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Abstract

Growing conditions for crops such as coffee and wine grapes are shifting to track climate

change. Research on these crop responses has focused principally on impacts to food

production impacts, but evidence is emerging that they may have serious environmental

consequences as well. Recent research has documented potential environmental impacts

of shifting cropping patterns, including impacts on water, wildlife, pollinator interaction,

carbon storage and nature conservation, on national to global scales. Multiple crops will

be moving in response to shifting climatic suitability, and the cumulative environmental

effects of these multi-crop shifts at global scales is not known. Here we model for the first

time multiple major global commodity crop suitability changes due to climate change, to

estimate the impacts of new crop suitability on water, biodiversity and carbon storage.

Areas that become newly suitable for one or more crops are Climate-driven Agricultural

Frontiers. These frontiers cover an area equivalent to over 30% of the current agricultural

land on the planet and have major potential impacts on biodiversity in tropical mountains,

on water resources downstream and on carbon storage in high latitude lands. Frontier

soils contain up to 177 Gt of C, which might be subject to release, which is the equivalent

of over a century of current United States CO2 emissions. Watersheds serving over

1.8 billion people would be impacted by the cultivation of the climate-driven frontiers.

Frontiers intersect 19 global biodiversity hotspots and the habitat of 20% of all global

restricted range birds. Sound planning and management of climate-driven agricultural

frontiers can therefore help reduce globally significant impacts on people, ecosystems

and the climate system.
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Introduction

One of the key challenges facing the 21st-century is producing enough food for the world’s grow-

ing population while not undermining the ecosystems on which we depend for life [1]. In partic-

ular, it is argued that the world needs to produce 70% more food by 2050 and if we fail to achieve

this then there will be major social and economic impacts [2–4]. Proposed solutions to the global

challenge of sustainably feeding the world’s population include consumer shifts towards more

plant-based diets, reducing food waste, new technologies to boost yields, applying existing tech-

nology to close yield gaps, and expanding the amount of land currently under cultivation. Here

we assess the extent to which climate change may create new opportunities to cultivate land in

regions not currently cultivated as well as assessing the environmental implications of developing

these so-called “agricultural frontiers.” In particular, climate change may stimulate large-scale

geographic shifts in lands suitable for agricultural production, including the expansion of cultiva-

tion at the thermal and precipitation limits of crop tolerance [5–10]. Already climate change is

creating new opportunities for farming to expansion in higher altitudes and latitudes that will

enjoy longer growing seasons [7, 11–12]. Unfortunately, the environmental consequences of

these climate-driven agricultural frontiers are not fully appreciated [11–15].

Balancing cropland expansion, to feed the world’s growing population, with the protection

of land to conserve biodiversity and ecosystem services is a major global challenge [2]. Over

the past 50 years, increases in food production have been dominated by growth in yields.

Now, increasingly we are seeing expansion of agricultural lands through large-scale clearing

[16]. 27% of global deforestation is directly attributable to large-scale clearing for commodity

production, predominantly in the tropics [17].

In this paper, we define agricultural frontiers as areas not currently suitable for any major

global commodity but that become suitable in the future due to climate change. While these

areas present an opportunity for agricultural expansion, concern lays in the possibility of envi-

ronmental degradation that may accompany development of frontiers. The expansion of agri-

culture into newly suitable regions may lead to environmental impacts not experienced under

previous land uses, including impacts on biodiversity, water services and carbon storage [18].

Therefore, policies to optimize food production, biodiversity and ecosystem services under

climate change are needed, especially since many past and present government policies have,

intentionally and unintentionally, favored agricultural expansion.

While global crop models have repeatedly identified areas of new agricultural suitability that

open due to climate change, analyses to date, for example using intersectoral impact models

and earth system models, have not fully elaborated the environmental impacts specific to those

areas [9, 19]. One reason is that global models often combine many sectors and varying assump-

tions [20] and are run at a relatively coarse resolution that may not match the scale of environ-

mental qualities of concern (e.g. watersheds, species ranges). In this study, we use simple but

high-resolution crop suitability models to document possible water, carbon and biodiversity

impacts associated with the potential cultivation of areas becoming suitable for agriculture for

the first time. Through this analysis we aim to improve understanding of the potential implica-

tions of the expansion of agriculture into agricultural frontiers, to inform policies that balance

optimized food production with the importance of biodiversity and ecosystem services.

Materials and methods

Climate data

We identify climate-driven agricultural frontiers by using projections of 17 global climate

models (GCM) for two levels of radiative forcing (Representative Concentration Pathways;
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RCPs 4.5 and 8.5) (S1 Table). S1 Fig presents a flowchart showing the details of GCMs and

other data used and their analysis.

Current and future monthly climate grids were obtained from WorldClim Global Climate

Data (www.worldclim.org). All data obtained was downscaled to 30 arc-second (approx. 1km)

horizontal resolution following the methods of Hijmans et al. 2005 [21]. Variables available for

download at this resolution and used in the simulations reported here were mean daily maxi-

mum temperature of each month (Tmax), mean daily minimum temperature of each month

(Tmin), mean total precipitation of each month (Precip) and a suite of 19 bioclimatic variables

[S2 Table]. Current climate represents the mean monthly climate over the period 1950–2000

whereas future climate projections cover 20-year averages over the periods 2040–2060 and

2060–2080.

