23 × 10−16), age-related sites
identified distinct outliers. Next, we calculated the mean
absolute error (MAE) between the chronological age and
the predicted age of the 1000 random iterations that iden-
tified the random outlier samples. The distribution of the
MAE values for the random outliers (red) and the random
not-outliers (gray) are shown in Fig. 4e. The MAE values
for age-dependent outliers and not-outliers are indicated
by the dashed lines (red and gray, respectively). Though
the outlier patients identified by age-dependent sites or
random sites largely overlapped, the MAE values differed.
The MAE value for outliers identified by age-dependent
sites was higher (15.8, red dashed line) than the distribu-
tion of MAE values of the random outliers. This suggests

Table 1 Breast tissue DNA methylation datasets in this study

Dataset Age range Median age Mean age SD age Sample size Outlier Type Method

GSE88883 18–82 37 37.2 13.6 100 0 N 450K

GSE74214 13–80 54.5 49 20.8 18 3 N 450K

GSE101961 17–76 38 38.2 12.2 121 2 N 450K

GSE69914 18–80 51 49.5 14.4 49 10 N 450K

GSE69914 30–86 51 51.1 12.2 42 7 N-adj 450K

GSE160233 33–82 50 52 14.3 29 NA N-adj DREAM

TCGA 28–90 56.5 57.5 15.3 97 17 N-adj 450K

DNA methylation datasets in normal and normal-adjacent breast tissues. Summary of the characteristics of publicly available and in-house generated DNA
methylation datasets used in this study. Raw (idat) files for all 450K datasets were downloaded and were re-normalized within themselves to match the
normalization of the GSE69914 dataset for which raw files were not available for normalization. The data were normalized using beta-mixture quantile
normalization (BMIQ) through the ChAMP R package. DREAM dataset was generated in-house as described in the “Methods” section. The “Outlier” column
indicates the number of outliers identified in each dataset
N normal, N-adj normal-adjacent, NA not applicable
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that the outlier status can be detected by many CpG sites
throughout the genome, but that age-dependent sites de-
tect distinct outliers and are better at detecting the accel-
erated aging phenotype in outlier samples. Furthermore,
we also investigated how Horvath’s multi-tissue estimator
clock performed in detecting the outliers on the DNA
methylation datasets in the current study (Additional file 4:
Figure S4). To achieve this, first, we checked how many of
the 353 Horvath’s CpG are in the TCGA dataset, and sec-
ond, we investigated how many of those sites are aging
sites in our permutation-based age identification model.
We found that 347 CpG sites are in the TCGA dataset,
but only 32 of those sites (~9%) are aging sites in the same
dataset and none of those 32 sites overlapped with the val-
idated 146 aging sites. Despite this, to identify outliers
using the 347 CpG probes, we applied our outlier analysis
model and found 18 outliers in the TCGA dataset.

However, there was an insignificant overlap between the
outlier samples identified by Horvath’s sites and by our
146 aging sites (p value = 0.06). More importantly,
Horvath’s CpG sites could only detect one TCGA age-
accelerated sample out of the 10 accelerated outliers iden-
tified by our 146 aging sites.

Outlier status in cancer tissue
Because the TCGA data has annotated clinical data, we
next focused on these 97 samples out of the 427 sam-
ples. We wanted to find out if the differences between
not-outlier, outlier, and accelerated outlier samples can
be explained by any of the clinical parameters. We did
not find a significant difference for the type of breast
cancer, molecular subtype, menopause status, race, prior
history of cancer, or stage of the disease (Additional
file 5: Table S1). The only significant difference was in

Fig. 3 DNA methylation outliers are identified through age-dependent sites. a Distribution of the outlier scores (x-axis) calculated by the local
outlier factor algorithm on 427 patients from six DNA methylation datasets. The dashed line represents the cutoff for outlier designation based
on LOF outlier scores of ≥ Q3 + 1.5 × IQR (red line) across all patients. b A Lasso regression model was built on the DNA methylation values of
146 aging sites in all non-outlier samples (gray) from 6 datasets to predict the ages of the samples. The chronological ages and the predicted
ages for 427 patients are shown in the scatter plot with outlier samples in red. c The difference between the predicted age and the
chronological age (y-axis) is shown in the bar plot for 427 patients (x-axis). The 39 outlier patients are in red while the not-outliers are in gray. d
Comparison of the absolute difference between the predicted age and the chronological age on the y-axis for not-outlier (gray) and outlier (red)
samples on the x-axis. Significance was tested by the Wilcoxon test
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the mean predicted age (older in accelerated outliers) (p
value = 1.62 × 10−8). Next, we wanted to find out if there
was a potential clinical correlation between DNA methy-
lation outliers and the mutation load. To this end, we
used the TCGA Firehose Legacy mutation data, which
gives the mutation count for all nonsynonymous muta-
tions, for 97 patients from cBioPortal. The difference in

mutation count between outliers and not-outliers was
not significant (Fig. 5a), while the difference between
accelerated outliers and not-outliers was significant
(p value = 0.026) by the Wilcoxon test (Fig. 5b). We
next asked whether the outlier phenotype is carried
forward to cancer and studied the cancer samples
corresponding to the normal-adjacent samples (n = 91).

