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Abstract: The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes
of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule
and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper,
we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based
virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands
were extracted from the druggable protein–ligand database, sc-PDB. Then, each of the molecules
under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by
shape overlap and property similarity, producing a 300 dimensional similarity array termed the
“Three-Dimensional Biologically Relevant Spectrum (BRS-3D)”. Finally, quantitative or discriminant
models were developed with the 300 dimensional descriptor using machine learning methods
(support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data
sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database
(GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art
molecular descriptors. The results showed that models built with BRS-3D performed best for most
GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR
subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.

Keywords: BRS-3D; molecular similarity profile; QSAR; SVM; ligand-based virtual screening;
subtype selectivity

1. Introduction

Computer-aided drug discovery includes structure-based and ligand-based methods. Over
the last few decades, advances in both scoring algorithm and computer capability have made
structure-based drug discovery a popular tool in hit identification [1–3]. However, the massive
publicly available libraries of bioactivity screening data are growing rapidly [4–6]. To exploit such
big-data for drug discovery, ligand-based approaches are becoming increasingly important. According
to how the molecular structure’s features are represented, ligand-based approaches can be categorized
into two-dimensional (2D) or three-dimensional (3D) ones. The utility of the 2D approaches (based on
2D molecular descriptor or fingerprint) have been confirmed with a variety of algorithms, including

Molecules 2016, 21, 1554; doi:10.3390/molecules21111554 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2016, 21, 1554 2 of 20

similarity coefficients (e.g., Tanimoto coefficient), distance functions (e.g., Euclidean distance), or, most
recently, the Similarity Ensemble Approach (SEA) algorithm [7].

In contrast to 2D methods, 3D methods (including 3D-QSAR [8,9] and pharmacophore
modeling [10,11]) are based on molecular shape or conformation. As the ligand–receptor interaction
involves 3D shape and properties (hydrophobic and electrostatic potential) complementarity, 3D
methods are considered to have more potential for rational drug design, especially for scaffold
hopping [12], even though previous studies show that 2D approaches are usually much faster and
perform better than 3D ones [12–14]. Most 3D methods depend on hypothetical active conformations
and require that all of the molecules are superimposed in advance. This situation is true for both
CoMFA-related methods and pharmacophore approaches. Therefore, these traditional 3D methods are
more applicable in situations when the active compounds share similar scaffolds or pharmacophores.
However, if the active conformations were unavailable, the superimpositions were not feasible.

In 2011, we built a database using all the rigid active compounds in PubChem (unpublished work)
with the expectation of guiding ligand design for corresponding targets. However, the disadvantages
of weak activity and low molecular weight limited its application. In fact, our knowledge about the
biologically active conformations is compiled as complexes with biological macromolecules in the
Protein Data Bank (PDB; http://www.rcsb.org) [15]. The crystallized ligands in PDB complexes can
be treated as frozen inverse shapes of their binding sites and can be used as templates to measure
a compound’s binding probability to the corresponding targets through 3D similarity calculation.
The more similarity between the compound and the crystallized ligand, the more likely the compound
can form a similar shape and bind to the protein. Then, the similarity array between the compound
and a pre-defined template set can be used as a virtual bioactivity profile (a multiple-dimensional
molecular descriptor) in virtual screening.

On the other hand, proteins came into being over a long evolutionary process. The homologous
or closely related proteins share similar sequences. As we all known, the number of druggable genes is
in a limited number and the protein structures and functions are more conserved than their primary
sequences [16]. Thus, these sequence-similar proteins tend to form a similar structure. Consequently,
the protein or protein pocket (active sites) structural classes are also in a limited number. This
conclusion can be demonstrated by the fact that there has been no new fold or superfamily submitted
to the PDB in recent years [17–21]. In addition, long-term functional selection forced some proteins with
dissimilar sequences to form similar active sites (the ligands induced the formation of enzyme/receptor
structures). For example, the 5-HT3A receptors are ion channels, while the other 5-HT receptors
(5-HT1,2,4–7) are G protein-coupled receptors (GPCR) [22]. And, for the same reason, most drugs
bind to more than one target, which is defined as drug promiscuity or polypharmacology. Therefore,
we believe, the protein pocket classes are limited and can be represented with PDB structures.

In this article, based on these hypotheses discussed above: (1) the structural classes of protein
pockets (accumulated in PDB) are limited in number; (2) the shape features of a pocket can be reflected
by its ligands; (3) high similarity between a compound and the PDB ligand indicates possible binding
with the corresponding target; we proposed a protocol to calculate the shape similarity profile based on
PDB ligands and applied it in ligand-based virtual screening and QSAR study. We termed this method
the Three-Dimensional Biologically Relevant Spectrum (BRS-3D) after our related 2D approach [23].
Firstly, we selected 300 diverse ligands from the sc-PDB to compose the 3D Biologically-relevant
Representative Compound Database (BRCD-3D), which were used as templates for the BRS-3D
calculation. Then, predictive discriminant models were established for 42 benchmark data sets using
BRS-3D and the SVM algorithm. We compared the performance of BRS-3D and other state-of-the-art
2D and 3D molecular descriptors. We also applied the BRS-3D approach in histone deacetylase 1
(HDAC1) inhibitors screening and GPCR subtype selectivity prediction.

http://www.rcsb.org
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2. Results

2.1. Summary of BRCD-3D

Based on the self-similarity matrix and cluster analysis, a diverse set of ligands was extracted from
the sc-PDB to compose the BRCD-3D. The size of the BRCD-3D is critical for the calculation efficiency
and application effectiveness of BRS-3D. Therefore, we prepared a series of BRCD-3D databases with
500, 300, 200, 100, or 50 ligands. The prediction performances of BRCD-3D databases with different
sizes were compared with two data sets from the ChEMBL [4]: 1189 human acetylcholinesterase
(AChE) inhibitors and 1024 HIV-1 protease inhibitors. Two thousand random molecules selected
from the Available Chemicals Directory (ACD) [24] were used as the negative samples. As shown in
Supplementary Materials Figure S1, Tables S1 and S2, the Accuracy, Precision, Recall, and MCC values
of the models decreased when the BRCD-3D size was reduced. The performance of the models with
BRCD-3D size of 300 was close to the performance with a size of 500, while further reducing BRCD-3D
size affected the discriminant efficiency. Thus, a BRCD-3D size of 300 was chosen to balance the
computational consumption and modeling performance. Information regarding to the 300 ligands and
their targets are provided in the Excel file in the Supplementary Materials. The ligand structures are
also provided in a zipped file (mol2 format).