Crop suitability models

Climatic suitability for twelve globally important crops is determined using three discrete model-

ing methods 1) EcoCrop; 2) Maxent; 3) frequency of daily critical maximum and minimum tem-

peratures. The list of crops is listed in Table 1 and parameters used is depicted in S3 Table.

EcoCrop is a generalized physiological model of crop suitability based on known ranges of

optimal temperature and precipitation as well as climatic limits where production of that crop

would be impossible [22, 23]. Parameters for optimal temperature and precipitation are avail-

able from the EcoCrop database maintained by the FAO [24].

Maximum entropy (Maxent) is widely used in modeling species distributions under climate

change and increasingly applied to domesticated crop species [25]. Crop occurrence points

were generated from spatially weighted random points representing the agreement of four dis-

crete gridded crop databases (S4 Table). One thousand points were generated for each crop,

with a greater percentage of the distribution given where there is greater agreement among the

four databases. Ten variables were selected by hierarchical clustering to create the Maxent

model for each crop. For each crop, all 19 bioclimatic variables were sampled at the crop obser-

vation points. Variables were standardized then partitioned into clusters using hclust() base R

function. The resulting cluster dendrogram was partitioned into 10 clusters using cutree() base

R function where k = 10. The first variable was selected from each of the resulting 10 groups.

See S2 and S5 Tables for a description of the bioclimatic variables used. For all models, 30% of

the occurrence points were reserved to test and validate the model. Model performance (AUC),

logistic threshold and top four most important variables for each crop are shown in S6 Table.

Table 1. List of crops modeled.

Crop Name Species

Corn Zea mays
Sugar Saccharum officinarum

Oil Palm Elaeis guineensis
Cassava Manihot esculenta
Peanuts Arachis hypogaea
Cotton Gossypium hirsutum
Millet Pennisetum glaucum

Sorghum Sorghum halepense
Rice Oryza sativa

Potato Solanum tuberosum
Wheat Triticum aestivum

Soy Glycine max

https://doi.org/10.1371/journal.pone.0228305.t001
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Critical maximum and minimum temperatures critical to crop success [26] were modeled

with gridded global daily observations for maximum and minimum air temperature were

obtained from the NOAA Earth System Research Laboratory Twentieth Century Reanalysis

Version 2: 4-times daily and daily average monolevel dataset [27] at 2˚ x 2˚ resolution.

Global daily observation grids (2˚ x 2˚) were summarized by month to create a count of

days where temperature exceeded each integer degree in the range -50C to +50C. Tempera-

tures were rounded to the nearest degree C and summarized in one-degree intervals. Counts

of temperature exceedances were generated over a 20-year period (1980–2000) and resampled

to 30 arc seconds (see S7 Table). Binary suitable vs. not-suitable grids were then created by

thresholding the critical temperature counts at 20% of all days within the relevant month

over the 20-year period using a cropping calendar dataset [28].

Agricultural frontier ensemble

Suitability for each crop was determined for current climate and in each of 34 future scenarios

(17 GCM, 2 radiative forcing) as the agreement of the three suitability methods (EcoCrop,

Maxent, Critical temperatures). Frontiers are defined as areas that transition from zero crops

suitable in current climate to one or more crops suitable in the future climate scenario. Addi-

tionally, we mapped frontiers that transition from one crop suitable in current climate to two

or more crops suitable in the future climate scenario. Validation statistics as measured by

Dice-Sorenson spatial congruence for all crop models are shown in S8 Table.

Water quality impacts

The analysis was implemented in a hydrological model, WaterWorld version 2, globally at

10km spatial resolution [29]. To calculate the population within the new agricultural areas,

who may experience water quality declines, we sum the Landscan global population dataset

2011 [30] over the area of new agriculture. The WaterWorld hydrological footprint (HF) [29–

31] is a measure of the influence of an area on downstream water and is calculated by cumu-

lating a global water balance calculated by the WaterWorld model [31], along a HydroSHEDS

[32] based flow network. The hydrological footprint at a point along this network is defined as

the contribution of an upstream area (such as a new agricultural area) to flow of water at this

point. We calculate the Agricultural Water Quality (AWQ) index as the land area affected by

hydrological footprint >0% and>50% as proxies for all contamination and for significant

contamination respectively. Further, we calculate the population affected by this hydrological

footprint as the sum of Landscan 2011 [30] people in pixels with a hydrological footprint of the

new agricultural areas >0% and>50%. We use a global database of 38,000 dams [33] to iden-

tify which lie on rivers with a hydrological footprint>0 as a surrogate for agricultural, hydro-

power and urban water supplies potentially affected by this new agricultural land. Footprints

are calculated for the current distribution of cropland fractional cover [34], the current distri-

bution of land suitable for cropland and each ensemble member of the frontiers. We used a

“difference method” where the number of people affected is a function of the agricultural

water footprint of current farming systems, minus the agricultural water footprint of future
farming practices. We use this difference to calculate the fraction of water, at any point in the

hydrological network, that fell as rain on particular land uses upstream and thus is likely to be

contaminated by new cropland.

