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ABSTRACT Objective: Cataract, which is the clouding of the crystalline lens, is the most prevalent eye
disease accounting for 51% of all eye diseases in the U.S. Cataract is a progressive disease, and its early
detection is critical for preventing blindness. In this paper, an efficient approach to identify cataract disease
by adopting luminance features using a smartphone is proposed. Methods: Initially, eye images captured
by a smartphone were cropped to extract the lens, and the images were preprocessed to remove irrelevant
background and noise by utilizing median filter and watershed transformation. Then, a novel luminance
transformation from pixel brightness algorithm was introduced to extract lens image features. The luminance
and texture features of different types of cataract disease images could be obtained accurately in this
stage. Finally, by adopting support vector machines (SVM) as the classification method, cataract eyes were
identified. Results: From all the images that we fed into our system, our method could diagnose diseased
eyes with 96.6% accuracy, 93.4% specificity, and 93.75% sensitivity. Conclusion: The proposed method
provides an affordable, rapid, easy-to-use, and versatile method for detecting cataracts by using smartphones
without the use of bulky and expensive imaging devices. This methodcan be used for bedside telemedicine
applications or in remote areas that have medical shortages. Previous smartphone-based cataract detection
methods include texture feature analysis with 95 % accuracy, Gray Level Co-occurrence Matrix (GLCM)
method with 89% accuracy, red reflex measurement method, and RGB color feature extraction method using
cascade classifier with 90% accuracy. The accuracy of cataract detection in these studies is subject to changes
in smartphone models and/or environmental conditions. However, our novel luminance-based method copes
with different smartphone camera sensors and chroma variations, while operating independently from
sensors’ color characteristics and changes in distances and camera angle.Clinical and Translational Impact—
This study is an early/pre-clinical research proposing a novel luminance-based method of detecting cataract
using smartphones for remote/at-home monitoring and telemedicine application.

INDEX TERMS Cataract, image processing, luminance-based method, smartphone.

I. INTRODUCTION
Cataract is an eye disease that causes permanent blindness
when not treated in time. According to the National Eye
Institute, 24.4 million Americans have cataracts, and it is
estimated that the number of people affected by cataracts
will increase to 38.7 million by 2030 [1]. In 2002, the World
Health Organization (WHO) published a simplified cataract
grading scale [2]. According to the WHO, there are three
main types of cataracts: 1) nuclear sclerotic cataract (NS),
2) cortical spoking cataract (CS), and 3) posterior subcapsular
cataract (PSC) which are shown in Figs. 1a, 1b, and 1c,
respectively.

Cataract types are defined by the location where the opac-
ities exist within the lens and are graded by how severe the
opacities are at that location. Depending on the location of
the opacities, as shown in Fig. 1d, if the opacity exists in the
outer circle of the lens, causing spoke/wedge-like peripheral
cloudiness, it is known as a cortical spoking cataract (CS).
If the opacity is in the central portion of the lens (shown
in Fig. 1e), it is known as a nuclear sclerotic cataract (NS),
which is cloudiness of the nucleus (central optical zone).
Finally, if the opacity is in the posterior capsule of the lens
(shown in Fig. 1f), it is known as a posterior subcapsular
cataract (PSC) [2].
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FIGURE 1. Different types of cataract disease in the eye: (a) cortical
cataract, (b) nuclear sclerotic cataract, (c) posterior capsular cataract,
(d) demonstration of cortical cataract and its location on the lens,
(e) demonstration of nuclear sclerotic cataract and its location on the
lens, and (f) demonstration of posterior capsular cataract and its location
on the lens.

Image processing and machine learning algorithms have
been developed to detect eye diseases by analyzing eye
image features [3], [4]. In addition, image analyses have been
proposed for a computerized ophthalmic diagnostic system
that can be used in the diagnosis of some common diseases
like diabetic retinopathy, keratoconus, or glaucoma [3]–[9].
Similarly, smartphone applications have been used for remote
health monitoring such as remote eye care [5], [8], [10].
Smartphones have also been used to detect cataracts by using
lens color and texture features [11]–[15].

