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Glucagon-like peptide-1 (GLP-1) is a promising target for diabetes mellitus (DM) therapy and reduces the occurrence of
diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4). We tried
to design small molecular drugs for GLP-1 receptor agonist from the world’s largest traditional Chinese medicine (TCM)
Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-
deglucosylchikusetsusaponin IV, for further molecular dynamics (MD) simulation. GLP-1 was assigned as the control compound.
Based on the results of root mean square deviation (RMSD), solvent accessible surface (SAS), mean square deviation (MSD),
Gyrate, total energy, rootmean square fluctuation (RMSF),matrices of smallest distance of residues, database of secondary structure
assignment (DSSP), cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-
1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that
could be GLP-1 receptor agonists.

1. Introduction

Anew trend formanagement of obesity and diabetes mellitus
(DM) has seen the light of dawn. One study has found the
mechanism to lower glucose levels in diabetic patients and
reduce their weight effectively [1]. DM is a worldwide disease
and represents high blood sugar in the patients [2]. It is
considered as a kind of modern disease [3].The pathogenesis
of DM is destruction of islet cells in pancreas [4]. Islet-
cell antibodies are associated with the troublesome disease
[5]. Human leukocyte antigen (HLA) gene contributes to
insulin resistance [6, 7]. Defects in 𝛽-cell function are failure
to secret insulin [8]. DM is often accompanied with hyper-
tension and renal disease [9]. It is a member of metabolic
syndrome [10]. DM can simply be divided into three main
types: type 1 DM (insulin-dependent, IDDM), type 2 DM
(noninsulin-dependent, NIDDM), and gestational DM [11].
Early diagnosis and adequate treatment are very important

for progression of the disease [12]. DM can cause many acute
and chronic complications. Acute complications include
diabetic ketoacidosis and even coma. Chronic complications
include vascular diseases, such as coronary heart disease,
retinopathy, and renal failure [13].There aremany risk factors
for the annoying disease [14]. DM is related to incorrect diet
and irregular life style [15]. Obesity is an increasing problem
in many developed and developing countries [16]. DM and
obesity are inseparable [17]. Excessive bodymass index (BMI)
increases the risk of DM [18].

Golden treatment of type 1 DM (IDDM) is injected
insulin [19, 20]. Insulin resistance is main problem for type
2 DM (NIDDM). There are many predisposing mechanisms
for type 2 DM [21].Therapeutic agents for type 2 DM include
increasing insulin secreted by the pancreas, increasing the
sensitivity of target organs to insulin, and decreasing glucose
uptake from the gastrointestinal tract [22]. Sulfonylureas have
the ability to increase insulin secreted by the pancreas [23].
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Figure 1: Scaffold of top 2 TCM candidates: (a) wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, and the control: (c) glucagon-like
peptide 1 (GLP1).

Table 1: Top 10 candidates of scoring function based on TCM Database@Taiwan screening.

Name -PLP2 -PLP1 -PMF
Wenyujinoside 81.72 79.95 165.82
28-Deglucosylchikusetsusaponin IV 70.99 66.94 149.93
(6aR 11aR)-9 10-Dimethoxypterocarpan-3-O-beta-D-glucoside 70.59 71.5 165.58
Formononetin-7-O-beta-D-glucoside 70.39 71.07 156.71
(3R 5S)-3-Acetoxy-5-hydroxy-1 7-bis(4-hydroxy-3-methoxyphenyl)heptane 70.09 68.57 158.18
Alpha-caryophyllene 70.05 73.91 162.77
Ononin 70.03 73.04 157.81
(5S)-5-Acetoxy-1 7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one 68.63 72.86 152.6
(5R)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)7-(4 5-dihydroxy-3-methoxyphenyl)-3- 67.31 61.05 152.3
3-O-(2 E 4 Z)-decadienoylingenol 66.07 65.93 173.24
GLP1 64.52 56.19 152.39
PLP: piecewise linear potentials. PMF: potential of mean force.
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Figure 2: Docking poses by the LigandFit module in DS 2.5. (a) Wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, and the control: (c)
GLP1.

Metformin and thiazolidinediones increase the sensitivity of
target organs to insulin [24, 25]. Acarbose can slow glucose
uptake from the gastrointestinal tract [26]. However, most
of above agents have side effects. The most threatening side
effect is cardiovascular problem [27]. Thiazolidinediones are
the notorious representatives [28, 29].