Soil organic carbon impacts

To account for soil organic carbon stocks in agricultural frontiers, we obtained a gridded

global dataset of estimated soil organic carbon (tonnes ha-1) in the top 100 cm [35]. Individual
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projections of agricultural frontiers were resampled to match the native resolution of the data-

set and used to extract the soil carbon values for areas within the frontier. Total tonnage of soil

carbon was then summed for each resulting grid. To assess the total emissions resulting from

conversion from natural land cover to agriculture, we employed land cover-specific emissions

rates based on several meta analyses [36–38] as well as IPCC best practices guidelines for car-

bon accounting under land use change [39]. To account for differential emissions assumptions

by land class, the areas in agricultural frontiers were categorized according to existing land

cover in the global land cover facility (GLCF) dataset [40–41].

Biodiversity impacts

Biodiversity hotspots [42], endemic bird areas (EBA) [43], and Key Biodiversity Areas (KBA)

[44–45] were assessed for overlap with agricultural frontiers, as were present and future ranges

of global restricted-range bird species. Hotspots, EBA and KBA polygons were converted to

raster. Occurrence data and range maps for global restricted range bird species were obtained

from Birdlife International [46]. Only species whose observed area of occupancy was within

100 km of a frontier and with>10 occurrence points were modeled. Maxent models were gen-

erated for all selected species for baseline climate and in all future climate scenarios for the 17

GCMs at 2.5 arc-minute resolution. Predictor variables used were mean annual temperature,

mean diurnal range, temperature seasonality, minimum temperature of coldest month, annual

precipitation and precipitation seasonality. Binary maps for each model were created using the

maximum sensitivity plus specificity logistic threshold. The resulting binary grids were used to

evaluate species range overlap with agricultural frontiers in current climate and in all future

climate scenarios.

Results

Extent of climate-driven agricultural frontiers

Climate-driven agricultural frontiers as defined here cover between 10.3–24.1 million km2 of

the planet’s surface, with an ensemble median value of 15.1 million km2 under RCP 8.5 by

2060–2080 (Fig 1, S2 Fig). Crops that comprise the frontiers are shown in supplementary S3

and S4 Figs and are primarily more cold tolerant temperate crops such as potatoes, wheat,

maize, soy. To put the magnitude of these agricultural frontiers in perspective, the ensemble

median area of agricultural frontiers under this late century, RCP 8.5 scenario is equivalent to

59% of current global cultivated and managed vegetation land area, while the ensemble maxi-

mum area is equivalent to 93% of current cultivation. Under a RCP 4.5 scenario, with more

muted radiative forcing, agricultural frontiers are found to cover 8.1–20.0 million km2 of the

earth’s surface (equivalent to 31–77% of currently cultivated area (see S2 Fig)). Soil quality, ter-

rain and infrastructure, however, will be major determinants of which of these frontiers will

actually be cultivated and as such, the results presented here represent an upper bound esti-

mate of where cropland expansion may be expected.

Geographic distribution of climate-driven agricultural frontiers

Frontiers are projected to be most extensive in the boreal regions of the Northern Hemisphere

and in mountainous areas worldwide, since areas suitable for commodity production generally

expand upslope and towards the poles in response to rising temperatures. Potatoes, wheat and

maize make the largest contributions to frontier land surface (S4 Fig). Canada (4.2 million

km2) and Russia (4.3 million km2) harbor the greatest area of agricultural frontier (RCP 8.5,

ensemble median). Among montane regions, the Mountains of Central Asia and the Rocky
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Mountains of USA and Canada have the greatest frontier area (0.1 and 0.9 million km2, resp-

ectively). Frontiers on the fringes of Australian and African deserts are the result of projected

increases in precipitation, for which there is relatively low GCM agreement, including diver-

gent trends in sign of precipitation change among GCMs. This makes conclusions about

potential for agricultural expansion in these areas highly uncertain. In contrast, there will

be a small loss of existing crop area. We estimated that about 0.2% of existing crop area will

become unsuitable for all modelled crops without irrigation or other intensive inputs for RCP

8.5 2060–2080 scenario.

Environmental impacts of climate-driven agricultural frontiers

Environmental impacts from climate-related agricultural land use change include impacts

on climate services (e.g., reduction in carbon storage), the effects of agricultural pollution

on downstream areas, and degradation of natural habitats with attendant loss of biodiversity

[47–52]. The most significant impact is likely reduction in climate services provided by carbon

storage in frontiers soils, particularly in the extensive high latitude frontiers.

Climate services impact

The total amount of carbon that resides in the top 1 m of soil under agricultural frontiers has

a median value of 632 GtC (gigatons of carbon) (RCP 8.5, ensemble) and 539 GtC (RCP 4.5,

ensemble), with a minimum RCP 8.5 ensemble value of 400 and a maximum value of 991

GtC (Table 2). This is equivalent to 47–116% of all carbon currently in the Earth’s atmosphere

(Fig 2). Release of carbon from high latitude soils due to warming is already of major concern

but may be small relative to the amounts of carbon that might be released if these areas come

under cultivation [53].