Fuadah et al. have used a combination of statistical texture
features and adopted the K-Nearest Neighbor (k-NN) algo-
rithm as a classifier to detect cataracts on an Android-based
smartphone [11]. In their study, they have utilized the Gray
Level Co-occurrenceMatrix (GLCM) to distinguish cataracts
from healthy eyes. GLCM can extract texture features and
measure contrast variations. The accuracy of their method uti-
lizing the k-NN classifier was 95%. Kaur et al. have utilized
an external microscope on an Android-based smartphone
to detect cataracts from Red, Green, Blue (RGB) images
captured from the subject’s retina. The reported accuracy of
their method was 89% [13]. Moreover, Lau et al. proposed a
self-screening application for detecting cataracts based on red
reflex measurements [14]. Their system replicates red reflex
generated by ophthalmoscope using a smartphone flashlight.
Their system uses Artificial Neural Networks (ANNs) to
distinguish healthy eyes from cataracts. The system was
implemented on a Xiaomi Mi3 smartphone. Furthermore,
Rana et al. adopted a cascade classifier to detect the pupil
and extract RGB feature values [15]. After feature extraction,
they used OpenCV functions to compare the pupil color with
the database and determine whether the subject has cataracts
or not. They examined 50 subjects, 20 with cataracts and
30 healthy subjects. The accuracy of detecting cataracts using
their method was 90%.

Since these studies are highly dependent on smartphone
camera sensor characteristics as well as ambient light, dis-

tance, and environmental conditions, the accuracy of detect-
ing cataracts in these studies is subject to changes in smart-
phone models and/or environmental conditions.

To overcome these disadvantages of color-based meth-
ods used in the mentioned studies, we propose an alterna-
tive luminance-based method for cataract disease diagnosis.
Luminance-based models have been used in different stud-
ies to detect diseases such as cancer and have been com-
pared with color-based detection methods in different color
spaces [16]–[24].

In [22], the hue, saturation, value (HSV) color-based
method and a luminance-based method were compared to
detect cancer cells in leukemia. The study concluded that
the luminance-based method had 86.67 % accuracy while the
HSV color-based method had only 33.4% accuracy detect-
ing cancer cells. In [23], the authors compared the RGB
color-based method with the luminance-based method to
detect white blood cells in myeloid leukemia. The results
of their study showed that implementing luminance-based
method improves the accuracy of detecting the disease by
23% compared to the RGB color-based method. In [24],
the authors compared the RGB color based method with
the luminance-based method for detecting prostate cancer.
Their study concluded that changing the method from RGB
color-based to luminance-based increases the detection accu-
racy by 13.2%. In [25], the authors proposed a multi-feature
prostate cancer diagnosis technique using luminance-based
method and compared their method with RGB color-based
method. The results of their study showed that adopting
luminance-based method increases the accuracy of detection
by 17% compared to the RGB color-based method.

The results of these studies indicate that switching from
color-based method to luminance-based method improves
the detection accuracy and feature extraction. Moreover,
color-based detection systems are more dependent on the
camera sensors’ characteristics and environmental conditions
compared to luminance-based detection methods.

In this paper, we propose a novel and robust luminance-
based eye image analysis technique. Specifically, we detect
cataracts by using pixel brightness transformation to extract
luminance values of images acquired with a smartphone
camera. To validate the method, we used different iPhone
models (iPhone 6, iPhone X, and iPhone 11 Pro) to capture
images in different light, distance, and angle conditions using
an eye model [26]. The luminance-based images were then
cropped and transformed using the watershed transformation
algorithm to extract the region of interest (ROI).

The novel luminance-based method copes with different
smartphone camera sensors and chroma variations, and it is
independent of sensors’ color characteristics and changes in
environmental factors. For classification, the Support Vector
Machine (SVM) classifierwas utilized to distinguish diseased
eyes from healthy eyes. To overcome the data sample limi-
tation, a 10-fold cross validation resampling procedure was
implemented to evaluate the machine learning model. As a
result, the proposed method detects cataracts from images
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FIGURE 2. Flowchart for detecting cataracts using the luminance-based
method. The method starts with image acquisition using a smartphone
camera. In the preprocessing step, the acquired image is filtered for noise
removal, occasionally rotated, and cropped to extract the region of
interest; then watershed transformation is applied for segmentation.
In the next step, the R, G, and B components are converted to luminance,
and finally, the image is classified to extract cataract features. The red
arrows are the transitions between the main steps (image acquisition,
preprocessing, luminance conversion, and result), and the blue arrows,
show the transitions between sub steps (e.g., image filtering to image
rotation, etc.).

captured by the smartphone camera. The proposed method
only differentiates healthy eyes from diseased eyes, and it
does not differentiate between types of cataracts.