The 300 ligands in the BRCD-3D included 281 putative ligands, 14 oligopeptides, and 5 cofactors.
The peptides were composed of eight or fewer residues. We analyzed the physicochemical property
distribution of the BRCD-3D ligands (Figure 1A–F), including molecular weight (MW), octanol-water
partition coefficient (AlogP), number of hydrogen bond acceptors (HBAs), number of hydrogen bond
donors (HBDs), polar surface area (PSA), and number of rotatable bonds (RBs). The MW of the ligands
ranged from 140 to 800 Da. Most of the ligands conformed to Lipinski’s rule-of-five [25,26].
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The biological diversity of the BRCD-3D ligands could be analyzed with their corresponding targets, 
as shown in the pie charts in Figure 1. The targets were categorized into seven classes: oxidoreductase, 
transferase, hydrolase, lyase, isomerase, ligase, and non-enzyme (the left pie chart, Figure 1G). Enzymes 
and GPCRs are the most important therapeutic targets in current drug discovery [27–31]. There were 
255 enzymes, including 80 kinases and 90 proteases, representing the main part of BRCD-3D ligands’ 

Figure 1. Physicochemical properties of BRCD-3D (3D Biologically-relevant Representative Compound
Database) ligands and classifications of their corresponding targets. (A–F) Properties distribution of
the ligands, calculated by Pipeline Pilot 8.5. MW: molecular weight; AlogP: the octanol-water partition
coefficient; HBAs: the count of hydrogen bond acceptors; HBDs: the count of hydrogen bond donors;
PSA: polar surface area; RBs: the number of rotatable bonds; (G) Pie chart of the enzyme types of the
targets. Details are shown in Supplementary Materials Table S3; (H) Pie chart of the SCOP classification
of the targets. Entries without SCOP annotations are not taken into account. Details are shown in
Supplementary Materials Table S4.

The biological diversity of the BRCD-3D ligands could be analyzed with their corresponding
targets, as shown in the pie charts in Figure 1. The targets were categorized into seven classes:
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oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase, and non-enzyme (the left pie
chart, Figure 1G). Enzymes and GPCRs are the most important therapeutic targets in current drug
discovery [27–31]. There were 255 enzymes, including 80 kinases and 90 proteases, representing
the main part of BRCD-3D ligands’ targets. The structural classifications of the 300 targets were
annotated according to SCOP (Structural Classification of Proteins, 1.75 release) [20] (the right pie
chart, Figure 1H). Detailed information is presented in the Supplementary Materials Tables S3–S5.

2.2. Evaluation with GLL/GDD (G Protein-Coupled Receptor (GPCR) Ligand Library and the GPCR Decoy
Database) Benchmark Data Sets

Predictive discriminant models were successfully constructed using BRS-3D (Figure 2 and
Supplementary Materials Table S6). We compared the performances of the three methods used
to handle the unbalanced data. For the “1:10” data reduction method, the Recall values of most
models were greater than the other two. However, reducing the number of decoy compounds caused
information loss. The overall prediction accuracies (ACC) of the models were worse than the other
methods, implicating that there were more false positives. For the “weighted” method (Table 1), the
cross-validation AUC values were greater than 0.95 for all data sets, indicating that the SVM models had
a fairly reliable learning ability. The ACC values for the test sets were greater than 0.95 for all models.
The Precision values of most models were also acceptable. However, due to the data imbalance, the
average Recall was approximately 0.76, meaning that the SVM models were biased towards predicting
the compounds as decoys. The 1:39, 1:10, and weighted methods resulted in 40, 39, and 34 models with
Precision values greater than 0.9, respectively. These models can effectively enrich the active compounds
from decoys. The lowest Precision values for the 1:39, 1:10, and weighted methods were 0.788 (6th,
5HT2C_Agonist), 0.842 (7th, 5HT2C_Antagonist), and 0.562 (19th, ADA2B_Antagonist), respectively.
These models could lead to high false positive rates. Except one data set (ADA2B_Antagonist), all the
other MCC values were greater than 0.7, indicating that the models were acceptable.
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Figure 2. Comparison of the three methods in handling the data imbalance. The red circle denotes
model results based on data sets with the proportion of 1:10 (ligands:decoys). The purple triangle
denotes model results based on data sets with the original ratio (1:39). The blue diamond denotes
results of models with different weight for ligands class and decoys class in the SVM model training.
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Table 1. Results of the discriminant models for the 42 GLL/GDD (G protein-coupled receptor (GPCR)
ligand library and the GPCR decoy database) data sets. Models were built with the “weighted” method
for handling the data imbalance. The CV AUC is a 10-fold cross-validation result of the training set.
Accuracy, Precision, Recall, and MCC are the prediction results for the test set. Results of the other two
treatments for data imbalance can be found in Supplementary Materials Table S6.