Fig 1. Global climate-driven agricultural frontiers for RCP8.5 2060–2080. Areas that transition from no current suitability for

major commodity crops to suitability for one or more crops are depicted in blue, while currently uncultivated areas that transition to

suitability for multiple major commodity crops are shown in red. Intensity of color indicates the level of agreement between

simulations driven by different GCMs for the RCP 8.5 radiative concentration pathway. Terrestrial areas in white are either currently

suitable for at least one modeled crop or, not suitable for any modeled crops in the projected climatic conditions. Suitability under

current and projected climates is defined as universal agreement of suitability methods (EcoCrop, Maxent, Frequency of Extreme

Temperatures).

https://doi.org/10.1371/journal.pone.0228305.g001
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The release of carbon following tilling from previously untilled soils is believed to occur

rapidly and estimates suggest that 25–40% of total soil carbon is released within five years of

plowing [54]. Therefore, an upper bound estimate of the total amount of carbon that might

be released from the cultivation of climate-driven frontiers would be on the order of 177 GtC,

which is equivalent to 119 years of current CO2 emissions of the United States [55]. The actual

area affected would be smaller than the frontier due to economic and physical factors, but

emissions might be greater because many of the potentially affected soils are peat, which may

degrade when disturbed, releasing more and deeper carbon. In either event, the magnitude of

the potential release indicates that policies directed at constraining development of these areas

are vitally important. From a global perspective, 177 GtC is more than two-thirds of the 263

GtC within which total future emissions must be constrained to limit global mean temperature

increase to the internationally agreed Paris agreement target of 2˚C global mean temperature

increase above pre-industrial levels [56].

One way to address the challenge posed by cultivation of frontiers is through promoting

agricultural management practices that conserve soil-bound carbon. In particular, policies

that incentivize leaving peat soils intact and promoting conservation tillage could significantly

reduce the quantity of carbon released and slow the speed at which it is released [57–58]. Thus,

while specific estimates as to the speed or extent to which these carbon sources might affect the

Table 2. Accounting of soil organic carbon in top 1m in areas of agricultural frontiers and resulting potential carbon emissions under RCP 8.5 and RCP 4.5. Rows

with grey shading apply GAEZ general soil suitability constraints and soil requirements for each crop to the climatically suitable frontier areas.

Landcover

classification

Soil organic

carbon stock

(GT) 1m

Low-end IPCC method estimate C

release (GT) [forest 25%; grass/
shrubland 10%; wetlands 20%]

High-end IPCC method estimate C

release (GT) [forest 25%; grass/
shrubland 10%; wetlands 110%]

1m estimate C

release (GT) [all land
classes 25%]

1m estimate C

release (GT) [all land
classes 40%]

Forests (RCP 8.5) 267.5 [192.6–
355.4]

66.9 [48.1–88.9] 66.9 [48.1–88.9] 66.9 [48.1–88.9] 107.4 [77.0–142.2]

243.3 [174.6–

328.6]

60.8 [43.7–82.2] 60.8 [43.7–82.2] 60.8 [43.7–82.2] 97.3 [69.9–131.5]

Shrubland/

Grassland (RCP

8.5)

286.6 [133.6–
564.0]

28.7 [13.4–56.4] 28.7 [13.4–56.4] 71.6 [33.4–141.0] 114.6 [53.5–225.6]

265.9 [118.7–
532.5]

26.6 [11.9–53.3] 26.6 [11.9–53.3] 66.5 [29.7–133.1] 106.4 [47.5–213.0]

Permanent

wetlands (RCP 8.5)

73.6 [56.6–74.3] 14.7 [11.3–14.9] 81.0 [62.3–81.7] 18.4 [14.2–18.6] 29.4 [22.7–29.7]
54.2 [54.8–38.5] 10.8 [7.7–11.0] 60.3 [42.3–59.6] 13.5 [9.6–13.7] 21.7 [15.4–21.9]

Total soil organic

carbon (RCP 8.5)

632.4 [400.0–
991.5]

110.2 [72.8–160.1] 176.5 [123.8–226.9] 158.1 [100.0–247.9] 251.1 [153.1–397.5]

569.2 [347.6–
914.0]

98.2 [63.2–146.4] 147.0 [97.8–195.7] 142.3 [86.9–228.5] 225.3 [132.7–366.4]

Forests (RCP 4.5) 271.9 [197.4–
353.8]

68.0 [49.3–88.4] 68.0 [49.3–88.4] 68.0 [49.3–88.4] 109.8 [78.9–141.5]

248.3 [178.9–

326.7]

62.1 [44.7–81.7] 62.1 [44.7–81.7] 62.1 [44.7–81.7] 99.3 [71.5–130.7]

Shrubland/

Grassland (RCP

4.5)

196.5 [77.2–
434.9]

19.7 [7.7–43.5] 19.7 [7.7–43.5] 49.1 [19.3–108.7] 78.6 [30.9–174.0]