The rest of this paper is organized as follows:
Section 2 describes the data acquisition, preprocess-
ing, luminance transformation, and classification methods.
Section 3 explains the results of the classification and presents
the image features. Finally, Section 4 concludes the paper.

II. METHODS AND PROCEDURES
Images captured by the smartphone camera are utilized to
monitor the conditions of the eye for healthy or cataract cases.
Our proposed method to diagnose cataracts consists of four
main steps: 1) data acquisition, 2) preprocessing, 3) feature
extraction, and 4) classification. Fig. 2 shows the processing
flowchart for detecting cataracts.

A. DATA ACQUISITION
In this paper, we used an Axis Scientific 7-Part Human Eye
(5× Life Size) eye model to emulate healthy and diseased
eyes in different environmental conditions [26]. Images from
eye models were acquired using iPhone X, iPhone 6, and

FIGURE 3. Demonstration of different type emulations on the model eye
lens: (a) healthy lens, (b) posterior subcapsular cataract, (c) cortical
cataract, (d) nuclear cataract, (e) mature cataract, (f) capsular cataract,
(g) demonstration of camera angles, (h) distance measurement
procedure, and (i) adoption of different smartphones for data acquisition
(iPhone 11 Pro).

iPhone 11 Pro smartphone cameras. The camera settings used
were the LEDflashlight, autofocus, andmaximum resolution.

In the experiment setup, the subjects will sit in a relaxed
position while keeping their head and eye in a stable position
and align their eye with the smartphone’s rear camera. The
camera can be located between 10 cm to 50 cm distance from
the eye with autofocus to have a clear image from the eye.
After images are captured, the smartphone will process the
images and present the results. For this paper, 100 eye model
images were captured, 50 from healthy eye models, and
50 from diseased eye models. The eye model was equipped
with different lenses emulating the diseased eyewith different
types of cataracts, including a posterior subcapsular cataract,
a cortical cataract, a nuclear cataract, a capsular cataract, and
a mature cataract. The disease emulation on the model eye
is shown in Fig. 3. Fig. 3a shows the healthy eye model and
Figs 3b, 3c, 3d, 3e, and 3f show the model eye with posterior
subcapsular cataract (opacity is in the posterior capsule of
the lens), cortical cataract (opacity exists in the outer circle
of the lens, causing spoke/wedge-like peripheral cloudiness),
nuclear cataract (cloudiness of the nucleus -central optical
zone), mature cataract (the lens is totally opaque), and capsu-
lar cataract (opacity is in outer layer of the lens), respectively.
According to the National Eye Institute (NEI), all of these
types of cataracts are considered to be diseased eyes [27].

We diversified the environmental factors to evaluate the
impact of each factor on image features and the results.
Specifically, we selected four main environmental factors that
would impact the results: 1) ambient lighting, 2) distance
between the smartphone camera and eye model, 3) camera
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FIGURE 4. Luminance calibration of the smartphone camera sensor. Two
identical iPhone X phones are used for calibration. One smartphone is
used as a light source and the other one as the light sensor. The process
was repeated the other way around.

angle relative to eye model, and 4) smartphone camera char-
acteristics. Demonstration of different distances, angles, and
smartphones are shown in Figs 3g, 3h, and 3i, respectively.
The 50 images acquired from healthy eye models comprised
of 10 images from 10 cm distance, 10 images from 20 cm
distance, 10 images from 30 cm distance, 10 images from
40 cm distance, and 10 images from 50 cm distance by
varying the smartphones and camera angles. For the dis-
eased dataset, we acquired 50 images from 5 types of the
cataract eye models which comprised of 10 images of poste-
rior subcapsular cataracts, 10 images of nuclear cataracts, 10
images of cortical cataracts, 10 images of mature cataracts,
and 10 images of capsular cataracts using different distances,
smartphones, and camera angles.

To investigate the effect of each environmental factor on
image features, we evaluated the effect of that factor on image
features by constraining all other environmental factors and
changing only one factor at each data acquisition stage.
Hence, we had four phases of validation for environmental
factors as follows:
• Fixed distance, camera angle, and smartphone to 20 cm,
0-degree, and iPhone X, respectively, while increas-
ing ambient light intensity from 1600 lumens to
6100 lumens with step size of 1500 lumens.

• Fixed ambient light intensity, camera angle, and smart-
phone to 3100 lumens, 0-degree, and iPhone X, respec-
tively, while increasing the distance from 10 cm to 50 cm
with step size of 10 cm.