No. Data Sets CV AUC Accuray Precision Recall MCC

1 5HT1A_Agonist 0.989 0.994 0.986 0.763 0.865
2 5HT1A_Antagonist 0.975 0.992 0.888 0.782 0.829
3 5HT1D_Agonist 0.988 0.993 1.000 0.703 0.835
4 5HT1D_Antagonist 0.980 0.995 0.981 0.825 0.898
5 5HT2A_Antagonist 0.981 0.992 0.894 0.759 0.820
6 5HT2C_Agonist 0.983 0.986 0.721 0.738 0.722
7 5HT2C_Antagonist 0.957 0.991 1.000 0.625 0.787
8 5HT4R_Agonist 0.992 0.991 1.000 0.638 0.795
9 5HT4R_Antagonist 0.993 0.997 1.000 0.875 0.933
10 AA1R_Antagonist 0.986 0.992 0.894 0.750 0.814
11 AA2AR_Antagonist 0.985 0.995 0.983 0.808 0.889
12 AA2BR_Antagonist 0.984 0.993 0.894 0.797 0.841
13 ACM1_Agonist 0.985 0.992 0.851 0.820 0.831
14 ACM3_Antagonist 0.983 0.991 0.930 0.678 0.790
15 ADA1A_Antagonist 0.983 0.993 0.968 0.763 0.856
16 ADA1B_Antagonist 0.988 0.994 0.889 0.873 0.878
17 ADA1D_Antagonist 0.987 0.994 0.948 0.807 0.872
18 ADA2A_Antagonist 0.953 0.991 0.983 0.648 0.794
19 ADA2B_Antagonist 0.959 0.979 0.562 0.839 0.677
20 ADA2C_Antagonist 0.961 0.992 0.967 0.686 0.811
21 ADRB1_Agonist 0.995 0.992 0.912 0.738 0.816
22 ADRB1_Antagonist 0.986 0.991 0.964 0.643 0.783
23 ADRB2_Agonist 0.992 0.996 0.904 0.927 0.914
24 ADRB2_Antagonist 0.990 0.995 0.971 0.829 0.895
25 ADRB3_Agonist 0.994 0.996 0.982 0.860 0.917
26 AG2R_Antagonist 0.996 0.998 0.996 0.907 0.949
27 CCKAR_Antagonist 0.986 0.993 1.000 0.722 0.847
28 CLTR1_Antagonist 0.981 0.992 0.979 0.701 0.825
29 DRD2_Antagonist 0.977 0.992 0.951 0.726 0.827
30 DRD3_Antagonist 0.982 0.993 0.941 0.750 0.837
31 DRD4_Antagonist 0.993 0.995 0.982 0.827 0.899
32 EDNRA_Antagonist 0.987 0.994 0.932 0.809 0.865
33 EDNRB_Antagonist 0.986 0.993 0.902 0.814 0.853
34 GASR_Antagonist 0.990 0.995 0.979 0.816 0.891
35 HRH3_Antagonist 0.997 0.992 0.958 0.730 0.833
36 LSHR_Antagonist 0.990 0.989 1.000 0.543 0.733
37 NK1R_Antagonist 0.980 0.991 0.914 0.711 0.802
38 OPRD_Agonist 0.990 0.993 1.000 0.722 0.847
39 OPRK_Agonist 0.990 0.990 1.000 0.596 0.768
40 TA2R_Antagonist 0.991 0.994 0.974 0.772 0.864
41 V1AR_Antagonist 0.986 0.993 0.971 0.733 0.840
42 V1BR_Antagonist 0.983 0.992 0.969 0.689 0.813

The GLL/GDD was designed as a benchmark data set for a structure-based method (such as
docking). Gatica et al. studied some targets in this data set with the docking approach. There were
six common targets among their study and ours (Supplementary Materials Table S7). The maximum
enrichment factors (EFmax) ranged from 1.7 to 38.2, according to their docking approach [32].
In comparison, prediction based on BRS-3D models can reach EFs at 10–38 (top 10% and 2% in test sets).
More importantly, our approach can be applied to systems with no known target structures.

In summary, the results of the SVM models based on benchmark data sets demonstrate that
BRS-3D can effectively characterize the 3D structural features of molecules and can be used as a
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multi-dimensional structural descriptor. Combined with appropriate machine learning methods,
prediction models can be developed to identify target-specific active compounds.

2.3. Feature Selection

We studied the influence of different feature subsets on the performance of the 42 SVM models.
Weighted C parameter was used to handle the data imbalance. The results are presented in Figure 3.
The cross-validation AUC values of models based on different feature subsets were acceptable (mostly
over 0.9), again confirming the excellent learning ability of the method. For the test sets, the ACC
values were mostly over 0.9. The influence of feature selection on these two statistical parameters
was negligible. However, different feature subsets do affect the predictive ability, as shown by the
variations of the Precision, Recall, and MCC values. The predictive ability was enhanced as more
variables were added to the model. Most of the models with minimum feature numbers (5%) had
the lowest Precision, meaning that they produced higher false positive results. When the feature
number increased to 30% (90 BRS-3D variables), most models reached acceptable Precision and MCC
values. After that, when more features were added, the trends became complex, meaning that the new
added variables provided useful information for model construction but also brought some noises to
the models. For most of the data sets, models with full BRS-3D performed best, as judged from the
parameters. This behavior demonstrates the effectiveness of reducing the original 9878 sc-PDB ligands
to 300 with cluster analysis during the BRCD-3D construction process. Of course, the models should
be analyzed with more sophisticated statistical parameters for real screening, such as ROCFIT and
ROCED [33], which exceed the scope of this article.
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2.4. Comparison with Other Molecular Descriptors

The prediction performances of BRS-3D-based models were compared with models based on
Dragon 2D and MOE 3D descriptors. The results are shown in Table 2. The prediction Accuracy values
of all the three descriptors are sufficiently high, but the Precision values of BRS-3D are much higher
than Dragon 2D descriptors and MOE 3D descriptors, which means the BRS-3D based models have
the lowest false positive rates. Although the Recall values of BRS-3D are slightly lower than the other
two descriptors, the models based on BRS-3D still show sufficient sensitivity. We compared the MCC
values of these three descriptors (Figure 4), which are considered as a comprehensive evaluation
index for classification models. For 29 of all the 42 data sets, the BRS-3D-based models possessed the
highest MCC values. For the other 13 data sets, BRS-3D performed as well as Dragon 2D topological
descriptors, and both these two descriptors performed better than MOE 3D descriptors.
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Table 2. SVM models based on Dragon 2D, MOE 3D, and BRS-3D descriptors.