178.1 [67.6–
401.3]

17.8 [6.8–40.1] 17.8 [6.8–40.1] 44.5 [16.9–100.3] 71.2 [27.1–160.5]

Permanent

wetlands (RCP 4.5)

71.5 [39.6–74.3] 14.3 [7.9–14.9] 78.6 [43.6–81.7] 17.9 [9.9–18.6] 28.6 15.9–29.7]
52.4 [26.2–54.8] 10.5 [5.2–11.0] 57.7 [28.9–60.3] 13.1 [6.6–13.7] 21.0 [10.5–21.9]

Total soil organic

carbon (RCP 4.5)

539.9 [314.2–
862.9]

101.9 [65.0–146.8] 166.2 [100.7–213.6] 135.0 [78.5–215.7] 215.9 [125.7–345.2]

470.8 [272.8–
771.3]

90.4 [56.7–132.8] 137.5 [80.3–182.1] 119.7 [68.2–195.7] 191.5 [109.1–313.1]

https://doi.org/10.1371/journal.pone.0228305.t002

The environmental consequences of climate-driven agricultural frontiers

PLOS ONE | https://doi.org/10.1371/journal.pone.0228305 February 12, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0228305.t002
https://doi.org/10.1371/journal.pone.0228305


atmosphere is beyond the scope of this study, it is highly likely that developing such regions

for agriculture will have significant impacts on greenhouse gas emissions that need to be bal-

anced against the benefits of increased food supply and constrained by sound environmental

policies.

Biodiversity impacts

The biodiversity impacts of the climate-driven frontiers occur where the frontiers intersect

with important ecosystems and habitats (Table 3). Among global priorities for biodiversity

conservation, 56% of global biodiversity hotspots, 22% of Endemic Bird Areas (EBAs) and

13% of Key Biodiversity Areas (KBAs) intersect with climate-driven agricultural frontiers

(ensemble median RCP8.5 2060–2080; see Table 3). Biodiversity hotspots that have the larg-

est intersection with frontiers are the Tropical Andes, the Mountains of Central Asia, the

Horn of Africa and the Chilean Winter Rainfall and Valdivian Forests.

Species’ ranges may move in response to climate change, causing changes in patterns of bio-

diversity, at the same time as frontiers are opening. To test the effect of frontiers on future, as

well as present, patterns of biodiversity, the ranges of all global restricted range birds, a set of

high conservation priority species found in hotspots, KBAs and EBAs, were modelled [59].

These results show that the number of restricted range birds impacted by frontiers increases in

the future from 409 species to 491 species under RCP8.5 representing 20% of the 2,451 global

restricted range bird species and 409 to 362 under RCP4.5 (Table 3). Thus, range shifts due to

climate change accentuate the intersection of frontiers with suitable climate for rare species, as

both crop suitability and suitable climate for species move upslope. However, this effect

Fig 2. Soil organic carbon content in top 1 meter of soil (103 kg ha-1) in areas of climate-driven agricultural commodity

frontiers using RCP8.5 2060–2080 climate projections (blue color ramp). Areas with>50% GCM agreement commodity

frontiers are shown. Existing agricultural land cover>10% of each pixel is represented in light brown.

https://doi.org/10.1371/journal.pone.0228305.g002
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depends on species’ ability to occupy newly suitable areas. Species potentially impacted by

frontiers are most numerous in Central America and the Northern Andes, with secondary

concentrations in the Himalayas and highlands of New Guinea.

Water quality impacts

The potential impact of climate-driven agricultural frontiers on downstream water quality has

may affect large numbers of people and their water infrastructure. The agricultural water qual-

ity (AWQ) footprint of frontiers encompasses the homes of between 0.4–1.0 billion people

(RCP 4.5, ensemble minimum and maximum) and 1.2–1.8 billion people (RCP 8.5, ensemble

minimum and maximum), of whom 900 million-1.6 billion (RCP 8.5, ensemble minimum

and maximum) live in areas in which more than half of the water supply is projected to be

impacted (Table 4). Water quality changes in these downstream areas from fertilizer and bio-

cide runoff may affect human health, ecosystem health, production of fisheries and the cost of

water treatment.

Table 4 shows that agricultural frontiers increase the amount of land potentially affected by

changes in AWQ 9% to 16% (median 12%) compared to current impact (RCP 8.5, ensemble

minimum and maximum). Given that some of this new farmland (in drylands) will not gener-

ate significant runoff, under RCP 8.5 the land area with AWQ varies from a maximum addi-

tional 7–12% (median 9%) with the maximum additional global population affected varying

from 9–10% (median 9%). Elevated levels of AWQ (>50%), affecting 3–6% of additional land

surface (median 4%), impacting an additional 2–3% (median 2%) of the current global popula-

tion. The additional AWQ per unit land area of new cropland varies between ensemble mem-

bers and reflects the distribution of cropland in runoff generating areas vs not, as well as the

downstream differential mixing of runoff from agricultural and non-agricultural land under

different spatial frontier outcomes.