• Fixed distance, ambient light intensity, and smartphone
to 20 cm, 3100 lumens, and iPhone X, respectively,
while changing camera angle directions into 45◦ upside,
45◦ downside, 45◦ left side, 45◦ right side, and 0◦ center.

• Fixed distance, camera angle, and ambient light intensity
to 20 cm, 0-degree, and 3100 lumens, respectively, while
changing smartphone to iPhone 6, iPhone X, and iPhone
11 Pro.

The different ambient light environments were set up in a dark
room where the light sources were picked using dimmable
lights and the color Muse device [28] was utilized to measure
environmental light continuously in a precise way.

B. LUMINANCE CALIBRATION
Since we used 3 different smartphones in this study, each
having their own camera sensor characteristics and flashlight

FIGURE 5. Median filter and preprocessing demonstration: Images
acquired from the smartphone are cropped using circle cropping to
extract the ROI. Next, the cropped image is filtered using the median filter
to extract glare and noise and smooth the image.

specifications, we had to calibrate the camera sensor and
measure the amount of light coming from the smartphones’
flashlights. To calibrate the luminance reflection from differ-
ent smartphones, we first measured the maximum luminance
coming from an identical smartphone’s flashlight as shown
in Fig. 4 and used that as the gold standard. To eliminate ambi-
ent light and minimize the loss of luminance during the cali-
bration process between identical smartphones, we designed
and manufactured a special gadget using a 3-D printer from
Acrylonitrile Butadiene Styrene (ABS) [29], which is a dark
absorbance material. The 3D-printed gadget is an elliptical
cylinder with a minor axis of 13 mm, major axis of 25 mm,
and a height of 15 mm as shown in Fig. 4.

Next, we switched to different smartphones to calibrate
the flashlight power. The flashlight power on each phone is
adjustable andwe tuned the flashlight to have a controlled and
fixed amount of emitted light from each smartphone’s flash-
light. Specifically, the emitted light from iPhone 6, iPhone X,
and iPhone 11 Pro’s flashlights were measured at 112, 136,
and 154 lumens, respectively, and we adjusted all smartphone
flashlight intensities to 100 lumens using the smartphone’s
flashlight tuning application [27]–[29].

C. PREPROCESSING
The preprocessing step is necessary for effective and accurate
feature extraction of the images. The two main parts of the
preprocessing step are image segmentation and denoising.
Images captured by a smartphone camera include other parts
of the eye (e.g., iris, conjunctiva). Hence, image segmentation
is required to extract the cornea region from the original
image. The image segmentation was performed by using
semi-automatic cropping of the eye image to extract the
region of interest (ROI). The cropping was performed using a
circle mask by marking the center of the circle and the radius
of the circle. Here, the cornea was extracted from the eye
image as shown in Fig. 5.

Taking into consideration that noise has a negative impact
on acquired images, it is necessary to denoise the images
using median filtering before processing to reduce the impact
on eye segmentation and identification caused by irrelevant
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FIGURE 6. Watershed algorithm flowchart.

background in the images. The median filter has been widely
applied in removing pepper salt and glare noise from an
image while preserving edges and keeping main color fea-
ture information. In this study, the median filter was utilized
to preprocess and smoothen the source images as shown
in Fig. 5.

An example of pepper salt denoising is shown in Fig. 5,
in which we marked some examples of noise using red circles
to visualize how the procedure is done and what the restored
image looks like [30]. The ROI in the eye model is the cornea
part of the eye, which is cropped out in the first step. The
median filter is then applied to eliminate noise and glare
as shown in Fig. 5. In addition, the watershed segmentation
algorithm was adopted to extract the lens boundaries and to
extract the ROI from the filtered image.