Data
Sets

Accuracy Precision Recall MCC

Dragon
2D

MOE
3D BRS-3D Dragon

2D
MOE

3D BRS-3D Dragon
2D

MOE
3D BRS-3D Dragon

2D
MOE

3D BRS-3D

1 0.993 0.951 0.994 0.849 0.330 0.986 0.889 0.932 0.763 0.866 0.539 0.865
2 0.992 0.991 0.992 0.819 0.814 0.888 0.851 0.822 0.782 0.831 0.813 0.829
3 0.987 0.977 0.993 0.671 0.526 1.000 0.919 0.919 0.703 0.779 0.686 0.835
4 0.981 0.992 0.995 0.568 0.831 0.981 0.921 0.857 0.825 0.715 0.840 0.898
5 0.964 0.945 0.992 0.401 0.300 0.894 0.883 0.903 0.759 0.581 0.502 0.820
6 0.987 0.980 0.986 0.744 0.571 0.721 0.762 0.857 0.738 0.747 0.691 0.722
7 0.983 0.949 0.991 0.636 0.317 1.000 0.766 0.906 0.625 0.690 0.519 0.787
8 0.998 0.979 0.991 0.939 0.541 1.000 0.979 0.979 0.638 0.957 0.719 0.795
9 0.995 0.994 0.997 0.855 0.863 1.000 0.979 0.917 0.875 0.912 0.886 0.933

10 0.990 0.986 0.992 0.774 0.705 0.894 0.857 0.769 0.750 0.810 0.729 0.814
11 0.989 0.982 0.995 0.756 0.602 0.983 0.808 0.808 0.808 0.776 0.689 0.889
12 0.987 0.978 0.993 0.794 0.539 0.894 0.676 0.865 0.797 0.726 0.672 0.841
13 0.986 0.962 0.992 0.662 0.383 0.851 0.888 0.882 0.820 0.760 0.567 0.831
14 0.988 0.982 0.991 0.714 0.605 0.930 0.847 0.831 0.678 0.772 0.700 0.790
15 0.980 0.960 0.993 0.557 0.373 0.968 0.915 0.881 0.763 0.705 0.558 0.856
16 0.990 0.955 0.994 0.758 0.349 0.889 0.882 0.927 0.873 0.812 0.554 0.878
17 0.977 0.955 0.994 0.528 0.347 0.948 0.904 0.904 0.807 0.681 0.544 0.872
18 0.957 0.938 0.991 0.359 0.270 0.983 0.909 0.864 0.648 0.556 0.462 0.794
19 0.973 0.982 0.979 0.471 0.632 0.562 0.736 0.690 0.839 0.576 0.651 0.677
20 0.955 0.978 0.992 0.335 0.542 0.967 0.837 0.674 0.686 0.513 0.593 0.811
21 0.986 0.974 0.992 0.655 0.494 0.912 0.905 0.905 0.738 0.763 0.658 0.816
22 0.989 0.977 0.991 0.702 0.522 0.964 0.952 0.857 0.643 0.812 0.659 0.783
23 0.995 0.987 0.996 0.900 0.694 0.904 0.878 0.829 0.927 0.886 0.752 0.914
24 0.974 0.971 0.995 0.452 0.429 0.971 0.917 0.917 0.829 0.633 0.616 0.895
25 0.990 0.986 0.996 0.738 0.665 0.982 0.938 0.907 0.860 0.827 0.770 0.917
26 0.996 0.994 0.998 0.877 0.843 0.996 0.967 0.927 0.907 0.918 0.881 0.949
27 0.992 0.972 0.993 0.857 0.467 1.000 0.833 0.875 0.722 0.841 0.627 0.847
28 0.994 0.968 0.992 0.857 0.441 0.979 0.896 0.940 0.701 0.873 0.632 0.825
29 0.964 0.987 0.992 0.403 0.699 0.951 0.925 0.811 0.726 0.597 0.746 0.827
30 0.948 0.975 0.993 0.313 0.500 0.941 0.891 0.734 0.750 0.510 0.594 0.837
31 0.981 0.975 0.995 0.575 0.502 0.982 0.955 0.955 0.827 0.733 0.683 0.899
32 0.994 0.951 0.994 0.864 0.329 0.932 0.890 0.912 0.809 0.874 0.531 0.865
33 0.990 0.975 0.993 0.758 0.505 0.902 0.858 0.912 0.814 0.801 0.668 0.853
34 0.994 0.981 0.995 0.861 0.582 0.979 0.921 0.904 0.816 0.887 0.717 0.891
35 0.977 0.988 0.992 0.524 0.736 0.958 0.857 0.841 0.730 0.660 0.781 0.833
36 0.986 0.985 0.989 0.733 0.744 1.000 0.717 0.630 0.543 0.718 0.677 0.733
37 0.992 0.992 0.991 0.805 0.830 0.914 0.872 0.839 0.711 0.834 0.830 0.802
38 0.994 0.946 0.993 0.867 0.307 1.000 0.903 0.917 0.722 0.882 0.513 0.847
39 0.995 0.935 0.990 0.869 0.251 1.000 0.930 0.807 0.596 0.896 0.428 0.768
40 0.973 0.988 0.994 0.479 0.721 0.974 0.945 0.876 0.772 0.662 0.789 0.864
41 0.994 0.987 0.993 0.870 0.800 0.971 0.889 0.622 0.733 0.876 0.699 0.840
42 0.992 0.969 0.992 0.768 0.435 0.969 0.956 0.822 0.689 0.853 0.585 0.813

2.5. HDAC1 Inhibitor Screening

HDAC1 is an attractive drug target for cancer therapy [34]. Vorinostat (SAHA), the inhibitor
of HDAC1, has been approved by the FDA as an effective drug for the treatment of cutaneous
T cell lymphoma [35]. Therefore, we applied BRS-3D in the screening for HDAC1 inhibitors.
The candidate database for virtual screening contained more than 300,000 drug-like or lead-like
compounds derived from Specs, ChemDiv, and Enamine. We used only two screening filters,
the pharmacophore model (refer to Supplementary Materials Figure S2) and the BRS-3D discriminant
model (refer to Supplementary Materials Table S8), to simplify the study. At last, 30 molecules were
selected and purchased. The activity assay results showed that two similar molecules could inhibit
HDAC1 at micromolar concentrations. The inhibition rates of these two molecules were 34.65% and
38.66% at 10 µM. The IC50 values calculated by curve fitting were 43.99 and 30.07 µM, respectively
(Supplementary Materials Figure S3).