Hydrologic infrastructure, including the global estate of reservoirs created by dams that are

essential for urban water supply, irrigation and hydropower are also potentially affected by the

AWQ footprint of agricultural frontiers. 6.4–8% (median 7.3%, RCP8.5) or 5.5–6.9% (median

6.3% RCP4.5) of global reservoirs would experience increased AWQ impacts as a result of agri-

cultural frontiers and 2.0–3.8% (median 2.9%, RCP 8.5) or 1.7–3.1% (median 2.4% RCP4.5) of

reservoirs would be exposed to elevated impacts (AWQ>50%). These are in addition to the

63.3% of reservoirs already with AWQ>0 under the current distribution of crop suitability

(50.2% at>50% AWQ) (Table 4).

Table 3. Environmental impacts of agricultural frontiers under both RCP8.5 and RCP4.5 2060–2080 climate pro-

jections. Areas of significant biodiversity resources assessed are biodiversity hotspots; endemic bird areas (EBA); key

biodiversity areas (KBA). Numbers presented for biodiversity resources are the median [range] number of areas that

intersection with frontiers across all GCMs. Potential impacts on restricted range bird species are presented as the

median [range] number of species with modeled range intersection with frontiers in current and 2060–80 climate pro-

jection. Modeled future ranges are assessed under an assumption of no-dispersal and a 10 km/decade dispersal rate.

Global Conservation Priority/Ecosystem Service Potential Impact of Climate-Driven Agricultural

Frontiers

Important Biodiversity Areas RCP8.5 RCP4.5

Biodiversity Hotspots (n = 34) 19 [18–22] 19 [17–21]

Endemic Bird Areas (n = 218) 48 [43–52] 49 [43–54]

Key Biodiversity Areas (n = 11,824) 1590 [1361–1810] 1601 [1416–1788]

Restricted Range Birds

Current Range 409 [375–436] 409 [380–442]

2060–80—No Dispersal 385 [344–410] 228 [185–295]

2060–80—Full Dispersal 491 [452–525] 362 [294–432]

https://doi.org/10.1371/journal.pone.0228305.t003
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Uncertainty

To account for the uncertainty of future climate projections, all impacts of climate driven agri-

cultural frontiers were assessed on an individual GCM/RCP/time period basis and results are

presented as ensembles across all climate projections. The choice of binary threshold is a possi-

ble source of uncertainty, but in this analysis that uncertainty is constrained by choosing a

threshold that is conservative from the perspective of frontiers. For instance, in EcoCrop a

threshold of 20 (“very marginal to marginal”) includes areas that are possible but not optimal

for cultivation [22–23]. The total area of frontiers is largely insensitive to adjustments to the

choice of threshold across all methods used, because under a more permissive threshold the

currently suitable area will expand, but there will be an accompanying expansion of frontiers

poleward—and vice versa for a less permissive threshold. Uncertainty is more difficult to con-

strain in precipitation-driven frontiers where there is high disagreement on sign of change in

GCMs. This makes Sahelian and Australian precipitation-driven frontiers much more uncer-

tain than other frontiers, as noted above. The greatest uncertainty is in actual cultivation of

frontiers, as discussed below. Comparison of the modeled crop distributions for both current

and future climates including the possible reduction of frontier areas due to soil constraints as

defined by the union of GAEZ soil resource classifications are shown in S5–S8 Figs.

Table 4. Agricultural water quality (AWQ) impact of climate-driven agricultural frontiers under RCP 8.5 and RCP 4.5. Elevated AWQ is>50% of water supply with

AWQ impacts.

AWQ

footprint

(million

km2)

Elevated

AWQ1

footprint

(million km2)

Current

population

affected by

AWQ (billion)

Current

population

affected by

elevated AWQ1

(billion)

Potential

population

affected by

AWQ (billion)

Potential

population

affected by

elevated AWQ

(billion)

Footprint per

land area of

cropland

Global dam

estate

affected by

AWQ (%)

Global dam

estate

affected by

elevated

AWQ1 (%)

Frontiers

RCP 8.5

2060–2080

Median

11.7 5.2 0.7 0.1 1.4 1.1 0.79 7.3 2.9

Frontiers

RCP 8.5

2060–2080

Max

15.6 7.8 0.8 0.2 1.8 1.6 0.87 8 3.8

Frontiers

RCP 8.5

2060–2080

Min

9.1 3.9 0.7 0.1 1.2 0.9 0.67 6.4 2

Frontiers

RCP 4.5

2060–2080

Median

6.6 2.2 0.5 0.07 0.7 0.662 0.82 6.3 2.4

Frontiers

RCP 4.5

2060–2080

Max

8.9 3.6 0.52 0.1 1.017 1.017 0.95 6.9 3.1

Frontiers

RCP 4.5

2060–2080

Min

4.7 1.2 0.4 0.05 0.407 0.407 0.65 5.5 1.7

Global

(reference

period 1960–

90)

53.2 37.6 7.5 4.1 9.4 7.5 0.71 63.3 50.2

https://doi.org/10.1371/journal.pone.0228305.t004
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Discussion