D. WATERSHED TRANSFORM
Because most cataract diseases appear in the shape of a circle
in the lens area, the watershed algorithm can be applied
for image segmentation and visualization of the diseased
areas [31], [32]. The watershed algorithm was performed in 4
steps, as shown in Fig. 6, starting with running a gradient
operator for edge detection. The next step after gradient
magnitude extraction was opening and closing reconstruc-
tion operators. Opening removes small objects, while closing
removes small holes. After the opening-closing reconstruc-
tion step, the thresholding algorithmwas adopted to eliminate
dark spots in the background. Finally, we visualize the results
of the watershed algorithm. The following flowchart shows
the mentioned steps of the watershed algorithm:

Gradian magnitude is calculated using the following equa-
tion [33]:

∇f =
[
gx
gy

]
=

[
∂f
∂x
∂f
∂y

]
, (1)

where ∂f
∂x is the derivative with respect to x (gradient in the x-

direction), and df
dy is the derivative with respect to y (gradient

in the y-direction). Opening reconstruction is the dilation of
the erosion of a set A by a structuring element B, and the

FIGURE 7. Illustration of dilation and erosion morphological operations:
(a) example of dilation using 1 × 2 structural element B on the sample
image A, and (b) erosion operator example using a 1 × 2 structural
element B on the sample image A.

equation is as follows [34]:

A ◦ B = (A	 B)⊕ B, (2)

where ‘‘◦’’ is the opening operation, ⊕ denotes dilation, and
	 denotes erosion. Dilation and erosion are two fundamental
morphological operations. Dilation expands image pixels by
adding pixels to the object boundaries of an image, while ero-
sion compresses image pixels by removing pixels on object
boundaries. Dilation in a binary image is defined by [34]:

A⊕ B =
⋃

b∈B
Ab, (3)

where ∪ is union operator and Ab is the translation of A by b.
Erosion is defined by the following expression [34]:

A	 B =
⋂

b∈B
A−b, (4)

where ∩ is intersection operator and A−b denotes the trans-
lation of A by −b. The dilation and erosion operators on a
sample image are shown in Fig. 7. In this figure a 1 × 2
structural element B is used were all b = 1 to execute the
erosion and dilation operations.

We implement the closing reconstruction algorithm which
is the erosion of dilation of image A by a structuring element
B, using the following equation [34]:

A • B = (A⊕ B)	 B, (5)

where • is the closing operation.
Fig. 8 shows the steps of the watershed segmentation algo-

rithm on a sample eye image. First, the images are generated
using the luminance transformation method (Fig. 8a). This
figure is used to calculate the gradient magnitude which
is shown in Fig. 8b to detect edges and boundaries. Next,
the closing-opening reconstruction and watershed transform
is implemented on the gradient magnitude to segment dif-
ferent regions (Fig. 8c). Finally, the segmented areas are
superimposed on the original luminance-based image using
the watershed algorithm as regional maxima as shown in
Fig. 8d.

E. FEATURE EXTRACTION
Our proposed cataract detection method uses luminance val-
ues reflected from an eye to detect cataracts. In a smartphone,
the luminance value can be determined by exposure time (t),
ISO speed (s), light meter constant (K ), and brightness values
(BV) [35]. These values are fixed, although they depend on
the smartphonemodel specifications, and these specifications
vary depending onwhich smartphonemodel is used for image
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FIGURE 8. Results of watershed algorithm: (a) luminance based
transformed image, (b) gradient magnitude, (c) foreground objects
marked using opening (A ◦ B) and closing (A • B) reconstruction, this
figure is the result of Eqns. 2, 3, 4 and 5, and (d) background marks
computed, and regional maxima superimposed on the original image,
visualizing the result.

FIGURE 9. Flowchart of luminance extraction from preprocessed RGB
image: The preprocessed RGB image is transformed to extract the
brightness values. The brightness values are then converted to pixel
luminance values using smartphone camera’s optical specification.

acquisition. However, the brightness values (BV) change
depending on the acquired images [29]. For the iPhone X
smartphone, which is used in this study, the camera’sK , s, and
t are set to 12.4, 25ms, and 1/2000 s, respectively. Tomeasure
luminance value from an image captured by a smartphone
camera, the proposed algorithm calculates brightness values
(BV) from the R, G, B values of the image. Next, by using the
smartphone camera’s specifications, the proposed algorithm
converts the brightness into luminance values. Fig. 9 shows
the flowchart of extracting luminance values of each pixel
from its R, G, B values. As shown in Fig. 9, we first need
to extract brightness values from measured R, G, B values
to measure luminance values using the smartphone’s camera.
Brightness values (BV) are calculated using the following
equation from R, G, B channel values [36]:

BV = (0.299× R)+ (0.587× G)+ (0.114× B) , (6)

TABLE 1. Mean and standard deviation values for luminance and RGB
channels from emulated eyes with cataract disease.