A new, advancing agent formanagement ofDM is coming
[30]. Incretin is the member of gastrointestinal hormones
[31]. This hormone can decrease blood glucose level [32].
Type 2 DM can be treated by incretin injection [33]. Incretin-
based therapies have been applied in this type of DM
successfully [34].The typical incretin is glucagon-like peptide
1 (GLP-1) [35]. Food can improve GLP-1 secretion in the
intestine [36]. GLP-1 has antidiabetic effect through many
mechanisms. It increases expression of the pancreatic beta

cell receptors [37].The incretin receptor belongs toGprotein-
coupled receptors [38]. It can increase insulin biosynthesis
in the pancreas. By the other way, it can decrease glycogen
release in the liver. It can also lower appetite in the brain and
inhibit gastric emptiness in the stomach [39–41]. However,
GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl
peptidase-4 (DPP-4) [42].

Due to modern technology in medicine, we describe
the mechanism of several diseases [43–45]. Some diseases
could not explain in the past days, but we can explore
them by new biomedical methods now [46–48]. A lot of
therapies have emerged nowadays [49–51]. Better life quality
is no longer impossible in the future [52–54]. GLP-1 is a
promising target for DM therapy and reduces the occurrence
of diabetes due to overweight or obesity. Thus it is possible
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Figure 3: Docking poses by the LIGPLOT program. (a) Wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, and the control: (c) GLP1.
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Figure 4: Disorder disposition of GLP1 receptor structure.Themost common key residues for all the 3 compounds are in the nondisordered
region (below the red line).

that we can design appropriate drugs to be GLP-1 receptor
agonist. Computer-aided drug design (CADD) is a time-
saving method to filter large amounts of small compounds
by computational simulation [55]. CADD has been widely
used in the forward-looking treatment of diseases [56, 57].
Through virtual screening of candidates and validation by
molecular dynamics simulation techniques, we can design
effective and novel drugs formany troubling diseases [58, 59].
Traditional Chinese medicine (TCM) has been considered
as effective treatment for a lot of diseases [60, 61]. We tried
to design suitable small molecular drugs for GLP-1 receptor
agonist based on the world’s largest TCM Database@Taiwan
in this study [62].

2. Materials and Methods

2.1. Data Collection. We employed the TCM Database@
Taiwan (http://tcm.cmu.edu.tw/) fromwhich all smallmolec-
ular compounds were downloaded to identify potential GLP-
1 receptor agonist screening [62]. All TCM compounds were
verified by Lipinski’s rule of five [63].TheGLP-1 receptor pro-
tein sequence was acquired from the Uniprot Knowledgebase
(P43220, human).The 3D structure of humanGLP-1 receptor
was acquired from Protein Data Bank (PDB ID: 3C5T).

2.2. Structure-Based Virtual Screening. The ligands from
TCM Database@Taiwan and the control (GLP-1) were con-
ducted for docking with GLP-1 protein. We utilized the
LigandFit module in DS 2.5 to perform docking procedure.
All docking poses were minimized by the force field of
Chemistry at HARvard Molecular Mechanics (CHARMm).
We calculated the scores of piecewise linear potentials (-PLP),
potential of mean force (-PMF) by the LigandFit module

in DS 2.5. LIGPLOT program was adopted to illustrated
hydrogen bond (H-bond) and hydrophobic contact between
the ligand and protein [64, 65].

2.3. Disorder Prediction. We utilized the program of
PONDR-FIT in theDisProt website to exclude the disordered
residues of 3D structure of GLP-1 receptor [66, 67].

2.4. Molecular Dynamics (MD) Simulation. We employed
the package of GROningen MAchine for Chemical Simu-
lations (GROMACS) for MD simulation. Four phases for
selected protein-ligand complex were minimization, heating,
equilibration, and production. The trajectory analytic figures
of root mean square deviation (RMSD), solvent accessible
surface (SAS), mean square deviation (MSD), Gyrate, total
energy, root mean square fluctuation (RMSF), matrices of
smallest distance of residues, database of secondary structure
assignment (DSSP), and cluster analysis were drawn to
explore the secret of MD simulation. We illustrated ligand
corresponding protein change and GLP-1 receptor protein
alone to compare the difference of binding during MD.
Distance of H-bond between the ligand and essential amino
acids was calculated too. Best distance of H-bond was set at
0.3–0.35 nm [68].

