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Asymmetric synthesis of N-allylic indoles via
regio- and enantioselective allylation of aryl
hydrazines
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The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and

pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true

challenge due to the favourable C3-allylation. We develop here a new strategy to the

asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl

hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and

good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or

rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable

chiral N-allylated indoles, and avoids the N- or C-selectivity issue.
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T
he asymmetric synthesis of indoles is of great interest
because of their prevalence in bioactive molecules1–6.
In particular, indoles bearing a a-chiral carbon centre

on the N are important structural motifs in natural products
and pharmaceutical drugs (Fig. 1a)7–12. For this reason,
extensive efforts have been undertaken to explore the catalytic
asymmetric allylation of indoles13–24. However, selective
N-allylation of indoles is a true challenge due to the high
nucleophilicity of C3 of the indole nucleus and the weak acidity
of the N–H bond (Fig. 1b)25,26. As a consequence, efficient
strategies for the synthesis of N a-chiral allylic indoles are still
rare. Recent advances were achieved upon installation of an
electron-withdrawing substituent at C2 or C3 positions, which
tempers the nucleophilicity at C3 and increases the acidity
of the N–H bond22. In addition, a two-step protocol by
allylation/oxidation of indolines could avoid C3 selectivity issue
(Fig. 1c)24.

Potentially, chiral N1-allylic aryl hydrazine could give access to
various chiral N-allylic indoles by employing a well-established
Fischer indole synthesis27–30. This method would allow flexible

construction of complex chiral N-allylic indoles starting from
commercially accessible materials (ketones and aldehydes).
Challenge towards the synthesis of chiral N1-allylic aryl
hydrazines arises from the selectivity control: (1) N1 and N2

selectivity of aryl hydrazines31–33; (2) branched and linear
selectivity of the allylic moiety; (3) enantioselectivity of the
branched regioisomer. To address these issues, we envisioned that
a transition metal-catalysed asymmetric N1-selective coupling of
aryl hydrazines with terminal allenes34–40 could lead to the
synthesis of chiral N1-allylic aryl hydrazines. The N1 and N2

selectivities at the aryl hydrazine may differentiate in the
oxidative addition step, in which the more acidic N–H bond at
N1 proceeds faster than the less acidic N–H bond at N2.
Furthermore, combination of a suitable transition metal catalyst
and a chiral ligand may allow to control branched selectivity and
enantioselectivity.

Herein we report a rhodium-catalysed regio- and enantio-
selective coupling of aryl hydrazines with terminal allenes, which
lead to the asymmetric synthesis of N-allylic indoles by following
a Fischer indolization (Fig. 1c).
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Figure 1 | Challenges for asymmetric synthesis of N-allylic indoles. (a) Selected examples of biologically active N a-chiral indoles. (b) Selectivity issue for

allylation of indoles. (c) Strategies for transition metal-catalysed asymmetric synthesis of N-allylic indoles. LG, leaving group; EWG, electron-withdrawing

group; FI, Fischer indolization.
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Results
Reaction optimization of aryl hydrazine allylation. To evaluate
our assumption, our studies began with the coupling reaction
of phenyl hydrazine and cyclohexylallene in the presence of
[Rh(COD)Cl]2 (1.25 mmol%) and DPEphos (5.0 mmol%) in
1,2-dichloroethane at 80 �C. Surprisingly, the desired N1-selective
branched product was isolated with a promising 77% yield as a
single regioisomer (Table 1, entry 1). Encouraged by the high N1

and branched regioselectivities, we then tested a range of
chiral bidentate phosphine ligands (Table 1, entries 2–10). The
ligands Josiphos L and (R,R)-Diop led to low yield or poor
enantioselectivity (Table 1, entries 2 and 3). After extensive

screening (see Supplementary Table 1), we were pleased to
observe that biaryl-type bisphosphine ligands led to high yield
and promising enantiomeric excess (ee) (Table 1, entries 4–6).
Increasing the steric effect of the Segphos-type ligand could sig-
nificantly increase the enantioselectivity. The best ee was obtained
with a bulky (S)-DTBM-Segphos ligand (Table 1, entries 6–8).
Similarly, (R)-DTBM-Binap gave a comparable result (Table 1,
entry 9). The enantiomeric purity could be enriched by a single
recrystallization of the toluene sulfonic acid salt. Control
experiments indicated that both rhodium catalyst and ligand are
necessary for the coupling reaction of aryl hydrazine with allene
to proceed (Table 1, entries 10 and 11).

Table 1 | Optimization of Rh-catalyzed coupling of phenyl hydrazine with cyclohexylallene.

Entries Ligand Yield/%* Isomersw ee/% (1a)z

1 DPEphos 77 ND —
2 Josiphos L 43 ND 56
3 (R,R)-DIOP 90 ND 7
4 (S)-MeO-Biphep 89 ND 40
5 (R)-Binap 96 ND 48
6 (S)-Segphos 89 ND 65
7 (S)-DM-Segphos 90 ND 78
8y (S)-DTBM-Segphos (L1) 93 ND 85 (95)||

9y (R)-DTBM-Binap (L2) 90 ND 83
10z L1 NR — —
11# — NR — —

ND, not determined; NR, no result.
*Isolated yield.
wIsomers of 1a were determined by 1H NMR of the crude reaction mixture.
zDetermined by chiral HPLC.
y[Rh(cod)Cl]2 (1.0 mol%), L1 (4.0 mol%).
||ee after recrystallization from tosylic acid salt.
zWithout [Rh(cod)Cl]2.
#Without ligand.
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Substrates scope of aryl hydrazine allylation. With the
optimized conditions in hand, we then examined the scope of the
addition of different aryl hydrazines with terminal allenes (Fig. 2).
Various aryl hydrazines were coupled with cyclohexylallene in up
to 93% isolated yield (1a) and up to 91% ee (1d–e). Practically,
the N-allylated aryl hydrazines can be recrystallized from the
corresponding tosylic acid salts to enrich the enantiomeric excess
(1a–c). Several mono-substituted allenes were also tested (1h–l).
Allenes bearing a phthaloyl-protected amine, an ester function
and a silylether were suitable (1g–l).