This paper has three specific implications as well as raising some broader scale issues that need

to be reflected on. In terms of the specific implications, we note that while climate change is cre-

ating new opportunities for agriculture, especially in northern latitudes, results presented here

show huge potential environmental trade-offs. The first potential impact relates to the release of

soil organic carbon into the atmosphere. As shown in the results section of this paper, if agricul-

ture is allowed to extend into all of the frontiers identified here, then there would be little

chance of reaching the Paris climate accord’s goals of keeping climate change to within 1.5˚C

above preindustrial levels [60]. A second implication relates to biodiversity. The results of this

paper suggest that if all of the frontiers are converted into agricultural uses, the world will lose

important biodiversity hotspots in both mountainous and northern regions. This will accentu-

ate the negative impact of what some scholars describe as “the Anthropocene” [61]. This paper

shows that a third implication of developing all of these agricultural frontiers would be signifi-

cant problems of water degradation that could affect the health and well-being of millions of

people.

With that said, it is important to acknowledge that the analysis presented here does not

assess economic incentives and constraints on frontier development, nor does it simulate the

probability that individual areas would be cultivated. Consequently, the carbon, water and bio-

diversity impacts described here are all “upper bound” estimates and in some ways represent

worst case scenarios. However, the magnitude of impacts identified, and the potential for very

significant feedbacks in terms of environmental problems (such as cultivating the Northern

frontier leading to increased carbon emissions leading to more rapid climate change), should

trigger concern. In this way, the results presented here should be seen alongside literature on

biogeophysical “tipping cascades” that could push the Earth System across a planetary thresh-

old to a ‘Hothouse Earth’ pathway [61]. We have identified climate-driven agricultural fron-

tiers as a coupled natural-human tipping cascade that might have similar self-reinforcing

tendencies. In lieu of more detailed analyses, there are several reasons to believe that frontier

development, particularly in the Northern Hemisphere high latitude frontiers, is of both global

and regional policy significance.

Standing aside from these ecological issues, these results also have implications for society

and mean that this analysis makes a contribution to the broad area of sustainability science

and the emerging literature on planetary boundaries and planetary health [62–63]. In parti-

cular, there are serious social issues that would need to be considered that fall outside of the

scope of this paper. A great many First Nations communities call these areas home and have

ancestral claims many of which are unseeded. The development of any agricultural “frontier”

would, therefore, need to be done fully cognizant of the fact that Indigenous Communities

must be at the forefront of any development plans and must be the primary beneficiaries.

Any such developments, therefore, must take into account a number of the following.

First, humanity has a history of cultivating land that was once deemed unlikely to ever justify

cultivation–and this has created massive sustainability problems. For example, a combination

of policies and technology created conditions that led to the Dust Bowl of the 1930s in North

America [64]; or that 60 years ago resulted in the beginning of the degradation of the Aral Sea

and the pollution of its waters, with knock-on effects on the very same ability of lands to sustain

agricultural productivity [65]. Similarly, 50 years ago, no one seriously thought that people

would ever turn large areas of the Brazilian Cerrado and Amazon into soy fields or large areas

of Southeast Asian peat into oil palm plantation. In particular, the fragile tropical soils were

deemed unsuitable and the areas were considered too remote. Yet land use conversion hap-

pened in a very short period of time driven by rising demand and low land prices. Arguing by
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analogy, it seems plausible that we should be prepared for a similar economic logic to be applied

to the global North. For instance, policies such as China’s “Belt and Road” initiative, are likely

to provide significant subsidies to frontier development. Adding environmental policies within

such programs could help reduce the impacts associated with frontier development, for instance

by promoting non-agricultural industries and supporting low carbon forms of land use.

Second, we have evidence that populations are already looking north for food producing

opportunities. For example, the government of the Northwest Territories in Canada recently

created a new agricultural strategy that promotes development of northern lands [66]. Simi-

larly, Russia has policies promoting homesteading in Siberia that will attract more settlers as

warming continues, while China and Korea have both leased land in Siberia for agriculture

even under current climatic limitations [67–68].

Third, there is technology change. New genetically modified crops, including quick maturing

soybeans, and new management practices, such as precision agriculture, are giving farmers the

ability to plant in environments that once would have been considered extreme. As a result, the

frontier for soybeans in North America has been moving west and north for years. It is impor-

tant to bear in mind that, therefore, today it seems that the Northern agricultural frontier is at a

moment in history similar to just before Brazil started investing in soy production [69–70].

Finally, population growth and the expansion of biofuels may have outsized impacts on

land use. Biofuel use is strongly influenced by national and regional (e.g., EU) policies, which

can change. Policy change could drastically increase land requirements for biofuel production,

as it has done in Brazil. It is important to recognize the land use consequences, such as in agri-

cultural frontiers, of such policies. Global population growth estimates diverge strongly after

2050. After 2050, global population estimates range from decline to just over 7 billion people

(low-variant) to more than doubling to over 16 billion people (high-variant) [71]. The upper-

range population endpoints, while less likely, would result in very different demand drivers for

new agricultural production in our end-century scenarios. The environmental consequences

of frontier development are one of many reasons we should be concerned about which of these

trajectories the planet will follow.