FIGURE 10. Comparison between luminance based and RGB color-based
method: (a) Original eye model image with nuclear cataracts, (b) result of
RGB color-based detection method, and (c) result of luminance-based
cataract detection method.

where R, G, B are the red, green, and blue channel val-
ues of each pixel, respectively. Using the above equation,
we determined the brightness value for each pixel of the eye
image. Next by adopting the following equation, we convert
brightness values to luminance values [36], [37].

luminance (lumen) =
K × 2BV
s
t × 0.023

, (7)

By replacing the K , s, and t values in Eq (7) with the values
from iPhone X, we reach the following equation which is the
equation we used to extract luminance values of each pixel in
our method [37].

luminance (lumen) =
12.4× 2BV

25×10−3
1

2000
× 0.023

=
2BV

0.0929
, (8)

To evaluate the performance of the luminance-based
method, we compared our method with a generally used
color-based method utilizing RGB color space. The com-
parison was performed on 15 randomly picked images out
of 50 images from the diseased subset. Specifically, the RGB
color-based method utilized by Rana et al. was implemented,
and the results were compared with our luminance-based
method [15]. In their method, they used the cascade classi-
fier to extract the pupil and RGB temporal matrix values to
detect cataracts. Table 1 shows mean and standard deviation
(SD) values of RGB and luminance from the images of the
emulated eye with nuclear cataracts.

Fig. 10 shows the comparison between the luminance-
based method and color-based method on a sample emulated
eye with nuclear cataracts. Fig. 10a shows the original image
from the eye model with a nuclear cataract, Fig. 10b shows
the result of the RGB color-based detection method and
Fig. 10c shows the result of luminance-based cataract detec-
tion method. The cataract detected parts are shown in trans-
parent color and the healthy parts are shown with dark color.
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FIGURE 11. Demonstration of different environmental effects on the
luminance and RGB color features: (a) average RGB and luminance values
in different ambient light conditions, (b) result of distance variation on
luminance and average RGB values, (c) luminance and average values of
different angles, (d) luminance and RGB values of the different
smartphones. The reference benchmark (represented with yellow line)
measurement was acquired using iPhone X from 20 cm distance at
medium light conditions.

The misclassified parts are marked with yellow color, and as
shown in Figs. 10b and 10c, the misclassified parts in the
color-based method are significantly larger. After applying
both methods on the 15 nuclear cataract images, we realized
that the luminance-based method has a noticeable advantage
over the color-based method, as it was able to detect 36%
more diseased pixels compared to the color-based method
(shown in Fig. 10).

F. CLASSIFICATION
In this step, we used the mean luminance values of lens
images for classification and differentiation of cataract
images from healthy images. The images from both classes
are randomly divided into the following subsets: training,
validation, and testing. 70% of the data (70 images) were
allocated for training and validation, and the remaining 30%
(30 images) for testing. Moreover, we applied the support
vector machine (SVM) for the classification step. The SVM
can be efficiently implemented on smartphones, and it has
been adopted for eye disease diagnosis [38], [39].

In this paper, we adopt Gaussian kernel for the SVM
classifier to distinguish our samples into healthy and diseased
classes. To prevent overfitting, 10-fold cross-validation was
performed on the training and validation data. Therefore,
9-folds were used to train the SVM model and 1-fold to
validate the model.

III. RESULTS
Images from 100 eye samples of different environments were
gathered in this paper. Among these 100 samples, 50 were
diseased eye samples and the other 50 were healthy samples.
First, we evaluated the impact of different environmental
factors on image features using 15 randomly picked images,
among 50 images for each environment, by constraining three
factors and altering the fourth factor. We repeated this by

alternating all four environmental factors one by one. The
results of the impacts of different environmental factors on
RGB and luminance values are shown in Fig.11. In Fig.11 the
luminance values are shown with blue dots, the average RGB
values are shown with red dots, and the benchmark is marked
with a yellow line. The impacts of the different light environ-
ments are shown in Fig. 11a. Here, the benchmark (yellow
line) is the state in which we fixed each environmental factor
to gather the images. The benchmark images were acquired
at 20 cm distance, from a medium light environment, from
the center angle, using the iPhone X. To evaluate the effects
of different environmental factors on image features, we first
calculated the mean and SD of the luminance value and
average RGB value at the minimum and maximum status in
each graph. Then we calculated the differences between the
means of the maximum and minimum values to calculate the
effects of the environmental factors on RGB and luminance
values. The percentage difference was calculated using the
following equation:

Difference% =
|XMax − XMin|

XMax+XMin
2

× 100% (9)

where XMax is the average maximum luminance or RGB
value, and XMin is the average minimum RGB or luminance
value.