2.6. Application of BRS-3D in Subtype Selectivity Predictions

We noticed that one shortcoming of molecular superimposing was that shape played the most
important role in superimposition scoring, while fewer pharmacophore features were taken into
consideration. This limited the application of BRS-3D in activity prediction for targets that were
charge- or H-bond-sensitive. Different subtypes of a GPCR family can be activated by the same
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ligand. We believed that the subtype selectivity of GPCR ligands was dominated largely by dynamic
conformation-changing patterns. For example, all dopamine receptors (DR1–4) can be activated by
dopamine or its mimics [36]. The pharmacophore distributions of the ligands are similar to each other.
The selectivity of DR ligands depends on their dynamic shape or conformation-changing patterns.
Because BRS-3D is calculated with multiple superimposing templates, it can encode information about
multiple-conformation and then can be applied to GPCR subtype selectivity prediction. We applied
BRS-3D in subtype selectivity prediction of dopamine receptors (DR) [37], adenosine receptors
(AR) [38], cannabinoid receptors (CB), and an enzyme, monoamine oxidase (MAO). Predictive models
could be constructed for these systems. In this paper, we report the result of CB subtype selectivity
prediction as an example.

Cannabinoid receptors include two subtypes, denoted as CB1 and CB2. CB1 selective antagonists
show clinical efficacy in the treatment of obesity, metabolic disorders, and drug abuse [39,40], whereas
CB2 selective agents demonstrate efficacy in inflammatory pain models [41] and play neuroprotective
roles in Huntington’s and Alzheimer’s diseases [42,43]. The development of subtype-selective
compounds for CB1/CB2 receptors can not only avoid the unwanted side effects produced by
nonselective ligands, but also help us understand the specific physiological functions of each
subtype receptor.

We extracted all the compounds with definite Ki values for both CB1 and CB2 receptors (human
sapiens) in ChEMBL (version 20). The selectivity ratio (SR) was defined as SRCB1/CB2 = pKiCB1 − pKiCB2.
The compounds with SR ≥ 1.3 or SR ≤ −1.3 were considered as CB1/CB2 selective ones. As shown
in Figure 5 and Tables S9 and S10, prediction regression and discriminant models were successfully
constructed. The performances of the models improved with increasing of used features in the
model development. The regression model reached satisfactory performance with the cross-validated
Q2 = 0.650 for the training set and R2 = 0.753 for the test set (Figure 5A), when 20% features (60 variables)
were employed. The RMSE of the training set and test set were lower than 1 unit (Figure 5B).
Considering that the compounds in ChEMBL were collected from different laboratories, the results
were excellent. We conducted a data resampling (100 times, Figure S4A,B) and Y-randomization test
(500 times, Figure S4C) to evaluate the stability of the prediction models and to exclude possible chance
correlation. We also analyzed the applicability domain of the model (Figure S4D). The discriminant
models were simpler than regression models, since only 10% features (30 variables) were needed
(Figure 5D) when over 90% of selective ligands could be distinguished correctly. The prediction
accuracy (0.896) was still satisfactory, with only 3 BRS-3D features (1%).

We analyzed the distribution of the selective compounds in the chemical space composed of the
most important BRS-3D features (Figure 5E,F). As the results show, the CB1-selective and CB2-selective
compounds distributed in different zones in the space. The compounds with higher similarity to
the 105th and 228th BRCD-3D ligands and with lower similarity to the 122th BRCD-3D ligand were
biased to bind to the CB2 receptor, and vice versa. We calculated the similarity of CB1/CB2- selective
compounds with active compounds in ChEMBL of the corresponding targets of BRS228, BRS122 and
BRS105 (with PDB ID 2WIH, 1QBR and 1R1H, respectively). Surprisingly, the similarities of CB1- and
CB2-selective compounds with the active compounds had no difference (BRS122 and BRS105) or weak
inversed trends (BRS128). The results demonstrated the advantages of 3D approaches relative to 2D
ones. That is, activity relationships related to molecular shapes could be discovered with 3D methods,
even when the topological structures of the compounds were dissimilar to each other. Figure S5 gives
examples of the five most selective compounds of CB1 and CB2. Thus, 3D methods were more suitable
for scaffold hopping [12].
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of the regression models with different feature subsets; (C) relationship between experimental and
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3. Discussion

In this paper, we introduced a multi-dimensional molecular descriptor, BRS-3D. The compounds
under scrutiny were superimposed on a diverse set of 300 ligands selected from the sc-PDB. Then, the
shape similarity profile was used as a multi-dimensional descriptor for QSAR studies. Predictive SVM
models were successfully constructed to discriminate active molecules from decoys, and most of the
models performed well. Comparison with two other state-of-the-art molecular descriptors showed that
the models based on BRS-3D achieved the best prediction performance. We also applied this approach
in a real screening project for HDAC1 inhibitors. Two of the 30 compounds showed moderate activity,
with IC50 values of 30.07 and 43.99 µM. Predictive regression models and discriminant models were
constructed for CB1/CB2 subtype selectivity prediction. Therefore, we believe that BRS-3D is a valid
molecular descriptor for ligand-based virtual screening and QSAR studies.

Recently, ligand profiling, such as the Cerep BioPrint® profile and Novartis HTSFPs high-throughput
screening fingerprints), gained much attention [44–49]. Helal and co-workers used the PubChem
Bioassay database to build a publicly available version of HTSFPs [50]. In these works, a compound was
encoded with its biological activities profile, which was collected from a battery of in vitro pharmacology
or ADME assays. Gene-expression profile (C-map) was also used as a molecular descriptor to study
the relationships between small molecules, genes, and diseases [51]. All of these works demonstrated
that the biological activity, or similar profile approaches, were efficient for virtual screening and
target prediction. In fact, ligand profiling can also be performed with theoretical calculation, e.g.,
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inverse docking [52] and pharmacophore database mapping [53]. In 2012, Sato et al. proposed a
shape overlay similarity profile with known active compounds and used it as molecular descriptors
in machine learning for ligand-based virtual screening [54]. Taking known active compounds as
templates, they calculated the 3D similarity profile (the array of overlay scoring) and used these
profiles as explanatory variables. Predictive discriminant models were constructed using the support
vector machine (SVM). No active conformations are needed during this process. When diverse active
compounds are available, this protocol can overcome the shortcomings of traditional 3D methods.
That is to say, without strict substructure alignment or active conformation, the screening protocol can
be processed automatically. However, using active compounds of a specific target as superimposition
templates made this descriptor not reusable. When the target changes, the templates must be renovated
and the similarity array has to be calculated again.