2.5. Ligand Pathway. We utilized the CAVER software to
analyze all possible ligand pathways when the ligand bound
with GLP-1 receptor [69].

3. Results and Discussion

3.1. Structure-Based Virtual Screening. Table 1 listed -PLP2,
-PLP1, and -PMF of the top 10 TCM compounds ranked by
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Figure 5: (a) RMSD, (b) SAS, (c) MSD, and (d) Gyrate for wenyujinoside, 28-deglucosylchikusetsusaponin IV, GLP1 corresponding protein,
and GLP1 receptor protein alone (apo).

-PLP2. -PLP1 or -PLP2 was one type of dock score that eval-
uated the atom types of ligand and receptor. The difference
of -PLP2 from -PLP1 was that an atomic radius was assigned
to each atom. Integrating these data, we selected first 2 com-
pounds: wenyujinoside and 28-deglucosylchikusetsusaponin
IV as candidates for further investigation (Figure 1). Docking
poses of wenyujinoside, 28-deglucosylchikusetsusaponin IV,
and the control (GLP-1) with GLP-1 receptor were illus-
trated in Figure 2. Wenyujinoside interacted with Gln97,
His99, Tyr101, and Glu125 of GLP-1 receptor (Figure 2(a)).

28-Deglucosylchikusetsusaponin IV interacted with Glu97,
Tyr101, and Asp122 of GLP-1 receptor (Figure 2(b)). GLP-
1 interacted with Tyr101 of GLP-1 receptor (Figure 2(c)).
Both the 2 candidates and the control interacted with Tyr101
of GLP-1 receptor. Thus Tyr101 was the key residue for all
the 3 compounds docked with GLP-1 receptor. We inves-
tigated what kind of interaction was formed by the ligand
and protein by LIGPLOT program. Wenyujinoside formed
H-bond with Gln97, His99, Tyr101, and Glu125 of GLP-1
receptor. It also formed hydrophobic contact with Phe80,
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Figure 6: Total energy for (a) wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, (c) GLP1 corresponding protein, and (d) GLP1 receptor
protein alone (apo).

Asn82, Trp120, and Asp122 of GLP-1 receptor (Figure 3(a)).
28-Deglucosylchikusetsusaponin IV formed H-bond with
Asp122 of GLP-1 receptor. It also formed hydrophobic contact
with Phe80, Asn82, Gln97, His99, Tyr101, and Trp120 of GLP-
1 receptor (Figure 3(b)). GLP-1 formed H-bond with His99
and Tyr101 of GLP-1 receptor. It also formed hydrophobic
contact with Phe80, Asn82, Gln97, Asp122, Ser124, and
Glu125 (Figure 3(c)). Besides Tyr101, the key residues also
included Phe80, Asn82, Gln97, His99, and Asp122 for all the
3 compounds docked with GLP-1 receptor.

3.2. Disorder Prediction. Besides Asp122, the other common-
key residues (Phe80, Asn82, Gln97, His99, and Tyr101) of
GLP-1 receptor 3D structure for the 2 candidates and the
control did not locate at the disordered region, so we could
say that there was no significant influence on the shape of the
main binding sites (Figure 4).

3.3. Molecular Dynamics (MD) Simulation. We drew the
trajectory of RMSD to discuss the deviation of each ligand
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Figure 7: Root mean square fluctuation (RMSF) for wenyujinoside, 28-deglucosylchikusetsusaponin IV, GLP1 corresponding protein, and
GLP1 receptor protein alone (apo).