Fig. 4 Outlier samples are more prevalent in tumor-adjacent samples and exhibit accelerated aging. a A table indicating the number of outliers
and not-outliers in normal adjacent and normal samples. The proportion of samples in each group is represented by percentages, and
significance was tested by the Fisher exact test (p value = 0.0001, OR=3.9, 95% CI 1.8–8.1). b The absolute difference between the predicted and
the chronological age on the y-axis for not-outlier (gray) and outlier (red) samples in normal samples and normal adjacent to cancer samples. The
numbers above the box plots represent the number of samples in each group. Significance was calculated by the Wilcoxon test. c The outliers
are represented in three groups in both normal and normal adjacent to cancer tissues. The numbers on the bar graphs represent the number of
samples in each group. In red are outliers with an age difference of increase of 10 years older or more between the predicted age and the
chronological age, in blue are outliers with an age difference of 10 years younger or lower, and in gray are outliers with an age difference
between 10 years younger and 10 years older. d Overlap of outlier patient samples identified by 146 age-related sites and outliers identified by
random sites in 95% of the permutations. The significance of overlap was tested by the hypergeometric test (p value = 2.23 × 10−16). e Prediction
evaluation of the difference between the chronological age and the predicted age in outliers defined by random sites or by aging sites. The x-
axis is the mean absolute error (MAE) of the difference between the chronological age and the predicted age for each sample in each of the
1000 randomly generated outlier detection models. The red density plot represents the distribution of MAE of outliers from the 1000 predicted
models; the gray density plot is the distribution of the not-outlier from the same 1000 predictions. The red (outlier) and gray (not-outlier) dashed
lines represent the MAE values based on the aging sites
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Comparing the differences between the predicted and
chronological ages across the groups, we found that, al-
though cancer samples had larger differences than the
normal adjacent samples, the difference between outliers
and not-outliers in the TCGA cancer samples was not sig-
nificant (p value = 0.3) (Fig. 6b orange and gray). However,
the difference between the outliers and not-outliers in the
normal-adjacent samples was significant (p value =
0.0015) (Fig. 6b, red and blue). Furthermore, the difference
between cancer outliers and normal-adjacent outliers was
not statistically significant (p value = 0.18) (Fig. 6b, orange
and red). Statistical significance was tested by the Kruskal-

Wallis test followed by a post hoc Dunn test with multiple
testing corrections using the Benjamini-Hochberg
method. This suggests that there is a limit to the acceler-
ated aging phenotype, which is reached in cancer, thus
minimizing the differences between the cancer outliers
and cancer not-outliers. This also indicates that the out-
liers in the normal adjacent tissue are severely altered
since they are not different than the cancer outliers.

Discussion
In this study, we show age-dependent DNA methylation
drifts in normal breast tissue and that these changes,

Fig. 5 Mutation frequencies in the TCGA samples. Mutation counts were downloaded from the cBioPortal. Comparison of mutation count (x-axis
is the outlier status; y-axis is the log of mutation count) was done between outliers and not-outlier samples (a) and between not-outlier and
accelerated outliers (acc-outlier) (b). Significance was tested by the Wilcoxon test

Fig. 6 Outlier analysis of TCGA normal adjacent and breast cancer samples. a A Lasso regression model was built on the DNA methylation values
of 146 aging sites in all non-outlier samples from the six DNA methylation datasets (blue) to predict the ages of all other samples: the outlier
samples in normal adjacent (red), the not-outlier cancer samples (gray), and the outlier cancer samples (orange). The chronological ages (x-axis)
and the predicted ages (y-axis) are shown in the scatter plot. b Comparison of the absolute difference between the predicted ages and the
chronological ages (y-axis) in outliers and not-outliers in normal adjacent (red, blue) and in cancer (orange, gray). Significance was tested by the
Kruskal-Wallis test followed by a post hoc Dunn test with multiple testing correction using the Benjamini-Hochberg method