Similar to Sato’s protocol, our approach is also a theoretically implement of activity profiling.
Nevertheless, there are two differences between these two approaches. Firstly, we used a fixed set of
templates to make the calculated descriptor reusable for new systems. Secondly, using a diverse set
of irrelevant ligands as references attach more biological significance to the BRS-3D scores. The high
similarity means that the objective compound can form a similar shape with the corresponding ligand
and can bind to the corresponding target, while the dissimilar (with a low superimposing score)
indicates that the compound under scrutiny cannot form similar conformations with the PDB ligands
(forbidden conformations), which may cause possible confliction with the target or shape mismatching.

In fact, the fitting profile of an objective molecule against the 300 targets in the BRCD-3D can
also be calculated by reverse docking. We compared the performances of docking-based BRS-3D and
superimposing-based BRS-3D using the data set of 1189 AChE inhibitors and 2000 diverse compounds
from the ACD database. Surflex-Sim outperformed Surflex-Dock (Supplementary Materials Table S11),
possibly due to the poor scoring functions of current docking programs.

BRS-3D is a ligand-based method. Therefore, it can be used for systems without crystallized target
structures. As an example, GPCRs are the targets of over 30% of marketed prescription drugs [55].
Only a few crystal structures of GPCRs have been resolved, limiting the application of structure-based
methods. In this paper, the results show that BRS-3D can be applied to GLL/GDD discrimination.
BRS-3D is calculated with multiple templates. Therefore, BRS-3D reflects the conformational ensemble
(300 possible binding modes), which is useful for modeling of the dynamic binding process between
the objective compound and its potential targets. Also, for the same reason, BRS-3D may also be
applied in drug discovery for multi-target projects. Different from conventional 3D-QSAR methods,
such as CoMFA and CoMSIA, BRS-3D belongs to the second type of QSAR method discussed by
Fujita and Winkler [56]. When the BRS-3D model was constructed and validated, it could be used in
preliminary virtual screening to identify new scaffolds automatically.

In addition to the advantages discussed above, BRS-3D also has some drawbacks. First, shape
similarity calculation is highly computationally sensitive: it takes approximately 30 min to calculate the
BRS-3D for a typical molecule on a modern CPU core (we used the Intel Xeon E5-2609 v2 @ 2.50 GHz).
Therefore, this method is not suitable for on-the-fly analysis. Nevertheless, the BRS-3D descriptor only
needs to be calculated once, and the results can then be reused in different projects. Currently, we have
finished the calculations for more than 800,000 drug-like compounds. The calculated profiles have
been stored in an in-house database for further usage. Second, although each BRS-3D element has a
definite meaning, i.e., the similarity to a BRCD-3D ligand, models developed using this descriptor and
machine learning methods were less amenable to interpretation. Therefore, it is difficult to draw a rule
and to guide the rational design of new active compounds. However, as illustrated in Figure 5E,F, the
distributions of the compounds in a BRS-3D space can provide valuable information for inferring the
relationships between objective compounds and BRCD-3D targets, which is useful in lead optimization
and also in drug repositioning [57]. Third, we used Surflex-Sim for shape similarity calculation.
However, the similarity scores calculated with this method have a centralized distribution, i.e., most
similarity scores ranged from 0.3 to 0.7. BRS-3D can characterize the surface and shape properties of
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the molecules under study. As the shape similarity cannot encode electronic and other polar features,
we combined the pharmacophore method with our method for screening HDAC1 inhibitors (which
also enhances the screening speed).

In summary, BRS-3D can be used as a multi-dimensional molecular descriptor in ligand-based
studies. Calculated using multiple templates, BRS-3D can reflect the transformation pattern between
the active and inactive conformations of the molecule under scrutiny. Of course, as required for all 3D
methods, the active compounds should bind to the same pocket of the target in a similar manner.

4. Materials and Methods

4.1. Workflow of BRS-3D-Based Virtual Screening

This study was divided into three steps: templates preparation, BRS-3D calculation, and model
development and validation (Scheme 1). First, 3D shape similarity calculations and structural clustering
were used to extract a set of 300 diverse ligands from the druggable protein–ligand complex database,
sc-PDB, which was a subset of the original PDB [58]. This ligand set was named the BRCD-3D. Then,
each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands in the BRCD-3D.
These superimpositions were scored according to the degree of shape overlap and property similarity,
producing a 300 dimensional similarity array called the BRS-3D. Finally, quantitative or discriminant
models were developed using the BRS-3D and various machine learning methods.
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Scheme 1. Workflow of QSAR study based on BRS-3D. The process contains three steps: (A) Construction
of BRCD-3D. 3D shape similarity calculations and structural clustering were used to extract a set of
300 diverse ligands from the druggable protein-ligand database, sc-PDB. This ligand set was named
the BRCD-3D; (B) Calculation of BRS-3D. The objective compound was flexibly superimposed onto
the 300 BRCD-3D ligands (magenta ones), resulting in 300 similarity scores. The array of the scores
was defined as BRS-3D, which could be used as a multi-dimensional molecular descriptor in virtual
screening and QSAR studies; (C) Model development. Discriminant or regression models were
developed with the machine learning methods (e.g., SVM), taking BRS-3D as the independent variable.



Molecules 2016, 21, 1554 13 of 20

4.2. Surflex-Sim Superimposition

A variety of chemoinformatics tools are available for superimposition, such as FLEXS [59] and
ROCS [60]. In this paper, we used Surflex-Sim for BRCD-3D construction and BRS-3D calculation.
Surflex-Sim is the molecular similarity computing module of Surflex [61]. It measures the 3D similarity
between two molecules based on the morphological similarity algorithm, which takes into account
both the surface shape match and the similarity of charge characteristics [62]. The superimposing
process can be divided into four steps, including fragmentation, conformational search, alignment,
and scoring, which will be performed automatically by the Surflex-Sim program. More details about
the superimposition method can be found in Jain’s paper [62]. Surflex-Sim similarity scores range from
0 to 1. A score greater than 0.7 is generally considered to indicate a significant functional relationship
between molecules [62]. Default parameters were used for all of the calculations.