induced protein change and GLP-1 receptor protein alone
during the period of MD.There was not any line graph of lig-
and corresponding protein RMSD that was the same as GLP-
1 receptor protein alone (apo). It was evident that wenyu-
jinoside, 28-deglucosylchikusetsusaponin IV, or the control
(GLP-1) could induce conformational change of GLP-1 recep-
tor differently (Figure 5(a)). SAS was drawn to calculate the
surface area of water contact for each protein. There was not
any line graph of ligand corresponding protein SAS that was
the same asGLP-1 receptor protein alone (apo). It was evident
that wenyujinoside, 28-deglucosylchikusetsusaponin IV, or
the control could lead to surface change of GLP-1 receptor
differently (Figure 5(b)). We drew the trajectory of MSD to
calculate the deviation of atoms from the beginning to the
end ofMD.Wenyujinoside had steep rise after 3000 ps during
MD. 28-Deglucosylchikusetsusaponin IV had the lowest
averageMSDvalue.We speculated that the 2 candidates could
bind with GLP-1 receptor successfully despite their different
patterns of MSD (Figure 5(c)). Gyrate was drawn to calculate
the average distance of atoms to the center of each protein.
It showed the compact degree of each protein. There was not
any line graph of ligand corresponding protein Gyrate that
was the same as GLP-1 receptor protein alone (apo). It was
evident that wenyujinoside, 28-deglucosylchikusetsusaponin
IV, or the control could induce compact change of GLP-1
receptor differently (Figure 5(d)).

The average total energy of GLP-1 corresponding pro-
tein or GLP-1 receptor alone (apo) (−461000 kJ/mol) was
lower than that of wenyujinoside or 28-deglucosylchikuse-
tsusaponin IV corresponding protein (−459000 kJ/mol) (Fig-
ure 6).

We drew RMSF to calculate the fluctuation of every
residue of the protein during MD. Wenyujinoside, 28-
deglucosylchikusetsusaponin IV, GLP-1 corresponding pro-
tein, or GLP-1 receptor alone (apo) had similar line graph
pattern. We speculated that when the 2 candidates and
the control bound with GLP-1 receptor, every residue of
their corresponding protein was under similar fluctuation
(Figure 7). This finding was consistent with the figure of
matrices of smallest distance of residues which was drawn to
find any variation of residues distance when the ligand bound
with GLP-1 receptor. There was not any apparent difference
between the candidates, the control corresponding protein,
and GLP-1 receptor alone (Figure 8).

Thefigures ofDSSP and secondary structural feature ratio
variations were drawn to discuss the structural component
change when the protein bound with the ligand. In contrast
with GLP-1 receptor alone, the corresponding protein of
both candidates and the control had similar finding. The
ratio of 𝛼-helix was smooth originally, but the ratio became
larger fluctuation during the late stage of MD. We speculated
that activation of GLP-1 receptor followed the structural
component change when it bound with the correct ligand
(Figure 9).

To observe the binding force of the ligand and protein,
we utilized distance of H-bond between the ligand and
essential amino acids. The O28 of wenyujinoside formed
H-bond with His99 at early and middle of MD. The O26
of wenyujinoside formed H-bond with Glu125 at most
stage of MD. The H48 and H50 of wenyujinoside also
formed H-bonds with Glu125 at most stage of MD. The
H52 of 28-deglucosylchikusetsusaponin IV formed H-bond
with Tyr101 at early and middle stages of MD. The O26
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Figure 8: Matrices of smallest distance of residues for (a) wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, (c) GLP1 corresponding
protein, and (d) GLP1 receptor protein alone.

of 28-deglucosylchikusetsusaponin IV formed H-bond with
Asp122 at middle stage of MD. The H50 and O25 of
28-deglucosylchikusetsusaponin IV formed H-bonds with
Asp122 at middle stage of MD too. The O4 and O21 of GLP-
1 formed H-bonds with Asn82 at early and middle stages

of MD, respectively. The H53 and O16 formed H-bonds
with Asn82 and Asp74 at middle stage of MD, respectively
(Figure 10).

We illustrated cluster analysis to point out the represen-
tative structure of protein during MD. The representative
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Figure 9: Continued.
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Figure 9: Database of secondary structure assignment (DSSP) and secondary structural feature ratio variations for (a) wenyujinoside, (b)
28-deglucosylchikusetsusaponin IV, (c) GLP1 corresponding protein, and (d) GLP1 receptor protein alone.
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Figure 10: Distance of hydrogen bonds betweenwenyujinoside, 28-deglucosylchikusetsusaponin IV, GLP1, and essential amino acids of GLP1
receptor.
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Figure 11: Continued.