Panjarian et al. Breast Cancer Research           (2021) 23:58 Page 10 of 14



especially the hypermethylated perturbations, are
reflected in the breast cancer tissues. We also highlight
that outlier DNA methylation patterns are more fre-
quently found in the normal-adjacent tissues of women
with cancer and their unique accelerated aging pheno-
type in the normal adjacent (pre-malignant) tissue.
In previous studies, DNA methylation perturbations

due to age in breast tissue were identified and were used
to predict biological ages using the Horvath clock (353
CpG) [35–37]. However, in our study, instead of relying
on a clock that was devised across multiple tissues and
did not differentiate tissue-specific age-related changes
(Additional file 4: Figure S4), we identified CpG sites
using permutation tests in purified mammary epithelial
cells. This approach also eliminated variation in fat con-
tent that is reported to vary among normal breast tissue
samples [11].
Our findings that age-related hypermethylated and

hypomethylated sites are enriched in different genomic
regions (promoter CpG islands and non-promoter non-
CpG islands, respectively) are consistent with previous
reports [20, 21]. However, unlike in previous publica-
tions, we identified more sites that hypomethylate with
age. This inconsistency could be explained by the differ-
ent methodologies used to measure the methylation
levels. Previous studies used 27K or 450K arrays for
methylation which were designed to cover gene
promoters and therefore are less likely to pick up hypo-
methylation of non-promoter regions [38]. Even in our
own permutation analysis of the TCGA normal adjacent
data (450K array), we only found a handful of sites that
hypomethylated with age (Additional file 1: Figure 1)
further highlighting the array’s bias. Indeed, using odds
ratio calculations, we show that non-promoter non-CGI
sites are more likely to be detected in DREAM com-
pared to 450K array while the promoter non-CGI sites
were favored in 450K array (Additional file 6: Figure S5).
Additionally, we cannot rule out that some of the
hypomethylation could have been due to culturing of
the purified mammary epithelial cells for 4 passages
prior to DNA extraction as it was previously described
for other human primary cells [39].
Our findings that age-related hypermethylated sites in

a normal breast are enriched in breast cancer are in line
with previous studies [20–22, 40]. Additionally, our find-
ings that age-related hypermethylated sites are the best
predictors of hypermethylation in cancer highlight the
far-reaching implications of using methylation levels of
these sites to predict pre-neoplastic changes.
There are several reports that describe how DNA

methylation alterations in normal cells that are enriched
in cancer cells are predictive of tumorigenesis [11, 12].
These alterations are rare events, and their identification
has been challenging. In previous studies, Teschendorff

et al. [11, 12] clearly raise the point that to identify rare
heterogenous stochastic events, one should use differen-
tially variable and differentially methylated CpG sites
because mean methylation differences would miss those
rare events. Our current study supports this concept as
our unsupervised anomaly detection algorithm does not
assume homogeneity and detects outliers by distance
dissimilarity within the population. Importantly, the
uniqueness of our study includes identification of the
outliers using tissue-specific age-related methylation
changes (rather than tissue-agnostic clocks), and the
statistical approach to identifying outliers, which is also
agnostic of whether the outliers show accelerated vs. dis-
ordered age. Our findings establish that outlier samples
are more frequently present in tissues adjacent to the
cancer compared to the normal and are characterized by
an accelerated aging (predicted age older than the
chronological age) phenotype. These findings indicate
that age-related DNA methylation changes could be
used to identify these rare outliers and their distinct bio-
logical phenotype, which could not be identified by ran-
dom sites nor by Horvath’s multi-tissue estimator CpG
sites (Fig. 4d and Additional file 4: Figure S4). This is an
interesting distinction because one important factor
affecting outlier samples is epigenetic age, which could
present a greater risk of age-related diseases such as
cancer. On the other hand, our findings that mutation
load is significantly different between accelerated aging
outliers and not-outliers (Fig. 5b) could indicate one
potential clinical correlation between DNA methylation
outliers (epigenetic changes) and mutation frequency
(genetic changes). We are aware though that this differ-
ence can be attributed to the one sample that has the
highest mutation frequency and excluding that sample
returned a p value of 0.07 (data not shown). However, in
the future, with the availability of more samples, this
could be further explored. Additionally, there is mount-
ing evidence that chronic inflammation could result in
DNA methylation abnormalities that in this context
could explain the outlier status. However, this is a possi-
bility that remains to be determined in future studies.
Another interesting finding in our study is that al-

though age-related sites do change DNA methylation
from preneoplastic tissue to cancer tissue, all cancer
samples had the accelerated aging phenotype, and there
was no significant difference between cancer outliers
and outliers of the normal adjacent tissues. This con-
trasted with Teschendorff’s studies, where they showed a
progressive change in DNA methylation from normal to
preneoplastic tissue and to cancer tissue, and this change
was exacerbated in cancer in the outlier samples. In our
study, this change is not further extended in cancer
tissues of the outliers possibly because in cancer sam-
ples, the disrupted epigenome has reached the maximum
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possible acceleration and cannot accelerate any further
based on DNA methylation levels. This is also suggestive
of additional numerous DNA methylation abnormalities
that define the cancer epigenome irrespective of the out-
lier status. This also highlights the severity of the outliers
of the pre-malignant tissue which is no different than
the cancer outliers. Therefore, identifying these outlier
individuals based on age-related DNA methylation sites
can potentially stratify individuals whose strikingly
altered epigenome looks like the alteration observed in
cancer. In future studies, it is important to investigate
whether these epigenetic changes are present in blood
samples or as circulating DNA in cell-free preparations
to warrant their potential use as clinical biomarkers for
early detection and/or for monitoring levels and possibly
reversal of the alterations by lifestyle changes such as
calorie restriction.