The results of changing ambient light while fixing other
environmental factors is shown in Fig.11a. The results of
changing the distance while fixing other environmental fac-
tors is shown in Fig 11b. The results of changing the angle
while fixing other environmental factors is shown in Fig 11c.
Finally, the results of changing the smartphone while fixing
other environmental factors is shown in Fig 11d.

Fig. 12 shows the effects of different environmental factors
on RGB and luminance values using box plots.

As shown in Figs. 12a, 12b, 12c, and 12d, and by using
Eq.9, we noted that changing the camera angle, distance, and
smartphone had 2.2%, 3.3%, and 3% impact on luminance
values and 9.2%, 13.3%, and 8.5% impact on RGB values,
respectively. On the other hand, changing the ambient light
had 36% difference impact on the luminance values, which
was similar to the 32% difference impact it had on the RGB
values. Hence, Fig.12 shows that changing environmental
factors has less effect on luminance values compared to RGB
values. To determine the difference between healthy and dis-
eased luminance values, we conducted the statistical hypoth-
esis test to find the p-values. The paired-samples t-test was
conducted to compare the luminance values and determine
if there is a significant difference between the healthy and
diseased luminance values. The p-value from the paired t-test
was equal to 3.3 × 10−7 which is less than p < 0.05 and
shows a significant difference between the luminance values
of a healthy and diseased eye. The results revealed that there
was a significant difference between healthy (Mean = 94.7,
SD = 4.1) and diseased (Mean = 140.2, SD = 19.4) lumi-
nance values (p < 0.05).
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FIGURE 12. Differences between luminance-based method and
color-based method in different environments demonstrated with
boxplot graph: (a) difference between luminance-based and RGB
color-based method in different angles, (b) difference between
luminance-based and RGB color-based method in different distances,
(c) difference between luminance-based and RGB color-based method in
different ambient lights, and (d) difference between luminance-based
and RGB color-based method in different smartphones.

FIGURE 13. Support Vector Machine (SVM) classifier diagram with
Gaussian kernel.

Fig. 13 shows the results of the SVM classifier on color
and luminance features on a testing subset of 15 healthy and
15 diseased images. These images were randomly picked
among 50 healthy and 50 diseased images, acquired from
the model eye. The testing subset (15 healthy + 15 diseased)
were randomly selected and left out during the training ses-
sion. In Fig. 13, the SVM classifier with Gaussian kernel was
used to distinguish healthy and diseased classes using the
luminance values and red channel values. The support vectors
are marked with a circle, the healthy class with red and the
diseased class with blue. In all mentioned figures, luminance
values are on the x-axis and R color values are on the y-axis.

Fig. 14 shows the results of our proposed method using
the luminance-based method. An image from a healthy eye
model is shown in Fig. 14a, and an image from a sample
diseased eye is shown in Fig. 14b. The result of our proposed
method on the healthy eye from Fig. 14a is shown in Fig. 14c,
and the results of the method on the diseased eye from
Fig. 14b is shown in Fig. 14d. Fig. 14 demonstrates that our

FIGURE 14. Results of the proposed method: (a) original image of a
healthy eye, (b) original image of an eye with cataract, (c) result of
cataract detection on the healthy eye, and (d) result of cataract detection
on the diseased eye.

TABLE 2. The average accuracy of the 10-fold cross validation and the
specificity, sensitivity and accuracy of testing dataset.

TABLE 3. Comparison with other methods.

proposed method can accurately distinguish cataract features
in a diseased eye from a healthy eye.

The performance of our proposed method is evaluated
in terms of sensitivity, specificity, and accuracy, which are
defined as:

Sensitivity =
TP

TP+ FN
×100%, (10)

Specificity =
TN

TN + FN
×100%, (11)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
×100%, (12)

where TP is true positive (diseased eye correctly diagnosed as
diseased), FP is false positive (healthy eye incorrectly identi-
fied as diseased), TN is true negative (healthy eye correctly
identified as healthy), and FN is false negative (diseased
eye incorrectly identified as healthy). Adopting the above
equations, the accuracy of detecting the diseased eye with the
proposed method was 96.6%, the sensitivity was 93.75%, and
the specificity was 93.4%.