4.3. Construction of the BRCD-3D

The BRCD-3D is a representative collection of the active conformations of ligands. We used
ligands in the sc-PDB to build the BRCD-3D. The sc-PDB is a ligand-target complex database derived
from the PDB [58]. As this database was developed for drug discovery, only druggable binding sites
and their corresponding ligands were included in the sc-PDB. Therefore, the sc-PDB could be used
to represent the known bioactive conformational space. However, some ligands were co-crystallized
in more than one PDB entry, such as most cofactors. And, the ligands that bound to the same pocket
were highly similar. These redundancies should be removed.

We extracted all 9878 ligands from the sc-PDB (version 2011) [63]. A self-similarity matrix of
the 9878 ligands was calculated through an iterative process of rigid molecular superimposition.
In each iteration, a sc-PDB ligand was used as the template and kept rigid. All other ligands were also
kept rigid and superimposed onto the template. The superimpositions were scored with the default
Surflex-Sim parameters. These pairwise similarity scores constituted the self-similarity matrix.

Then, based on the similarity matrix and cluster analysis, a diverse subset of the 9878 ligands was
extracted to compile the BRCD-3D. The 9878 ligands were clustered into several groups via an in-house
protocol utilizing the component “Cluster Data” in Pipeline Pilot 8.5 [64]. In the clustering protocol,
a row of the self-similarity matrix was used as a numeric descriptor to compute the distance between
two ligands, and the distance function was set to “One Minus Pearson correlation”. Clustering was
performed using the maximum dissimilarity method. The cluster centers were output as members
of the BRCD-3D. We built five versions of the BRCD-3D database with different numbers of ligands
(500, 300, 200, 100, 50) to compare their performances.

4.4. Calculation of BRS-3D

BRS-3D was defined as the shape similarity profile between the molecule under scrutiny and all of
the ligands in the BRCD-3D. As the BRCD-3D consisted of a diverse range of ligands, the BRS-3D could
serve as a GPS-like location system within the bioactive-conformation chemical space. To calculate the
BRS-3D, the molecules under scrutiny (objective molecules) were flexibly superimposed onto BRCD-3D
ligands that were kept rigid. By default, 10 overlapped conformations and similarity scores between
the objective molecule and a template were output. Only the highest score was kept as one element
of the BRS-3D. Therefore, the dimension of the BRS-3D was equal to the number of ligands in the
BRCD-3D. BRS-3D was used as a multi-dimensional descriptor for the development of QSAR models.

4.5. The Benchmark Data Sets

We used the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database
(GLL/GDD) to evaluate the efficiency of BRS-3D for ligand-based studies. GLL/GDD were compiled
by the Cavasotto Laboratory [32], including active ligands (agonist and antagonist) of 147 human Class
A rhodopsin-like GPCR targets and corresponding decoys. For each GLL ligand, there were 39 decoys.
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These decoys were selected from the ZINC database, with similar physicochemical properties
(molecular weight, formal charge, hydrogen bond donors and acceptors, rotatable bonds, and logP)
but dissimilar structure to the corresponding GLL ligand. GLL/GDD was originally developed for
docking approaches, but also used for performance evaluation of ligand-based methods [65].

To evaluate the efficiency of our approach, SVM discriminant models were constructed for
42 GLL/GDD data sets with more than 200 ligands. The structures of the GLL/GDD data sets were
downloaded from the website of the Cavasotto Laboratory [66]. Each data set was randomly divided
into a training set and a test set at a ratio of 4:1. The training set was used to select the optimal
parameter settings by cross-validation and to build prediction models. The test set was used only for
model evaluation.

The ligands and decoys of the GLL/GDD data sets were unbalanced, with a ligand:decoys ratio
of 1:39. We compared three methods of handling this unbalance. First, the original data were used
without any special treatment (1:39 method). Second, we reduced the ligand:decoy ratio from 1:39 to
1:10 (1:10 method). For each ligand, only 10 of the 39 original decoys were randomly selected and used
for model development, and the other decoys were discarded. In the third approach, we assigned
different weight factors on parameter C (39 and 1 for the ligands and decoys, respectively) in the SVM
models development (weighted method). The 42 data sets are summarized in Table 3.

Table 3. The 42 GLL/GDD data sets with more than 200 ligands.

No. Target Target Name Ligand Type Ligand
Count

Decoy
Count

1 5HT1A 5-hydroxytryptamine receptor 1A Agonist 952 37,128
2 5HT1A 5-hydroxytryptamine receptor 1A Antagonist 506 19,734
3 5HT1D 5-hydroxytryptamine receptor 1D Agonist 558 21,762
4 5HT1D 5-hydroxytryptamine receptor 1D Antagonist 315 12,285
5 5HT2A 5-hydroxytryptamine receptor 2A Antagonist 725 28,275
6 5HT2C 5-hydroxytryptamine receptor 2C Agonist 209 8151
7 5HT2C 5-hydroxytryptamine receptor 2C Antagonist 318 12,402
8 5HT4R 5-hydroxytryptamine receptor 4 Agonist 235 9165
9 5HT4R 5-hydroxytryptamine receptor 4 Antagonist 241 9399
10 AA1R Adenosine receptor A1 Antagonist 280 10,920
11 AA2AR Adenosine receptor A2a Antagonist 361 14,079
12 AA2BR Adenosine receptor A2b Antagonist 370 14,430
13 ACM1 Muscarinic acetylcholine receptor M1 Agonist 806 31,434
14 ACM3 Muscarinic acetylcholine receptor M3 Antagonist 295 11,505
15 ADA1A Alpha-1A adrenergic receptor Antagonist 588 22,932
16 ADA1B Alpha-1B adrenergic receptor Antagonist 550 21,450
17 ADA1D Alpha-1D adrenergic receptor Antagonist 568 22,152
18 ADA2A Alpha-2A adrenergic receptor Antagonist 440 17,160
19 ADA2B Alpha-2B adrenergic receptor Antagonist 437 17,043
20 ADA2C Alpha-2C adrenergic receptor Antagonist 433 16,887
21 ADRB1 Beta-1 adrenergic receptor Agonist 209 8151
22 ADRB1 Beta-1 adrenergic receptor Antagonist 211 8229
23 ADRB2 Beta-2 adrenergic receptor Agonist 206 8034
24 ADRB2 Beta-2 adrenergic receptor Antagonist 204 7956
25 ADRB3 Beta-3 adrenergic receptor Agonist 643 25,077
26 AG2R Type-1 angiotensin II receptor Antagonist 1502 58,578
27 CCKAR Cholecystokinin receptor type A Antagonist 360 14,040
28 CLTR1 Cysteinyl leukotriene receptor 1 Antagonist 333 12,987
29 DRD2 D2 dopamine receptor Antagonist 529 20,631
30 DRD3 D3 dopamine receptor Antagonist 317 12,363
31 DRD4 D4 dopamine receptor Antagonist 665 25,935
32 EDNRA Endothelin-1 receptor Antagonist 676 26,364
33 EDNRB Endothelin B receptor Antagonist 561 21,879
34 GASR Gastrin/cholecystokinin type B receptor Antagonist 567 22,113
35 HRH3 Histamine H3 receptor Antagonist 313 12,207
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Table 3. Cont.