The distribution of both the benefits and the impacts of frontier development will further

complicate achievement of the targets set by the sustainable development goals [72–73]. In

particular, although developing the Northern frontiers might help reduce poverty and hunger

both through the economic activities as well as the food produced in these areas, developing

such frontiers might have a detrimental effect on the Sustainable Development Goals of the

United Nations (13 climate action 14 life in water and 15 life on land). Further development

imbalances may be created by distributional effects caused by the development of the frontiers.

Namely, it must be noted that two countries–Canada and Russia–contain 56% of the global

frontier area. Frontier cultivation may have significant economic, food security and trade

benefits for these countries, providing significant incentives favoring development. However,

the likely environmental cost, especially related to climate change, will be felt internationally,

with disproportionate impact on poor nations [74–75].

Overall, therefore, climate-driven agricultural frontiers pose a major challenge for interna-

tional environmental policy. In particular, changing crop suitability in the frontiers is likely to

be a gradual, but sustained, source of new greenhouse gas emissions that may make it difficult

for some countries to make progressive reductions toward Paris Agreement targets.

Conclusion

In summary, our research shows that climate change presents serious opportunities for food

production in areas that, until now, have been relatively undeveloped. This suggests
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opportunities for economic development that, if done properly, may reduce poverty and food

insecurity in some economically marginal parts of the world, such as northern Canada, where

a lack of economic opportunities has created epidemic levels of food insecurity. With that said,

it is important to recognize that food insecurity in remote communities is rarely a function of

food production alone and is more often associated with a complex legacy of colonialism, edu-

cation, and socio-cultural disconnects.

There are serious negative environmental impacts associated with the unfettered develop-

ment of climate-driven agricultural frontiers. Recognizing that climate-driven agricultural

frontiers are a potential source of new greenhouse gas emissions and other environmental

impacts including a loss of biodiversity and a loss of water quality for hundreds of millions of

people highlights the need for national and international policy to guide sustainable develop-

ment in the frontiers. The development of such policies should engage with Indigenous Com-

munities and other local stakeholders to establish participatory processes that would ensure

that economic development plans are led locally and that local communities are the primary

beneficiaries of any land use change. Together, therefore, using participatory methodologies,

local governance and frameworks such as the Sustainable Development Goals, it should be

possible to help countries realize the potential benefits associated with a changing environment

without causing major further environmental problems.
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60. Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement climate pro-

posals need a boost to keep warming well below 2 C. Nature. 2016; 534(7609), 631. https://doi.org/10.

1038/nature18307 PMID: 27357792

61. Steffen W, Rockstrom J, Richardson K, Lenton TM, Folke C, Liverman D, et al. Trajectories of the Earth

System in the Anthropocene. Proceedings of the National Academy of Sciences. 2018; 115(33): 8252–

8259. https://doi.org/10.1073/pnas.1810141115

62. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, et al. Planetary boundaries:

guiding human development on a changing planet. Science. 2015; 347(6223), 1259855. https://doi.org/

10.1126/science.1259855 PMID: 25592418

63. Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, et al. A framework for

vulnerability analysis in sustainability science. Proceedings of the national academy of sciences. 2003;

100(14): 8074–8079.

64. Fraser EDG. Coping with food crises: lessons from the American Dust Bowl on balancing local food,

agro technology, social welfare, and government regulation agendas in food and farming systems.

Global Environmental Change. 2013; 23: 1662–1672.

65. Pearce F. When the rivers run dry: water—the defining crisis of the twenty-first century. Beacon Press.

2007, Boston, MA, United States, 324 pp.

66. Government of Northwest Territories. The business of food: a food production plan 2017–2022. North-

west Territories Agriculture Strategy. Government of Northwest Territories Canada. 2017. https://www.

iti.gov.nt.ca/sites/iti/files/agriculture_strategy.pdf

67. Russia Today. Land grant: Govt drafts bill for ‘1-hectare per Russian’ in Far East. 2015. www.rt.com/

politics/322404-government-drafts-bill-on-free. Accessed 24 Sept 2018

68. BBC News. Chinese firm to rent Russian land in Siberia for crops. 2015. www.bbc.com/news/world-

asia-33196396. Accessed 24 Sept 2018

69. Gasparri NI, Kuemmerle T, Meyfroidt P, le Polain de Waroux Y, Kreft H. The emerging soybean produc-

tion frontier in Southern Africa: conservation challenges and the role of South-South telecouplings. Con-

servation Letters. 2016; 9: 21–31.

70. Goldfarb L, van der Haar G. The moving frontiers of genetically modified soy production: shifts in land

control in the Argentinian Chaco. The Journal of Peasant Studies. 2016; 43: 562–582.

71. United Nations Department of Economic and Social Affairs, Population Division. World Population Pros-

pects: The 2017 Revision, Volume I: Comprehensive Tables (2017). ST/ESA/SER.A/399.

72. UN General Assembly. Sustainable development goals (SDGs), transforming our world: the, 2030.

United Nations. New York. 2015.

73. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, et al. Policy: Sus-
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