Table 2 shows the accuracy performance of the proposed
algorithm with 70 training images (35 cataract and 35 healthy
images) when the 10-fold cross validation is applied. The
average and SD values of accuracies is 98± 0.014% as shown
in Table 1. We applied the decision boundary obtained from
this 10-fold cross validation into the test data set (15 cataracts
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and 15 healthy images). As a result, we obtained 96.6%
accuracy, 93.75% sensitivity, and 93.4% specificity as shown
in Table 2.

IV. CONCLUSION
In this paper, we have investigated the feasibility of detecting
cataracts using smartphones. We have proposed an accurate,
portable telemedicine solution which can detect cataracts by
adopting a novel luminance-based feature extraction algo-
rithm. This method can be used for bedside, clinical, and
community applications, which are themain pillars of transla-
tional medicine [40]–[42]. We have implemented our method
using different smartphone camera pictures from 100 eye
models, of which 50 were cataracts and 50 were healthy.
Images were acquired from the eye models emulated to repli-
cate different types of cataract disease, and healthy eyes. Our
proposed method aimed to find cloudiness and blurriness as
signs of cataracts in the eyemodel. To evaluate environmental
factors, the proposed algorithm was evaluated in different
environments to assess the effects of distance, ambient light,
angle, and different smartphone camera characteristics on the
research outcome. A novel luminance-based method is pro-
posed by extracting luminance features from the brightness
and RGB color components. To improve the performance of
our proposed method, a median filter was adopted for pre-
processing, and a watershed algorithm was used to enhance
luminance features and extract noise and glare. To distinguish
healthy from diseased eyes, 10-fold cross-validation and the
SVM classifier were adopted for the classification task.

Previous methods of detecting cataracts using smartphones
include the GLCM method proposed by Fuadeh et al. [11]
the retinal exam method proposed by Lau et al. and
Kaur et al, [13], [14] and the RGB color-based texture extrac-
tion method proposed by Rana and Galib [15].

The drawback of the GLCM method proposed by
Fuadeh et al. [11] is that the method was tested only on one
smartphone in a controlled environment, and the impact of
different smartphone specifications and environments was
not studied in their research.

The drawback of the method proposed by Lau and
Chan [14] is that the patient’s pupil needs to be dilated
for maximum light entrance, which is inconvenient for the
patients. The retinal exam captures the image from retina
using a condensing lens which must be at a certain distance
from the eye. The condensing lens must be at exactly 20 cm
distance from the smartphone and 5 cm distance from the eye.
However, our method gathers images directly from the lens
and does not require the condensing lens, therefore it does
not have the issue of certain distance since the image can be
acquired from any distance (from 10 cm to 50 cm). In the
study conducted by Rana and Galib [15], the drawback is that
their system has limitations detecting cataracts when chang-
ing the smartphones and the camera color characteristics.

A comparison in terms of accuracy between our method
and thementioned studies has been presented in the following
table.

As shown in Fig. 13, even the smallest reflection and light
entering between the gaps of the eye model coming from the
back of the eye model is distinguished and marked as compo-
nents of a cataract. Here this extra light is marked as sign of
cataracts because the luminance features of these pixels are in
the diseased class of the trained classifier. This shows that any
anomaly or light reflection is precisely measured using our
method. Hence, even the mildest cataracts or lens anomalies
can be accurately detected using our proposed method. This
shows that our method can detect the pixels (parts of lens)
which are affected with cataract disease and it is capable of
determining the progress of the disease. The proposedmethod
is also capable of distinguishing between different types of
the disease, and it can determine the shape and which parts of
the lens are affected (e.g., posterior, nuclear, capsular).

All the mentioned studies have used a single smartphone
for image acquisition and acquired the data in a controlled
environment. The results of their studies are heavily depen-
dent on the smartphone’s camera configuration and sensor
characteristics, the distance between the smartphone and eye,
and the camera angle. However, our proposed method is
effective irrespective of those environmental factors.

The accuracy, specificity, and sensitivity of the proposed
method to detect signs of cataracts was 96.6%, 93.4%, and
93.75%, respectively. Experimental results in this study show
that the method can accurately detect cataracts from different
distances, smartphones, and camera angles. It also shows that
changing environmental factors had a very limited impact
(average 2.8% impact) on the outcome results. Alternating
the camera distance, smartphone, and camera angle had 3.3%,
3%, and 2.2% impact, respectively on the outcome results,
which was negligible. We can implement our method on any
smartphone, including iOS or Android phones, with adequate
hardware using a re-targetable application platform [43].
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