No. Target Target Name Ligand Type Ligand
Count

Decoy
Count

36 LSHR Lutropin-choriogonadotropic hormone receptor Antagonist 230 8970
37 NK1R Substance-P receptor Antagonist 900 35,100
38 OPRD Delta-type opioid receptor Agonist 361 14,079
39 OPRK Kappa-type opioid receptor Agonist 284 11,076
40 TA2R Thromboxane A2 receptor Antagonist 725 28,275
41 V1AR Vasopressin V1a receptor Antagonist 225 8775
42 V1BR Vasopressin V1b receptor Antagonist 225 8775

4.6. Model Development and Validation

SVM is a promising machine learning method and has been extensively applied in various
pattern recognition systems and across all fields of informatics, including bioinformatics and
chemoinformatics [54,67–71]. Combined with molecular fingerprints or descriptors, SVM can be easily
utilized for virtual screening with good prediction performance. In this study, LIBSVM (v3.16) [72],
an implementation of SVM for classification, regression, and distribution estimation, was adopted to
develop the discriminant models based on BRS-3D. GLL active compounds (agonists or antagonists)
and GDD decoys were assigned as positive and negative samples, respectively. The RBF (radial basis
function) was used as the kernel function, and 80% of the data set was used as the training set, while
the rest was used as the test set. We used 10-fold cross-validation to verify the learning ability of the
models. The parameter gamma of the kernel function and parameter C were optimized with grid
searching. For the classification models, the area under the receiver operating characteristic curve
(AUC) was used to evaluate the cross-validation results and to determine the best parameter settings.
The parameter settings are generally considered to be acceptable when the cross-validation AUC value
of a classifier is greater than 0.9. For the regression models, the cross-validation root-mean-square
error (RMSE_CV) was used for parameter optimization.

In addition to cross-validation, we also verified the performance of the models with test sets
(20% of the original data set). Statistical parameters including Accuracy (ACC), Precision, Recall, and
Matthew’s correlation coefficient (MCC) were computed to assess the performance of the model.

ACC =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall = Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

Here, TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and
false negatives, respectively. ACC is the overall prediction accuracy of a classifier. Higher ACC values
indicate higher predictive power. However, if the data points of the two classes are highly unbalanced,
ACC cannot correctly reflect predictive power. In this situation, MCC is preferred. MCC ranges from
−1 to 1. MCC = 1 indicates an ideal prediction, while MCC = 0 represents a random prediction.

The RMSE, squared correlation coefficients of cross-validation (Q2) and the determination
coefficient (R2) of test sets were calculated for regression models.
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RMSE =

√
1
n∑ (y − ŷ)2 (6)

Q2 =

 ∑ (y − y)(ŷ − ŷ)√
∑ (y − y)2∑ (ŷ − ŷ)

2

2

(7)

R2 = 1 − ∑ (y − ŷ)2

∑ (y − y)2 (8)

Here, n is the number of samples, y is the observed response variable, ŷ is the corresponding
predicted value, y and ŷ are the mean values of y and ŷ, respectively. As recommended by
Alexander et al. [73], R2 > 0.6 and low RMSE for the test set indicate the satisfied prediction ability of
the regression models.

4.7. Feature Selection

To assess the influence of feature size on SVM model performance, several different feature subsets
of BRS-3D were selected to build the prediction models. A total of 42 Random Forest (RF) models
were built, using BRS-3D as variables. This process was implemented by the component “Learn R
Forest Model” in Pipeline Pilot 8.5. First, the importance of each variable in the BRS-3D was measured
with RF models, using the method of permutation accuracy importance [74]. Then, feature subsets
with 15 (top 5%), 30 (top 10%), 90 (top 30%), 150 (top 50%), and 210 (top 70%) variables were selected
according to the ranked importance of the variables. The feature subsets were used to build LIBSVM
discriminant models. The feature selection process was performed with the original 1:39 unbalanced
data sets. The SVM model performances were compared with and without feature selection.

4.8. Dragon 2D Descriptors and MOE 3D Descriptors

Two kinds of state-of-the-art molecular descriptors were adopted to build SVM discriminant
models for the same 42 benchmark data sets. Their prediction performances were compared with
BRS-3D. Totally, 107 topological (2D) descriptors were calculated with Dragon (version 5.4) [75];
91 surface area-, volume-, and shape-related 3D descriptors were also calculated, using MOE 2009 [76].
The details of Dragon 2D and MOE 3D descriptors are listed in the Supplementary Materials, Tables S12
and S13. These two kinds of molecular descriptors were used as explanatory variables to build
SVM models. The performance (ACC, Precision, Recall, and MCC) of Dragon 2D-, MOE 3D-, and
BRS-3D-based models were compared.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
11/1554/s1.
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