One-pot asymmetric synthesis of N-allylic indoles. To investi-
gate the compatibility of our strategy in the synthesis of N-allylic
indoles via a one-pot process, the crude reaction mixture of
the coupling step (1a) was subjected directly for the Fischer
indolization with cyclohexanone in acetic acid at 70 �C. The
desired N-allylic indole 2a was obtained in 87% isolated yield over
two steps with retention of the enantiomeric purity. Variation
with other aryl hydrazines and allenes using this one-pot process
led to the synthesis of the corresponding N-allylic indoles in up to
90% yield and up to 91% ee (2b–f). Furthermore, aldehydes,
phenyl-substituted ketones as well as a dihydro-2H-thiopyran-
4(3H)-one were well tolerated under standard conditions (Fig. 3).

To test the scalability and application for the synthesis of
bioactive molecules, we applied the one-pot process for the
late-stage indolization of (þ )-testosterone acetate. To our
delight, the desired indole product 3 was obtained in 59% yield

and 17:1 diastereoselectivity in 1.06 gram scale, which indicates
the practicality and usefulness of the method (Fig. 4).

Mechanistic investigations. To probe the possible reaction
mechanism, a control experiment of 1-methyl-1-phenylhydrazine
with cyclohexylallene was conducted under optimized conditions
(Fig. 5a). The reaction was sluggish and gave only traces of
the N2-allylated product 4, which is in accord with the lower
reactivity of N2 of the aryl hydrazine. Deuterium-labelling
experiments with [D3]phenylhydrazine under optimized condi-
tions displayed that deuterium was only incorporated in the
internal position of the double bond (Fig. 5b). Stoichiometric
reaction of phenylhydrazine with [{Rh(COD)Cl}2] and DPEphos
in CDCl3 was monitored by NMR spectroscopy. After 5 min at
room temperature, the 1H NMR spectrum (263 K) showed
a major rhodium hydride species at d¼ � 15.4 p.p.m.
(1JRh-H¼ 14 Hz), which is indicative of the oxidative addition of
the N–H bond to rhodium (Fig. 5c).

On the basis of these observations, the following mechanism
can be proposed (Fig. 5d). Oxidative addition of the phenyl
hydrazine to Rh(I) generates Rh(III) complex (A or A0)41. The
oxidative addition step favours the formation of intermediate A
because of the higher acidity of N–H bond of N1 than N2.
Hydrometalation of the less-substituted double bond could
generate p-allyl-Rh (or d-allyl-Rh) complex B (or B0)42–45,
which could generate the desired branched N-allylic aryl
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Figure 2 | Scope of Rh-catalysed coupling of aryl hydrazines with allene. [a]Isolated yield. [b]Determined by chiral HPLC. [c]ee after recrystallization from
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hydrazine 1a via reductive elimination. The N-selectivity was
determined within the oxidative addition step46.

Discussion
We have developed the enantioselective N-selective coupling of
aryl hydrazines with allenes via a rhodium(I)/DTBM-Segphos or
rhodium(I)/DTBM-Binap catalyst system, which allowed the
asymmetric synthesis of various valuable N-allylic indoles by
following a one-pot Fischer indolization. N-selective allylation
of aryl hydrazines using alkynes, target-oriented synthesis,
and mechanistic investigations are currently underway in our
laboratory and will be reported in due course.

Methods
Allylation of aryl hydrazines. To a screw-cap Schlenk tube was added
[Rh(cod)Cl]2 (0.005 mmol, 1 mol%), L1 or L2 (0.02 mmol, 4 mol%), aryl hydrazine

(0.5 mmol, 1.0 equiv.), 1,2-dichloroethane (0.4 M) and allene (0.75 mmol, 1.5
equiv.). The Schlenk tube was sealed and the mixture was stirred for 19 h at 80 �C
(or 100 �C). After cooling to room temperature, the solvent was removed by rotary
evaporation. The crude product was purified by flash column chromatography to
obtain the corresponding allylic hydrazine.

One-pot asymmetric synthesis of N-allylic indoles. To the reaction mixture of
allylation of hydrazine was added ketone or aldehyde (0.55 mmol, 1.1 equiv.), and
the mixture was stirred for half hour to form the corresponding hydrazine, then
solvent was removed under reduced pressure. To the residue was added acetic
acid (2.0 ml, 0.25 M), and the reaction mixture was stirred for 3–18 h at 70 �C
(or 100 �C). The volatiles were removed by rotary evaporation and the crude
reaction mixture was purified by flash column chromatography. The ee of each
product was determined by HPLC analysis using chiral stationary phases. All new
compounds were fully characterized. For NMR, high resolution mass spectrometry
(HRMS) analysis and HPLC traces of the compounds in this article, see
Supplementary Figs 1–53. General information, materials, synthesis and char-
acterization of compounds in this article (1a–l, 2a–i, 3, 4 and 5), and experimental
part for mechanistic investigations see Supplementary Methods.
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