Conclusions
The data presented in this study suggests that age-
dependent DNA methylation outlier profiles in pre-
malignant tissue are infrequent events but have strikingly
altered epigenome like in cancer that has far-reaching
clinical implications for early detection and possibly inter-
vention by lifestyle changes.
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Additional file 1. Identification and validation of age-related DNA
methylation sites in TCGA breast normal adjacent tissue. a) TCGA 97
normal-adjacent samples were used as validation dataset for the aging
sites. One thousand permutations of the data were performed, and em-
pirical p-values were computed. The distribution of the Spearman correl-
ation r values of the actual dataset is shown in pink while the distribution
of the correlation values obtained by random permutation analysis of the
same data is shown in green. b) The age-dependent methylation
changes were selected based on a cutoff of permutation empirical p-
value (p < 0.05) and based on Spearman correlation of r ≥ 0.3 (gain of
methylation with age) and r ≤ −0.3 (loss of methylation with age). The
age-dependent sites from the discovery dataset (DREAM) and the valid-
ation dataset (450K array), were aligned and restricted to < 250 bp dis-
tance between SmaI sites and the 450K probes.

Additional file 2. Genomic distribution of validated aging sites. a)
Distribution of the 146 aging sites within the promoter CpG islands

(pCGI), promoter non CpG islands (pnCGI), non-promoter CpG islands
(npCGI) and non-promoter non CpG islands (npnCGI). b) Distribution of
all sites (45,135) within the same genomic context as in (a) in the discov-
ery dataset. c) Summary of odds ratios of the genomic region specificity
of age-related sites (146) compared to all sites (45,135) in the discovery
dataset. Dots represent the point estimates of odds ratio with lines repre-
senting 95% confidence intervals around the estimates. A chi-square test
was used to test for statistical significance for each comparison; p-values
for all comparisons were significant. d) Contingency tables of the shared
146 aging sites between the DREAM and array platforms. Each table rep-
resents a genomic context, and the numbers indicate the number of
CpG for hyper (hypermethylated) or hypo (hypomethylated) sites. All
comparisons were significant with p-values < 0.0001.

Additional file 3. PCA analysis of age-related methylation sites. a) Sum-
mary of PCA analysis of the methylation values of 146 age-dependent
probes in 6 publicly available datasets. Proportion of variance explained by
each of the first 10 principal components (PC). b) Scatter plots of PC compo-
nents 1 and 2, c) components 2 and 3, and d) components 1 and 3.

Additional file 4. Outlier analysis using Horvath’s multi-tissue estimator
clock’s 353 CpG probes. a) Flow chart of the identification of age-related
sites in TCGA. Bold numbers in parentheses indicate the number of Horvath
clock’s CpGs present based on the cut-off. b) Venn diagram showing no
overlap between the clock’s 32 CpG sites and the validated 146 aging sites.
c) Venn diagram showing the overlap between outlier samples identified by
Horvath clock’s CpG sites and the outliers identified by our 146 aging sites.
the significance of overlap was tested by the hypergeometric test and
found to be insignificant (p= 0.06). d) Overlap of the accelerated outliers
identified by the clock’s CpG sites in the TCGA dataset and the accelerated
outliers identified by our aging sites in the same dataset.

Additional file 5. Comparison of TCGA clinical parameters. Comparison of
different variables was done between the not-outlier and outlier samples and
accelerated outliers. The outlier status in this analysis was based off the aging
methylation data of 427 patients. Chron Mean Age and Pred Mean Age are
chronological and predicted average ages respectively. Mixed ductal lobular
carcinoma (MDLC), Invasive ductal carcinoma (IDC), Invasive lobular carcin-
oma (ILC). TN is triple negative. The significant p-value was generated by
ANOVA testing followed by Tukey’s HSD post hoc test.

Additional file 6. Genomic context specificity of different methylation
platforms. Bar plots of the odds ratios (y-axis) of all sites (left) and of all
aging sites (right) in DREAM to 450K array. X-axis is the genomic context
of all comparisons. All comparisons were tested for significance by a chi-
square test and stars indicate p-values < 0.0001.
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