Evidence-Based Complementary and Alternative Medicine 13

Time (ps)
500040003000200010000

Cl
us

te
r

10

9

8

7

6

5

4

3

2

1

0

Cluster
9876543210

90

80

70

60

50

40

30

20

10

0

Fr
am

e n
um

be
r

(d)

Figure 11: Cluster analysis for (a) wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, (c) GLP1 corresponding protein, and (d) GLP1
receptor protein alone.

structure of wenyujinoside corresponding protein was cluster
5 from 1100 to 4940 ps. The frame number was the most
of all the 7 clusters. The representative structure of 28-
deglucosylchikusetsusaponin IV corresponding protein was
cluster 6 from 2500 to 4920 ps.The representative structure of
GLP-1 corresponding protein was cluster 9 and 11 from 2000
to 4200 ps. The representative structure of GLP-1 receptor
alone was 6 and 9 from 1600 to 5000 ps (Figure 11).

Docking poses of MD were drawn according to inte-
grating the figure of RMSD and the representative cluster
of cluster analysis. The first picture was intercepted at 0 ps
of MD for all the 3 compounds. The second picture was
intercepted at 4940, 4920, and 3200 ps for wenyujinoside,
28-deglucosylchikusetsusaponin IV, and GLP-1, respectively
(Figure 12). For wenyujinoside, it formed connection with
Phe80 and Glu125 at 0 ps. It also formed connection with the
same residues of GLP-1 receptor at 4940 ps (Figure 12(a)). For
28-deglucosylchikusetsusaponin IV, it formed connection
with Asp122 and Glu125 at 0 ps. However, it only formed
connection with Glu125 of GLP-1 receptor at 4920 ps (Fig-
ure 12(b)). For GLP-1, it formed connection with Gln97,
Tyr101, and Glu125 at 0 ps. However, it formed connection
with Asn82 instead (Figure 12(b)).

3.4. Ligand Pathway. 3D simulation of ligand pathway was
drawn to analyze all possible pathways when the ligand
bound with GLP-1 receptor. All the 3 compounds had
different pathways. Wenyujinoside, 28-deglucosylchikuse-
tsusaponin IV, and GLP-1 had 3, 4, and 3 possible pathways,
respectively. Thus, we could conclude that all the 3 com-
pounds had common binding sites, but they had different
pathways when they bound with GLP-1 receptor (Figure 13).

4. Conclusion

Diabetes mellitus (DM) and obesity are inseparable mod-
ern diseases. Excessive body mass index (BMI) increases
the risk of DM. DM can cause many acute and chronic
complications. Early diagnosis and adequate treatment are
very important. Incretin can decrease blood glucose level.
Glucagon-like peptide 1 (GLP-1) is a new, advancing agent
for management of DM. However, GLP-1 will be hydrolyzed
soon by the enzyme dipeptidyl peptidase-4 (DPP-4). In
this study, we tried to design suitable small molecular
drugs for GLP-1 receptor agonist from the world’s largest
TCM Database@Taiwan. Based on docking results of virtual
screening, we selected 2 TCM compounds, wenyujinoside
and 28-deglucosylchikusetsusaponin IV, for further investi-
gation. Wenyujinoside was mainly extracted from Curcuma
wenyujin. 28-Deglucosylchikusetsusaponin IV was mainly
extracted from Codonopsis convolvulacea var. forrestii. GLP-
1 was assigned as the control compound. Phe80, Asn82,
Gln97, His99, Tyr101, and Asp122 were the common key
residues for all the 3 compounds docked with GLP-1 receptor.
Based on the figures of RMSD, SAS, MSD, and Gyrate, we
could conclude that all the 3 compounds induced different
conformational change of GLP-1 receptor. Interestingly, from
the view of individual residues, there was not any apparent
difference between the 3 compounds in the figures of RMSF
and matrices of smallest distance of residues. In the figure
of DSSP and secondary structural feature ratio variations,
we concluded that activation of GLP-1 receptor followed the
structural component change when it bound with the correct
ligand. We could say that MD simulation was dynamic con-
dition according to the figures of distance of H-bond, cluster
analysis, and docking poses ofMD. Finally, we concluded that
all the 3 compounds could bind and activate GLP-1 receptor.
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Figure 12: Docking poses of MD. (a) Wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, and the control: (c) GLP1.
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Figure 13: 3D simulation of ligand pathway for (a) wenyujinoside, (b) 28-deglucosylchikusetsusaponin IV, and (c) GLP1 bound with GLP1
receptor protein.

Wenyujinoside and 28-deglucosylchikusetsusaponin IV were
the TCM compounds that could be GLP-1 receptor agonists.
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